
Lecture 1: Gravitational Waves in vacuum

1 Introduction

I am told that most of the students at this school have seen some GR, but
that there is a lot of variation in background. For those of you who need more
background, I have prepared a set of lecture notes (“Lecture 0”) that gives a
concise 5 page introduction to Differential Geometry, General Relativity (and,
for fun, Classical Yang-Mills theory, too).

In brief, the plan for these lectures is the following:

• Lecture 1: Gravitational waves in vacuum: basic equations, TT gauge,
polarizations, physical interpretation.

• Lectures 2,3: Classical generation of gravitational waves (by a classical
source of stress energy, Tµν). Binary inspiral as the key astrophysical
source.

• Lectures 4,5: Quantum generation of gravitational waves (e.g. in infla-
tion), and their cosmological evolution to the present. Relationship be-
tween primordial gravitational waves, astrophysical gravitational waves,
and present-day constraints.

2 Linearized GR

Consider flat spacetime plus small perturbations:

gµν = ηµν + hµν ⇒ gµν ≈ ηµν − hµν + O(h2) (1)

where gµν is the full spacetime metric, gµν is its inverse (gµνgνρ = δµ
ρ ), ηµν =

diag{−1, 1, 1, 1} is the unperturbated Minkowski metric, ηµν is its inverse, hµν

is the metric perturbation (|hµν | ≪ 1), and here and in what follows, we will
raise and lower indices on h using the unperturbed metric ηµν (e.g. hµν ≡
ηµαηνβhαβ). Under an infinitessimal coordinate transformation x′µ = xµ +
ξµ(x), the metric transforms as gµν = (∂x′α/∂xµ)(∂x′β/∂xν)g′αβ , from which
we find transformation law for hµν :

hµν → h′

µν = hµν − (ξµ,ν + ξν,µ). (2)
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Using Γα
βγ = 1

2
gαδ(gβδ,γ + gγδ,β − gβγ,δ), we obtain the first order expression for

the Christoffel symbols:

Γα
βγ ≈ 1

2
(hα

β,γ + hα
γ,β − h ,α

βγ ). (3)

Then, using Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

γσΓσ
βδ − Γα

δσΓσ
βγ we find the first order

expression for the Riemann tensor

Rαβγδ ≈ 1

2
(hαδ,βγ + hβγ,αδ − hαγ,βδ − hβδ,αγ). (4)

Note that, to first order in h, the expression for Rαβγδ is invariant under the
gauge transformation (2): i.e. the values of the components of Rαβγδ are gauge
invariant. From here we can calculate the Einstein tensor Gβδ = Rβδ − 1

2
gβδR

where Rβδ = gαγRαβγδ is the Ricci tensor, and R = gβδRβδ is the Ricci scalar.
We find the first order expression for the Einstein tensor

Gβδ ≈ 1

2

(

h
,µ

βµ,δ + h
,µ

δµ,β − ηβδh
,µν

µν − �hβδ

)

(5)

where we have introduced the trace-reversed metric perturbation

hαβ ≡ hαβ − 1

2
ηαβh (h ≡ hα

α). (6)

Again, to first order in h, the components of Gβδ are gauge invariant, but it is
convenient to choose “Lorentz gauge”

h
,β

αβ = 0. (7)

Since h̄ ,ν
µν transforms as

h̄′ ,ν
µν = h ,ν

µν − �ξµ (� ≡ ηµν∂µ∂ν), (8)

the coordinate transformation ξµ(x) needed to reach Lorentz gauge is obtained
by solving the differential equation

�ξµ = h̄ ,ν
µν . (9)

The advantage of Lorentz gauge is that the expression for the Einstein tensor
simplifies to the form Gβδ = −(1/2)�hβδ, and the Einstein equation Gµν =
8πGNTµν becomes the familiar wave equation

�hβδ = −16πGNTβδ. (10)

3 Propagation of gravitational waves in vacuum

In vacuum, the wave equation becomes �hαβ = 0; the solution is a superposition
of plane waves traveling at the speed of light:

hαβ(x) = Re

∫

d3~k

(2π)3
Aαβ(~k)eikµxµ

(11)
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where kµ = (ω,~k) and ω =

√

δij
~ki~kj . The Lorentz gauge condition (7) implies

that each 4 × 4 symmetric matrix Aµν(~k) satisfies 4 constraints:

kαAαβ(~k) = 0. (12)

But the Lorentz gauge condition (7) does not fix the gauge completely; once we
are in Lorentz gauge, we can still make a gauge transformation of the form

ξµ(x) = Re

∫

d3~k

(2π)3
Bµ(~k)eikµ·xµ

(13)

and, since �ξµ = 0 for such a transformation, (8) implies Lorentz gauge (7) will

be preserved. To fix the 4 Bµ(~k), we impose 4 more gauge conditions:

uαhαβ = 0 and h = 0, (14)

where uα is a constant time-like vector which we can choose to be (1, 0, 0, 0).

These conditions imply that each Aµν(~k) satisfies the following constraints:

uµAµν(~k) and Tr[A(~k)] = 0. (15)

This look like 5 additional gauge conditions, but it is only 4, since one of
the conditions is redundant with the Lorentz gauge conditions: the quantity
uµkνAµν(~k) vanishes for two different reasons. We have now completely fixed
the gauge: this called “transverse-traceless” or “TT” gauge.

This leaves Aµν(~k) with 10-4-4=2 unconstrained components: these are the

2 polarizations of a gravitational wave. Let us define the unit 3-vector n̂ = ~k/ω
and write kµ = ω(1, n̂). Now, associated with each n̂, pick two other vector
p̂(n̂) and q̂(n̂) to complete an orthonormal triad, and write pµ = {0, p̂} and
qµ = {0, q̂}. We can now form the “plus” and “cross” polarization tensors:

P+
µν = pµpν − qµqν P×

µν = pµqν + qµpν , (16)

or the “right” and “left” circularly polarized polarization tensors

PR
µν =

1√
2
(P+

µν + iP×

µν) PL
µν =

1√
2
(P+

µν − iP×

µν). (17)

and then expand Aαβ(~k) in Eq. (11) in the form

Aαβ(~k) = A+(~k)P+

αβ(n̂) + A×(~k)P×

αβ(n̂) (18a)

= AR(~k)PR
αβ(n̂) + AL(~k)PL

αβ(n̂) (18b)

To understand the physical meaning, consider the geodesic equation for a mas-
sive particle bobbing in the gravitational wave metric:

d2xµ

dτ2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 (19)
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If the particle is initially at rest in TT gauge (dxα/dτ = 0), then the geodesic
equation says it will remain at rest (because Γµ

00 vanishes in this gauge). So if
we consider two nearby particles, A and B, at rest at coordinate ~xA and ~xB, the
coordinate displacement between them is a constant, but the proper distance
between them

dAB =
√

(δij + hij)(~xB − ~xA)i(~xB − ~xA)j (20)

oscillates with the patterns that I will draw on the board. This oscillation
is observable, and various different gravitational wave detection schemes are
currently trying to detect it.
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