
Lectures 2,3: Classical Generation of
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1 Linearized GR with source Tµν

In Lecture 1, we saw that, in Lorentz gauge, the linearized Einstein equation is

�hαβ = −16πTαβ. (1)

To solve this equation, first find the Green’s function G(x, x′) which represents
the response to a delta-function source at spacetime point x′:

�G(x, x′) = δ4(x − x′). (2)

We can solve this in Fourier space:

G(x, x′) =

∫

d4k

(2π)4
eikµ(xµ−x′µ)

−k2
. (3)

To perform the d4k integral, start with the dk0 integral. Since −k2 = (k0)2−~k2

appears in the denominator, the integrand has two poles at k0 = ±|~k|. We have
to decide how the k0 integration contour goes around the poles in the complex
k0 plane: different choices correspond to different Green’s functions (e.g. the
retarded, advanced, or Feynman Green’s functions). To obtain the retarded
Green’s function, proportional to Heaviside function θ(t− t′), we should choose
the contour that passes above both poles in the complex k0 plane; then we can
evaluate the k0 integral via the residue theorem to obtain

G(x, x′) = iθ(t − t′)

∫

d3~k

(2π)3
ei~k·(~x−~x′)

2ω
[eiω(t−t′)−e−iω(t−t′)] (4a)

=
iθ(t − t′)

(2π)3

∫ ∞

0

dω ω2

∫ 1

−1

dµ

∫ 2π

0

dϕ
eiω|~x−~x′|µ

2ω
[eiω(t−t′)−e−iω(t−t′)] (4b)

=
θ(t − t′)

2|~x−~x′|(2π)2

∫ ∞

0

dω[eiω|~x−~x′|−e−iω|~x−~x′|][eiω(t−t′)−e−iω(t−t′)](4c)

=
−1

4π|~x − ~x′|
θ(t − t′)δ[(t − t′) − |~x − ~x′|] (4d)
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where from the 1st to 2nd line we have written the d3~k integral in spherical
coordinates (µ = cosθ, where θ is the angle between ~k and ~x−~x′); from the 2nd
to 3rd line we have evaluated the dϕ and dµ integrals; and from the 3rd to 4th
line we have evaluated the dω integral.

The retarded Green’s function G(x, x′) represents the response to a delta
function source at spacetime point x′; and the general solution to the wave
equation (1) is obtained by convolving the Green’s function with the source:

hµν(x) =

∫

d4x′G(x, x′)[−16πTµν(x′)] (5a)

=

∫

d3~x′ 4

|~x − ~x′|
Tµν(~x′, t − |~x − ~x′|) (5b)

Now, if Tµν is a distant, localized, Newtonian source at distance |~x − ~x′| ≈ r
this becomes

hij(x) ≈
4

r

∫

d3~x′T ij(~x′, t − r) (6a)

=
2

r

∫

d3~x′T kl
,kl(~x

′, t − r)~x′i~x′j (6b)

=
2

r

∫

d3~x′T 00
,00(~x

′, t − r)~x′i~x′j (6c)

=
2

r
Q̈ij(t − r) (6d)

where, from the 1st to 2nd line we have used the identity

T ij = (T ikxj + T jkxi),k −
1

2
(T klxixj),kl +

1

2
T kl

,klx
ixj (7)

and thrown away the total divergence terms (since, by Stokes’ theorem, they
are converted to surface integrals that vanish when the surface is taken outside
the source); from the 2nd to 3rd line we have used the identity T kl

,kl = T 00
,00,

which follows from conservation of stress energy T µν
,ν = 0; and from the 3rd to

4th line we have introduced the quadrupole tensor

Qij(t) =

∫

d3~xρ(~x)~xi~xj . (8)

and used the notation Q̈ = d2Q/dt2. Now, taking the TT part of both sides,
we finally arrive at the classic formula for the gravitational waveform produced
by a localized Newtonian source:

hTT
ij (t) =

2

r
Q̈TT

ij (t − r). (9)

where the TT part of Q is obtained as

QTT
ij = Pik(n̂)Pjl(n̂)[Qkl −

1

3
δklTr Q]. (10)
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Here n̂ is the direction to (or from) the source, and Pij(n̂) = δij − n̂in̂j is the
transverse projection operator.

Next let us compute the luminosity of the system. First note that gravita-
tional waves have an effective stress-energy tensor

T gw
µν =

1

32π
〈hTT

ij,µhTT
ij,ν〉. (11)

So if we integrate T gw
00 = (1/8πr2)〈

...
Q

TT
ij

...
Q

TT
ij 〉 (the gravitational wave energy

density) over a sphere far from the source (where the gravitational waves are
propagating radially outward at the speed of light) we find that the total lumi-
nosity is

L =
1

5
〈
...
Q

T
ij

...
Q

T
ij〉 (12)

where QT
ij = Qij −

1
3δijQ is the traceless (but not transverse) part of Qij .

2 Binary inspiral

Consider a binary with mass M1 at position ~r1 and mass M2 at position ~r2.
This system has quadrupole moment

Qij = µ~ri
21~r

j
21 (13)

where ~r21 ≡ ~r2 − ~r1 is the displacement vector, and µ ≡ M1M2/(M1 + M2) is
the reduced mass. The equation of motion is

d2~r21

dt2
= −

M

r3
21

~r21 (14)

where M ≡ M1 + M2 is the total mass. Without loss of generality, let us take
the binary to orbit in the xy-plane, with separation a, so

~r21 = a(x̂ cosωt + ŷ sinωt), ω =
√

(M1 + M2)/a3 (15)

and the traceless part of the quadrupole tensor becomes

QT
ij = µa2





cos2ωt − 1
3 cosωt sinωt 0

cosωt sinωt sin2ωt − 1
3 0

0 0 − 1
3



 (16)

Now consider a point in the direction n̂ = (sinθ cosϕ, sinθ sinϕ, cosθ), at a dis-
tance r from the source; as an exercise, you can construct the 3 × 3 matrix
corresponding to the projection operator Pij(n̂) = δij − n̂in̂j ; then perform the
matrix multiplication QTT = P (n̂)QT P (n̂) to construct the transverse traceless
part of Q, and finally take 2 time derivatives to explicitly obtain the Q̈TT

ij and
hence the gravitational waveform at an arbitrary distance and direction from
the source via Eq. (9). We can also plug QT

ij into equation (12) to find

Lgw =
dEgw

dt
=

32

5

µ2M3

a5
. (17)
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The gravitational waves carry away energy from the orbit: dEorbit/dt = −dEgw/dt,
where Eorbit = −Mµ/2a. As a result, the orbital separation gradually decreases:

da

dt
=

dEorbit/dt

dEorbit/da
= −

64

5

µM2

a3
. (18)

If this system starts at a finite separation a0, we can integrate this equation to
discover that the system inspirals and merges in a finite time:

tmerger =
5

256

a4
0

M2µ
=

5

256

1

ω8/3M2/3µ
. (19)

As the system inspirals, the frequency of the orbit (and hence the frequency of
the gravitational wave, which is twice the frequency of the orbit) increases by
virtue of Kepler’s law: ω2 = M/a3; and, at the same time, the amplitude of the
gravitational wave also increases, since Q̈ ∼ µa2ω2 = µM/a. So the combined
effect produces a characteristic “chirping” gravitational waveform, which I will
draw on the blackboard.
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