
Lecture 0: Differential Geometry, General

Relativity, Classical Yang-Mills Theory

Let’s start with a very condensed review of some of the elements of Differ-
ential Geometry, General Relativity, and Yang-Mills Theory. This should not
be confused with an introduction to these subjects. If you plan to be a theo-
retical physicist, it is a good idea to eventually learn about these topics from
a somewhat more mathematically sophisticated perspective than the one pre-
sented here: I recommend the relevant sections of Wald’s “General Relativity”
and Arnold’s “Mathematical Methods of Classical Mechanics.”

Let me start with a few notational remarks. If you find any of my nota-
tion confusing, please let me know – I have probably made a mistake, forgotten
to explain something, or in any case will be happy to explain it again! I will
use the notation ∂vα/∂xβ = ∂βvα = vα

,β for ordinary partial derivatives, and
∇βvα = vα

;β for covariant derivatives. I will follow the Einstein summation

convention: whenever a term contains a repeated index, with one up and one
down, a sum over that index is implied. I will take the “timelike” and “space-
like” components of the metric to have negative and positive signs, respectively:
e.g. ds2 = −dt2 + d~x2. More generally, I will use GR sign conventions that
match those in the textbooks by Misner-Thorne-Wheeler (MTW), Wald, and
Weinberg; these conventions are nicely summarized on the inside cover of MTW.

1 Differential Geometry

1.1 Manifolds and tensors.

Informally, an n-dimensional manifold M is a space that “looks like” Rn in the
neighborhood of every point. For example, the plane, the surface of a ball, and
the surface of a donut are all examples of 2-dimensional manifolds: a sufficiently
small patch surrounding any point looks like a patch of R2.

We are free to choose many different coordinate systems to describe a given
part of a manifold; let xα and x̃α be two such coordinate systems. A tensor

of rank (m, n) has m upper (“contravariant”) indices and n lower (“covariant”)
indices; if the components in the x-coordinate system are T α1...αm

β1...βn

, then the
components in the x̃-coordinate system are

T̃ α1...αm

β1...βn

=
∂x̃α1

∂xγ1

. . .
∂x̃αm

∂xγm

∂xδ1

∂x̃β1

. . .
∂xδn

∂x̃βn

T γ1...γm

δ1...δn

. (1)
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Rank (1, 0) and (0, 1) tensors are called “contravariant vectors” and “covariant
vectors,” respectively.

1.2 Covariant derivatives and connections.

If we start with a rank (m, n) tensor field T α1...αm

β1...βn

and take its ordinary partial
derivative ∂µ, the resulting object ∂µT α1...αm

β1...βn

no longer transforms like a tensor.
(Check this.) We would like to define a new covariant derivative ∇µ such
that ∇µT α1...αm

β1...βn

does transform like a tensor of rank (m, n+1). To achieve this,
we introduce the connection whose components Γα

βγ do not transform like a
tensor, but instead transform as

Γ̃α
βγ =

∂x̃α

∂xρ

∂xσ

∂x̃β

∂xτ

∂x̃γ
Γρ

στ +
∂x̃α

∂xρ

∂2xρ

∂x̃β∂x̃γ
(2)

and then define the covariant derivative of a tensor as:

∇µT α1...αm

β1...βn

= ∂µT α1...αm

β1...βn

+Γα1

µν T ν...αm

β1...βn

+ . . . + Γαm

µν T α1...ν
β1...βn

−Γν
µβ1

T α1...αm

ν...βn

− . . . − Γν
µβn

T α1...αm

β1...ν . (3)

This does transform like a tensor. (Check this.) We will assume that the
connection has vanishing torsion: Γα

βγ = Γα
γβ.

Now consider a curve xµ(τ) with tangent vector uµ(τ) = dxµ/dτ . A tensor
T α1...αm

β1...βn

(τ) is parallel transported if it evolves along the curve as

d T α1...αm

β1...βn

dτ
+ uµ

[

Γα1

µνT ν...αm

β1...βn

+ . . . + Γαm

µν T α1...ν
β1...βn

−Γν
µβ1

T α1...αm

ν...βn

− . . . − Γν
µβn

T α1...αm

β1...ν

]

= 0 (4)

or, in other words, if it is covariantly constant along the direction of the curve

uµ∇µT α1...αm

β1...βn

= 0. (5)

A geodesic is a curve xµ(τ) which parallel transports its own tangent vector:

duα

dτ
+ Γα

µνuµuν = 0 ⇔ uµ∇µuα = 0. (6)

This is called the geodesic equation.
Unlike ordinary partial derivatives, covariant derivatives do not commute.

The Riemann curvature tensor Rα
βγδ may be defined as a measure of their

failure to commute
(∇γ∇δ −∇δ∇γ)vα = Rα

βγδv
β , (7)

from which we find (check this)

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

γσΓσ
βδ − Γα

δσΓσ
βγ . (8)
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Eq. (7) is called the Ricci identity. More generally, the commutator of two
covariant derivatives acting on a tensor is given by (check this):

(∇γ∇δ −∇δ∇γ)T α1...αm

β1...βn

= Rα1

µγδT
µ...αm

β1...βn

+ . . . + Rαm

µγδT
α1...µ
β1...βn

− Rµ
β1γδT

α1...αm

µ...βn

− . . . − Rµ
βnγδT

α1...αm

β1...µ . (9)

The Riemann tensor may be contracted to give the Ricci curvature tensor:

Rαβ ≡ Rγ
αγβ . (10)

1.3 The metric.

Note that everything we have done so far does not make use of a metric – so
we see that ideas like tensors, differentiation, parallel transport, geodesics, and
curvature are all well-defined, even before we have introduced any notion of
distance on our manifold. What new features arise from adding a metric tensor
gαβ, and its inverse gαβ (defined such that gαβgβγ = δα

γ )?

We can raise and lower indices (vα = gαβvβ , vα = gαβvβ) and define an
inner product (a · b = gαβaαbβ = gαβaαbβ). We can define the Ricci scalar

R ≡ gαβRαβ . (11)

The metric gµν picks out a preferred connection on M (the Levi-Civita

connection): the unique connection such that ∇µgαβ = 0:

Γα
βγ =

1

2
gαδ[gβδ,γ + gγδ,β − gβγ,δ]. (12)

(Derive this. Hint: start from gβδ;γ + gγδ;β − gβγ;δ = 0.)
We can define the length of a curve xµ(τ), connecting two points A and B;

it is
∫ B

A
ds where the line element is

ds2 = gµνdxµdxν . (13)

Now geodesics have another special property: they are paths from A to B whose
length is stationary under small variations of the path. This is reminiscent of
classical mechanics, in which classical trajectories are paths from A to B whose
action is stationary under small variations of the path. Indeed, this perspective
gives a different (and often more convenient) route to the geodesic equation, as
the Euler-Lagrange equations

∂L

∂xµ
=

d

dτ

[

∂L

∂ẋµ

]

L =
1

2
gαβẋαẋβ (14)

where, in this equation, ẋµ = dxµ/dτ , where τ is an affine parameter along the
curve (which, for a massive particle, is proportional to its proper time). Check
that Eqs. (6) and (14) are equivalent.
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Before moving on to General Relativity, note that the Riemann tensor sat-
isfies the Bianchi identity:

Rα
βγδ;ǫ + Rα

βδǫ;γ + Rα
βǫγ;δ = 0. (15)

and Rαβγδ = gαµRµ
βγδ has a number of symmetries under index permutation:

Rαβγδ = Rγδαβ = −Rβαγδ = −Rαβδγ , Rα[βγδ] = R[αβγδ] = 0, (16)

where and [. . .] indicates anti-symmetrization of the enclosed indices.

2 General Relativity

General Relativity is defined by the action

S =

∫

d4x
√
−g

[

R − 2Λ

16πGN

+ Lm

]

, (17)

where g is the determinant of gµν , GN is Newton’s gravitational constant, and Λ
is the cosmological constant. The action is a functional of the gravitational field
gµν , as well as the various matter fields (which are all contained in Lm). We
obtain the classical equations of motion for the matter fields Φ by demanding
that the action must be stationary (δS = 0) under an arbitrary variation δΦ
around a classical solution Φ.

We could obtain the Einstein equations (the classical equations of motion
for the metric) in a similar way, by demanding that δS = 0 under an arbitrary
variation δgµν around a classical solution gµν ; but this turns out to be rather
cumbersome, and there is an easier and better way: the Palatini method. In
the Palatini method, we start by forgetting the relationship (12) between the
metric and the connection, and regarding gµν and Γα

βγ as independent fields to
be varied. Thus we write the action in the form

S =

∫

d4x
√
−g

[

gαβRαβ − 2Λ

16πGN

+ Lm

]

, (18)

and note that Rαβ is independent of the metric (it only depends on Γα
βγ), while

everything else in the action (except for Rαβ) is independent of Γα
βγ .

We start by varying Γα
βγ . Note that δΓα

βγ is a tensor, even though Γα
βγ is

not; and the variation of the action is:

δS =

∫

d4x
√
−g

gαβ(δΓγ
αβ;γ − δΓγ

αγ;β)

16πGN

=

∫

d4x
√
−g

(gαµ
;µδβ

γ − gαβ
;γ)δΓγ

αβ

16πGN

(19a)

where we have integrated by parts in the second line. Thus, δS = 0 implies
gαµ

;µδβ
γ − gαβ

;γ = 0, which implies gαβ;γ = 0. In other words, varying Γα
βγ leads

us back to the Levi-Civita connection formula (12).
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Before proceeding with the metric variation, we need the following two facts.
First, if we make a variation δgµν , what is the induced variation δgµν in the
inverse metric? The answer is obtained by varying the relation gαβgβγ = δα

γ to

obtain gγβδgβα+gαβδgβγ = 0. Second, if we make a variation δgµν in the metric
(or in any invertible matrix, for that matter), what is the induced variation δg
in its determinant? The answer is given by Jacobi’s formula from linear algebra:
δg = ggαβδgαβ; also note that this result can be derived from another famous
fact in linear algebra: for a square matrix A, DetA = exp[Tr(lnA)]. With these
facts, we can apply a variation in δgµν to Eq. (18)

δS =

∫

d4x
√
−g δgµν

[

Rµν − 1
2gµνR + Λgµν

16πGN

− 1

2
gµνLm +

∂Lm

∂gµν

]

(20)

from which we obtain the Einstein equation

Gµν + Λgµν = 8πGNTµν (21)

where we have defined the Einstein tensor

Gµν ≡ Rµν − 1

2
gµνR (22)

and the energy-momentum tensor (a.k.a. the stress-energy tensor):

Tµν = gµνLm − 2
∂Lm

∂gµν
. (23)

(Check the preceding few steps.)

By contracting the Bianchi identities, we learn that Gαβ
;β = 0; together

with the Einstein equations (21), this implies that T µν is locally conserved

T αβ
;β = 0. (24)

We will return, in a subsequent lecture, to a fuller discussion of Tµν and its
physical meaning. For now, consider the example in which the only matter field
is a single real scalar field ϕ with Lagrangian

Lm = −1

2
gµνϕ,µϕ,ν − V (ϕ) (25)

then Tµν is given by

Tµν = ϕ,µϕ,ν − gµν [
1

2
gαβϕ,αϕ,β + V (ϕ)]. (26)

A final point: in the absence of external (non-gravitational) forces, test
particles move along geodesics of the metric gµν .
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3 Yang-Mill Theory

Let us briefly look at Yang-Mills theory. You can learn a lot by comparing its
structure to that of General Relativity.

We first introduce the gauge covariant derivative

Dµ ≡ ∂µ + igAµ. (27)

Then we use the Ricci identity to define the Yang-Mills field strength Fµν as
the curvature of the gauge connection Aµ:

[Dµ, Dν ] = igFµν . (28)

This implies
Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (29)

Under a Yang-Mills gauge transformation U(x), we want the covariant derivative
operator to transform “nicely”:

Dµ → D̃µ = UDµU−1 (30)

which implies that Aµ transforms as

Aµ → Ãµ = UAµU−1 − i

g
U(∂µ(U−1)) = UAµU−1 +

i

g
(∂µU)U−1. (31)

From Eqs. (28, 30) we see that Fµν also transforms nicely:

Fµν → F̃µν = UFµνU−1. (32)

From here we see that the term

− 1

4ξ
Tr[FµνFµν ] (33)

is both Lorentz- and gauge-invariant; this is the gauge-boson kinetic term, with
ξ a normalization constant discussed below. For concreteness, let the Yang-
Mills gauge group be a unitary (or special unitary) group, and let Φ and Ψ be
multiplets of scalar and spinor fields, respectively, which transform as

Φ → Φ̃ = UΦ Ψ → Ψ̃ = UΨ; (34)

then we can construct gauge invariant scalar and spinor kinetic terms as follows:

(DµΦ)†(DµΦ) iΨ̄D/ Ψ. (35)

Now introduce a basis of generators

Aµ = Aa
µT a, Fµν = F a

µνT a, [T a, T b] = ifabcT c (36)
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which are chosen to be orthonormal in the following sense

Tr(T aT b) = ξδab (37)

where ξ is a constant which defines our generator normalization convention.
From here it follows that

fabc =
−i

ξ
T r([T a, T b]T c) (38)

which implies that fabc is totally anti-symmetric. When expanded in compo-
nents, the field strength is

F a
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µAc
ν (39)

and the gauge kinetic term (33) becomes

−1

4
F a

µνFµν
a . (40)
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