Lecture 1: Gravitational Waves in vacuum

1 Introduction

I am told that most of the students at this school have seen some GR, but that there is a lot of variation in background. For those of you who need more background, I have prepared a set of lecture notes ("Lecture 0") that gives a concise 5 page introduction to Differential Geometry, General Relativity (and, for fun, Classical Yang-Mills theory, too).

In brief, the plan for these lectures is the following:

- Lecture 1: Gravitational waves in vacuum: basic equations, TT gauge, polarizations, physical interpretation.
- Lectures 2,3: Classical generation of gravitational waves (by a classical source of stress energy, $T_{\mu \nu}$). Binary inspiral as the key astrophysical source.
- Lectures 4,5: Quantum generation of gravitational waves (e.g. in inflation), and their cosmological evolution to the present. Relationship between primordial gravitational waves, astrophysical gravitational waves, and present-day constraints.

2 Linearized GR

Consider flat spacetime plus small perturbations:

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad \Rightarrow \quad g^{\mu \nu} \approx \eta^{\mu \nu}-h^{\mu \nu}+\mathcal{O}\left(h^{2}\right) \tag{1}
\end{equation*}
$$

where $g_{\mu \nu}$ is the full spacetime metric, $g^{\mu \nu}$ is its inverse $\left(g^{\mu \nu} g_{\nu \rho}=\delta_{\rho}^{\mu}\right), \eta_{\mu \nu}=$ $\operatorname{diag}\{-1,1,1,1\}$ is the unperturbated Minkowski metric, $\eta^{\mu \nu}$ is its inverse, $h_{\mu \nu}$ is the metric perturbation $\left(\left|h_{\mu \nu}\right| \ll 1\right)$, and here and in what follows, we will raise and lower indices on h using the unperturbed metric $\eta_{\mu \nu}$ (e.g. $h^{\mu \nu} \equiv$ $\eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta}$). Under an infinitessimal coordinate transformation $x^{\prime \mu}=x^{\mu}+$ $\xi^{\mu}(x)$, the metric transforms as $g_{\mu \nu}=\left(\partial x^{\alpha} / \partial x^{\mu}\right)\left(\partial x^{\prime \beta} / \partial x^{\nu}\right) g_{\alpha \beta}^{\prime}$, from which we find transformation law for $h_{\mu \nu}$:

$$
\begin{equation*}
h_{\mu \nu} \rightarrow h_{\mu \nu}^{\prime}=h_{\mu \nu}-\left(\xi_{\mu, \nu}+\xi_{\nu, \mu}\right) \tag{2}
\end{equation*}
$$

Using $\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \delta}\left(g_{\beta \delta, \gamma}+g_{\gamma \delta, \beta}-g_{\beta \gamma, \delta}\right)$, we obtain the first order expression for the Christoffel symbols:

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha} \approx \frac{1}{2}\left(h_{\beta, \gamma}^{\alpha}+h_{\gamma, \beta}^{\alpha}-h_{\beta \gamma}^{, \alpha}\right) \tag{3}
\end{equation*}
$$

Then, using $R_{\beta \gamma \delta}^{\alpha}=\Gamma_{\beta \delta, \gamma}^{\alpha}-\Gamma_{\beta \gamma, \delta}^{\alpha}+\Gamma_{\gamma \sigma}^{\alpha} \Gamma_{\beta \delta}^{\sigma}-\Gamma_{\delta \sigma}^{\alpha} \Gamma_{\beta \gamma}^{\sigma}$ we find the first order expression for the Riemann tensor

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta} \approx \frac{1}{2}\left(h_{\alpha \delta, \beta \gamma}+h_{\beta \gamma, \alpha \delta}-h_{\alpha \gamma, \beta \delta}-h_{\beta \delta, \alpha \gamma}\right) . \tag{4}
\end{equation*}
$$

Note that, to first order in h, the expression for $R_{\alpha \beta \gamma \delta}$ is invariant under the gauge transformation (2): i.e. the values of the components of $R_{\alpha \beta \gamma \delta}$ are gauge invariant. From here we can calculate the Einstein tensor $G_{\beta \delta}=R_{\beta \delta}-\frac{1}{2} g_{\beta \delta} R$ where $R_{\beta \delta}=g^{\alpha \gamma} R_{\alpha \beta \gamma \delta}$ is the Ricci tensor, and $R=g^{\beta \delta} R_{\beta \delta}$ is the Ricci scalar. We find the first order expression for the Einstein tensor

$$
\begin{equation*}
G_{\beta \delta} \approx \frac{1}{2}\left(\bar{h}_{\beta \mu, \delta}^{, \mu}+\bar{h}_{\delta \mu, \beta}^{, \mu}-\eta_{\beta \delta} \bar{h}_{\mu \nu}^{, \mu \nu}-\square \bar{h}_{\beta \delta}\right) \tag{5}
\end{equation*}
$$

where we have introduced the trace-reversed metric perturbation

$$
\begin{equation*}
\bar{h}_{\alpha \beta} \equiv h_{\alpha \beta}-\frac{1}{2} \eta_{\alpha \beta} h \quad\left(h \equiv h_{\alpha}^{\alpha}\right) . \tag{6}
\end{equation*}
$$

Again, to first order in h, the components of $G_{\beta \delta}$ are gauge invariant, but it is convenient to choose "Lorentz gauge"

$$
\begin{equation*}
\bar{h}_{\alpha \beta}^{, \beta}=0 \tag{7}
\end{equation*}
$$

Since $\bar{h}_{\mu \nu}{ }^{, \nu}$ transforms as

$$
\begin{equation*}
\bar{h}_{\mu \nu}^{\prime, \nu}=h_{\mu \nu}^{, \nu}-\square \xi_{\mu} \quad\left(\square \equiv \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}\right) \tag{8}
\end{equation*}
$$

the coordinate transformation $\xi^{\mu}(x)$ needed to reach Lorentz gauge is obtained by solving the differential equation

$$
\begin{equation*}
\square \xi_{\mu}=\bar{h}_{\mu \nu}^{, \nu} . \tag{9}
\end{equation*}
$$

The advantage of Lorentz gauge is that the expression for the Einstein tensor simplifies to the form $G_{\beta \delta}=-(1 / 2) \square h_{\beta \delta}$, and the Einstein equation $G_{\mu \nu}=$ $8 \pi G_{N} T_{\mu \nu}$ becomes the familiar wave equation

$$
\begin{equation*}
\square \bar{h}_{\beta \delta}=-16 \pi G_{N} T_{\beta \delta} . \tag{10}
\end{equation*}
$$

3 Propagation of gravitational waves in vacuum

In vacuum, the wave equation becomes $\square \bar{h}_{\alpha \beta}=0$; the solution is a superposition of plane waves traveling at the speed of light:

$$
\begin{equation*}
\bar{h}_{\alpha \beta}(x)=\operatorname{Re} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} A_{\alpha \beta}(\vec{k}) \mathrm{e}^{i k_{\mu} x^{\mu}} \tag{11}
\end{equation*}
$$

where $k^{\mu}=(\omega, \vec{k})$ and $\omega=\sqrt{\delta_{i j} \vec{k}^{i} \vec{k}^{j}}$. The Lorentz gauge condition (7) implies that each 4×4 symmetric matrix $A_{\mu \nu}(\vec{k})$ satisfies 4 constraints:

$$
\begin{equation*}
k^{\alpha} A_{\alpha \beta}(\vec{k})=0 \tag{12}
\end{equation*}
$$

But the Lorentz gauge condition (7) does not fix the gauge completely; once we are in Lorentz gauge, we can still make a gauge transformation of the form

$$
\begin{equation*}
\xi^{\mu}(x)=\operatorname{Re} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}} B^{\mu}(\vec{k}) \mathrm{e}^{i k_{\mu} \cdot x^{\mu}} \tag{13}
\end{equation*}
$$

and, since $\square \xi^{\mu}=0$ for such a transformation, (8) implies Lorentz gauge (7) will be preserved. To fix the $4 B^{\mu}(\vec{k})$, we impose 4 more gauge conditions:

$$
\begin{equation*}
u^{\alpha} \bar{h}_{\alpha \beta}=0 \quad \text { and } \quad \bar{h}=0 \tag{14}
\end{equation*}
$$

where u^{α} is a constant time-like vector which we can choose to be $(1,0,0,0)$. These conditions imply that each $A_{\mu \nu}(\vec{k})$ satisfies the following constraints:

$$
\begin{equation*}
u^{\mu} A_{\mu \nu}(\vec{k}) \quad \text { and } \quad \operatorname{Tr}[A(\vec{k})]=0 \tag{15}
\end{equation*}
$$

This look like 5 additional gauge conditions, but it is only 4, since one of the conditions is redundant with the Lorentz gauge conditions: the quantity $u^{\mu} k^{\nu} A_{\mu \nu}(\vec{k})$ vanishes for two different reasons. We have now completely fixed the gauge: this called "transverse-traceless" or "TT" gauge.

This leaves $A_{\mu \nu}(\vec{k})$ with 10-4-4=2 unconstrained components: these are the 2 polarizations of a gravitational wave. Let us define the unit 3 -vector $\hat{n}=\vec{k} / \omega$ and write $k^{\mu}=\omega(1, \hat{n})$. Now, associated with each \hat{n}, pick two other vector $\hat{p}(\hat{n})$ and $\hat{q}(\hat{n})$ to complete an orthonormal triad, and write $p_{\mu}=\{0, \hat{p}\}$ and $q_{\mu}=\{0, \hat{q}\}$. We can now form the "plus" and "cross" polarization tensors:

$$
\begin{equation*}
P_{\mu \nu}^{+}=p_{\mu} p_{\nu}-q_{\mu} q_{\nu} \quad P_{\mu \nu}^{\times}=p_{\mu} q_{\nu}+q_{\mu} p_{\nu} \tag{16}
\end{equation*}
$$

or the "right" and "left" circularly polarized polarization tensors

$$
\begin{equation*}
P_{\mu \nu}^{R}=\frac{1}{\sqrt{2}}\left(P_{\mu \nu}^{+}+i P_{\mu \nu}^{\times}\right) \quad P_{\mu \nu}^{L}=\frac{1}{\sqrt{2}}\left(P_{\mu \nu}^{+}-i P_{\mu \nu}^{\times}\right) \tag{17}
\end{equation*}
$$

and then expand $A_{\alpha \beta}(\vec{k})$ in Eq. (11) in the form

$$
\begin{align*}
A_{\alpha \beta}(\vec{k}) & =A_{+}(\vec{k}) P_{\alpha \beta}^{+}(\hat{n})+A_{\times}(\vec{k}) P_{\alpha \beta}^{\times}(\hat{n}) \tag{18a}\\
& =A_{R}(\vec{k}) P_{\alpha \beta}^{R}(\hat{n})+A_{L}(\vec{k}) P_{\alpha \beta}^{L}(\hat{n}) \tag{18b}
\end{align*}
$$

To understand the physical meaning, consider the geodesic equation for a massive particle bobbing in the gravitational wave metric:

$$
\begin{equation*}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\alpha \beta}^{\mu} \frac{d x^{\alpha}}{d \tau} \frac{d x^{\beta}}{d \tau}=0 \tag{19}
\end{equation*}
$$

If the particle is initially at rest in TT gauge $\left(d x^{\alpha} / d \tau=0\right)$, then the geodesic equation says it will remain at rest (because Γ_{00}^{μ} vanishes in this gauge). So if we consider two nearby particles, A and B , at rest at coordinate \vec{x}_{A} and \vec{x}_{B}, the coordinate displacement between them is a constant, but the proper distance between them

$$
\begin{equation*}
d_{A B}=\sqrt{\left(\delta_{i j}+h_{i j}\right)\left(\vec{x}_{B}-\vec{x}_{A}\right)^{i}\left(\vec{x}_{B}-\vec{x}_{A}\right)^{j}} \tag{20}
\end{equation*}
$$

oscillates with the patterns that I will draw on the board. This oscillation is observable, and various different gravitational wave detection schemes are currently trying to detect it.

