Lectures 2,3: Classical Generation of Gravitational Waves

December 8, 2011

1 Linearized GR with source $T_{\mu \nu}$

In Lecture 1, we saw that, in Lorentz gauge, the linearized Einstein equation is

$$
\begin{equation*}
\square \bar{h}_{\alpha \beta}=-16 \pi T_{\alpha \beta} . \tag{1}
\end{equation*}
$$

To solve this equation, first find the Green's function $G\left(x, x^{\prime}\right)$ which represents the response to a delta-function source at spacetime point x^{\prime} :

$$
\begin{equation*}
\square G\left(x, x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right) \tag{2}
\end{equation*}
$$

We can solve this in Fourier space:

$$
\begin{equation*}
G\left(x, x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\mathrm{e}^{i k_{\mu}\left(x^{\mu}-x^{\prime \mu}\right)}}{-k^{2}} . \tag{3}
\end{equation*}
$$

To perform the $d^{4} k$ integral, start with the $d k^{0}$ integral. Since $-k^{2}=\left(k^{0}\right)^{2}-\vec{k}^{2}$ appears in the denominator, the integrand has two poles at $k^{0}= \pm|\vec{k}|$. We have to decide how the k^{0} integration contour goes around the poles in the complex k^{0} plane: different choices correspond to different Green's functions (e.g. the retarded, advanced, or Feynman Green's functions). To obtain the retarded Green's function, proportional to Heaviside function $\theta\left(t-t^{\prime}\right)$, we should choose the contour that passes above both poles in the complex k^{0} plane; then we can evaluate the k^{0} integral via the residue theorem to obtain

$$
\begin{align*}
G\left(x, x^{\prime}\right) & =i \theta\left(t-t^{\prime}\right) \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} \frac{\mathrm{e}^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)}}{2 \omega}\left[\mathrm{e}^{i \omega\left(t-t^{\prime}\right)}-\mathrm{e}^{-i \omega\left(t-t^{\prime}\right)}\right] \tag{4a}\\
& =\frac{i \theta\left(t-t^{\prime}\right)}{(2 \pi)^{3}} \int_{0}^{\infty} d \omega \omega^{2} \int_{-1}^{1} d \mu \int_{0}^{2 \pi} d \varphi \frac{\mathrm{e}^{i \omega\left|\vec{x}-\vec{x}^{\prime}\right| \mu}}{2 \omega}\left[\mathrm{e}^{i \omega\left(t-t^{\prime}\right)}-\mathrm{e}^{-i \omega\left(t-t^{\prime}\right)}\right] \tag{4b}\\
& =\frac{\theta\left(t-t^{\prime}\right)}{2\left|\vec{x}-\vec{x}^{\prime}\right|(2 \pi)^{2}} \int_{0}^{\infty} d \omega\left[\mathrm{e}^{i \omega\left|\vec{x}-\vec{x}^{\prime}\right|}-\mathrm{e}^{-i \omega\left|\vec{x}-\vec{x}^{\prime}\right|}\right]\left[\mathrm{e}^{i \omega\left(t-t^{\prime}\right)}-\mathrm{e}^{-i \omega\left(t-t^{\prime}\right)}\right](4 \mathrm{c} \\
& =\frac{-1}{4 \pi\left|\vec{x}-\vec{x}^{\prime}\right|} \theta\left(t-t^{\prime}\right) \delta\left[\left(t-t^{\prime}\right)-\left|\vec{x}-\vec{x}^{\prime}\right|\right] \tag{4d}
\end{align*}
$$

where from the 1st to 2 nd line we have written the $d^{3} \vec{k}$ integral in spherical coordinates $\left(\mu=\cos \theta\right.$, where θ is the angle between \vec{k} and $\left.\vec{x}-\vec{x}^{\prime}\right)$; from the 2 nd to 3 rd line we have evaluated the $d \varphi$ and $d \mu$ integrals; and from the 3rd to 4th line we have evaluated the $d \omega$ integral.

The retarded Green's function $G\left(x, x^{\prime}\right)$ represents the response to a delta function source at spacetime point x^{\prime}; and the general solution to the wave equation (1) is obtained by convolving the Green's function with the source:

$$
\begin{align*}
\bar{h}_{\mu \nu}(x) & =\int d^{4} x^{\prime} G\left(x, x^{\prime}\right)\left[-16 \pi T_{\mu \nu}\left(x^{\prime}\right)\right] \tag{5a}\\
& =\int d^{3} \vec{x}^{\prime} \frac{4}{\left|\vec{x}-\vec{x}^{\prime}\right|} T_{\mu \nu}\left(\vec{x}^{\prime}, t-\left|\vec{x}-\vec{x}^{\prime}\right|\right) \tag{5b}
\end{align*}
$$

Now, if $T_{\mu \nu}$ is a distant, localized, Newtonian source at distance $\left|\vec{x}-\vec{x}^{\prime}\right| \approx r$ this becomes

$$
\begin{align*}
\bar{h}_{i j}(x) & \approx \frac{4}{r} \int d^{3} \vec{x}^{\prime} T^{i j}\left(\vec{x}^{\prime}, t-r\right) \tag{6a}\\
& =\frac{2}{r} \int d^{3} \vec{x}^{\prime} T_{, k l}^{k l}\left(\vec{x}^{\prime}, t-r\right) \vec{x}^{\prime i} \vec{x}^{\prime j} \tag{6b}\\
& =\frac{2}{r} \int d^{3} \vec{x}^{\prime} T_{, 00}^{00}\left(\vec{x}^{\prime}, t-r\right) \vec{x}^{\prime} \vec{x}^{\prime j} \tag{6c}\\
& =\frac{2}{r} \ddot{Q}_{i j}(t-r) \tag{6d}
\end{align*}
$$

where, from the 1 st to 2 nd line we have used the identity

$$
\begin{equation*}
T^{i j}=\left(T^{i k} x^{j}+T^{j k} x^{i}\right)_{, k}-\frac{1}{2}\left(T^{k l} x^{i} x^{j}\right)_{, k l}+\frac{1}{2} T_{, k l}^{k l} x^{i} x^{j} \tag{7}
\end{equation*}
$$

and thrown away the total divergence terms (since, by Stokes' theorem, they are converted to surface integrals that vanish when the surface is taken outside the source); from the 2nd to 3rd line we have used the identity $T^{k l}{ }_{, k l}=T^{00}{ }_{, 00}$, which follows from conservation of stress energy $T^{\mu \nu}{ }_{, \nu}=0$; and from the 3rd to 4th line we have introduced the quadrupole tensor

$$
\begin{equation*}
Q_{i j}(t)=\int d^{3} \vec{x} \rho(\vec{x}) \vec{x}^{i} \vec{x}^{j} \tag{8}
\end{equation*}
$$

and used the notation $\ddot{Q}=d^{2} Q / d t^{2}$. Now, taking the TT part of both sides, we finally arrive at the classic formula for the gravitational waveform produced by a localized Newtonian source:

$$
\begin{equation*}
h_{i j}^{T T}(t)=\frac{2}{r} \ddot{Q}_{i j}^{T T}(t-r) . \tag{9}
\end{equation*}
$$

where the TT part of Q is obtained as

$$
\begin{equation*}
Q_{i j}^{T T}=P_{i k}(\hat{n}) P_{j l}(\hat{n})\left[Q_{k l}-\frac{1}{3} \delta_{k l} \operatorname{Tr} Q\right] . \tag{10}
\end{equation*}
$$

Here \hat{n} is the direction to (or from) the source, and $P_{i j}(\hat{n})=\delta_{i j}-\hat{n}_{i} \hat{n}_{j}$ is the transverse projection operator.

Next let us compute the luminosity of the system. First note that gravitational waves have an effective stress-energy tensor

$$
\begin{equation*}
T_{\mu \nu}^{g w}=\frac{1}{32 \pi}\left\langle h_{i j, \mu}^{T T} h_{i j, \nu}^{T T}\right\rangle . \tag{11}
\end{equation*}
$$

So if we integrate $T_{00}^{g w}=\left(1 / 8 \pi r^{2}\right)\left\langle\dddot{Q}_{i j}^{T T} \dddot{Q}_{i j}^{T T}\right\rangle$ (the gravitational wave energy density) over a sphere far from the source (where the gravitational waves are propagating radially outward at the speed of light) we find that the total luminosity is

$$
\begin{equation*}
L=\frac{1}{5}\left\langle\dddot{Q}_{i j}^{T} \dddot{Q}_{i j}^{T}\right\rangle \tag{12}
\end{equation*}
$$

where $Q_{i j}^{T}=Q_{i j}-\frac{1}{3} \delta_{i j} Q$ is the traceless (but not transverse) part of $Q_{i j}$.

2 Binary inspiral

Consider a binary with mass M_{1} at position \vec{r}_{1} and mass M_{2} at position $\overrightarrow{r_{2}}$. This system has quadrupole moment

$$
\begin{equation*}
Q_{i j}=\mu \vec{r}_{21}^{i} \vec{r}_{21}^{j} \tag{13}
\end{equation*}
$$

where $\vec{r}_{21} \equiv \vec{r}_{2}-\vec{r}_{1}$ is the displacement vector, and $\mu \equiv M_{1} M_{2} /\left(M_{1}+M_{2}\right)$ is the reduced mass. The equation of motion is

$$
\begin{equation*}
\frac{d^{2} \vec{r}_{21}}{d t^{2}}=-\frac{M}{r_{21}^{3}} \vec{r}_{21} \tag{14}
\end{equation*}
$$

where $M \equiv M_{1}+M_{2}$ is the total mass. Without loss of generality, let us take the binary to orbit in the xy-plane, with separation a, so

$$
\begin{equation*}
\vec{r}_{21}=a(\hat{x} \cos \omega t+\hat{y} \sin \omega t), \quad \omega=\sqrt{\left(M_{1}+M_{2}\right) / a^{3}} \tag{15}
\end{equation*}
$$

and the traceless part of the quadrupole tensor becomes

$$
Q_{i j}^{T}=\mu a^{2}\left(\begin{array}{ccc}
\cos ^{2} \omega t-\frac{1}{3} & \cos \omega t \sin \omega t & 0 \tag{16}\\
\cos \omega t \sin \omega t & \sin ^{2} \omega t-\frac{1}{3} & 0 \\
0 & 0 & -\frac{1}{3}
\end{array}\right)
$$

Now consider a point in the direction $\hat{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, at a distance r from the source; as an exercise, you can construct the 3×3 matrix corresponding to the projection operator $P_{i j}(\hat{n})=\delta_{i j}-\hat{n}_{i} \hat{n}_{j}$; then perform the matrix multiplication $Q^{T T}=P(\hat{n}) Q^{T} P(\hat{n})$ to construct the transverse traceless part of Q, and finally take 2 time derivatives to explicitly obtain the $\ddot{Q}_{i j}^{T T}$ and hence the gravitational waveform at an arbitrary distance and direction from the source via Eq. (9). We can also plug $Q_{i j}^{T}$ into equation (12) to find

$$
\begin{equation*}
L_{g w}=\frac{d E_{\mathrm{gw}}}{d t}=\frac{32}{5} \frac{\mu^{2} M^{3}}{a^{5}} \tag{17}
\end{equation*}
$$

The gravitational waves carry away energy from the orbit: $d E_{\text {orbit }} / d t=-d E_{\text {gw }} / d t$, where $E_{\text {orbit }}=-M \mu / 2 a$. As a result, the orbital separation gradually decreases:

$$
\begin{equation*}
\frac{d a}{d t}=\frac{d E_{\text {orbit }} / d t}{d E_{\text {orbit }} / d a}=-\frac{64}{5} \frac{\mu M^{2}}{a^{3}} \tag{18}
\end{equation*}
$$

If this system starts at a finite separation a_{0}, we can integrate this equation to discover that the system inspirals and merges in a finite time:

$$
\begin{equation*}
t_{\text {merger }}=\frac{5}{256} \frac{a_{0}^{4}}{M^{2} \mu}=\frac{5}{256} \frac{1}{\omega^{8 / 3} M^{2 / 3} \mu} \tag{19}
\end{equation*}
$$

As the system inspirals, the frequency of the orbit (and hence the frequency of the gravitational wave, which is twice the frequency of the orbit) increases by virtue of Kepler's law: $\omega^{2}=M / a^{3}$; and, at the same time, the amplitude of the gravitational wave also increases, since $\ddot{Q} \sim \mu a^{2} \omega^{2}=\mu M / a$. So the combined effect produces a characteristic "chirping" gravitational waveform, which I will draw on the blackboard.

