Lecture 0: Differential Geometry, General Relativity, Classical Yang-Mills Theory

Let's start with a very condensed review of some of the elements of Differential Geometry, General Relativity, and Yang-Mills Theory. This should not be confused with an introduction to these subjects. If you plan to be a theoretical physicist, it is a good idea to eventually learn about these topics from a somewhat more mathematically sophisticated perspective than the one presented here: I recommend the relevant sections of Wald's "General Relativity" and Arnold's "Mathematical Methods of Classical Mechanics."

Let me start with a few notational remarks. If you find any of my notation confusing, please let me know - I have probably made a mistake, forgotten to explain something, or in any case will be happy to explain it again! I will use the notation $\partial v^{\alpha} / \partial x_{\beta}=\partial_{\beta} v^{\alpha}=v_{, \beta}^{\alpha}$ for ordinary partial derivatives, and $\nabla_{\beta} v^{\alpha}=v_{; \beta}^{\alpha}$ for covariant derivatives. I will follow the Einstein summation convention: whenever a term contains a repeated index, with one up and one down, a sum over that index is implied. I will take the "timelike" and "spacelike" components of the metric to have negative and positive signs, respectively: e.g. $d s^{2}=-d t^{2}+d \vec{x}^{2}$. More generally, I will use GR sign conventions that match those in the textbooks by Misner-Thorne-Wheeler (MTW), Wald, and Weinberg; these conventions are nicely summarized on the inside cover of MTW.

1 Differential Geometry

1.1 Manifolds and tensors.

Informally, an n-dimensional manifold \mathcal{M} is a space that "looks like" \mathbf{R}^{n} in the neighborhood of every point. For example, the plane, the surface of a ball, and the surface of a donut are all examples of 2-dimensional manifolds: a sufficiently small patch surrounding any point looks like a patch of \mathbf{R}^{2}.

We are free to choose many different coordinate systems to describe a given part of a manifold; let x^{α} and \tilde{x}^{α} be two such coordinate systems. A tensor of rank (m, n) has m upper ("contravariant") indices and n lower ("covariant") indices; if the components in the x-coordinate system are $T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}$, then the components in the \tilde{x}-coordinate system are

$$
\begin{equation*}
\tilde{T}_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}=\frac{\partial \tilde{x}^{\alpha_{1}}}{\partial x^{\gamma_{1}}} \cdots \frac{\partial \tilde{x}^{\alpha_{m}}}{\partial x^{\gamma_{m}}} \frac{\partial x^{\delta_{1}}}{\partial \tilde{x}^{\beta_{1}}} \cdots \frac{\partial x^{\delta_{n}}}{\partial \tilde{x}^{\beta_{n}}} T_{\delta_{1} \ldots \delta_{n}}^{\gamma_{1} \ldots \gamma_{m}} . \tag{1}
\end{equation*}
$$

Rank $(1,0)$ and $(0,1)$ tensors are called "contravariant vectors" and "covariant vectors," respectively.

1.2 Covariant derivatives and connections.

If we start with a rank (m, n) tensor field $T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1}}$ and take its ordinary partial derivative ∂_{μ}, the resulting object $\partial_{\mu} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}$ no longer transforms like a tensor. (Check this.) We would like to define a new covariant derivative ∇_{μ} such that $\nabla_{\mu} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}$ does transform like a tensor of rank $(m, n+1)$. To achieve this, we introduce the connection whose components $\Gamma_{\beta \gamma}^{\alpha}$ do not transform like a tensor, but instead transform as

$$
\begin{equation*}
\tilde{\Gamma}_{\beta \gamma}^{\alpha}=\frac{\partial \tilde{x}^{\alpha}}{\partial x^{\rho}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\beta}} \frac{\partial x^{\tau}}{\partial \tilde{x}^{\gamma}} \Gamma_{\sigma \tau}^{\rho}+\frac{\partial \tilde{x}^{\alpha}}{\partial x^{\rho}} \frac{\partial^{2} x^{\rho}}{\partial \tilde{x}^{\beta} \partial \tilde{x}^{\gamma}} \tag{2}
\end{equation*}
$$

and then define the covariant derivative of a tensor as:

$$
\begin{align*}
\nabla_{\mu} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}= & \partial_{\mu} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}} \\
& +\Gamma_{\mu \nu}^{\alpha_{1}} T_{\beta_{1} \ldots \beta_{n}}^{\nu \ldots}+\ldots+\Gamma_{\mu \nu}^{\alpha_{m}} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \nu} \\
& -\Gamma_{\mu \beta_{1}}^{\nu} T_{\nu \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}-\ldots-\Gamma_{\mu \beta_{n}}^{\nu} T_{\beta_{1} \ldots \nu}^{\alpha_{1} \ldots \alpha_{m}} . \tag{3}
\end{align*}
$$

This does transform like a tensor. (Check this.) We will assume that the connection has vanishing torsion: $\Gamma_{\beta \gamma}^{\alpha}=\Gamma_{\gamma \beta}^{\alpha}$.

Now consider a curve $x^{\mu}(\tau)$ with tangent vector $u^{\mu}(\tau)=d x^{\mu} / d \tau$. A tensor $T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}(\tau)$ is parallel transported if it evolves along the curve as

$$
\begin{align*}
\frac{d T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}}{d \tau}+u^{\mu}[& \Gamma_{\mu \nu}^{\alpha_{1}} T_{\beta_{1} \ldots \beta_{n}}^{\nu \ldots \alpha_{m}}+\ldots+\Gamma_{\mu \nu}^{\alpha_{m}} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \nu} \\
& \left.-\Gamma_{\mu \beta_{1}}^{\nu} T_{\nu \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}-\ldots-\Gamma_{\mu \beta_{n}}^{\nu} T_{\beta_{1} \ldots \nu}^{\alpha_{1} \ldots \alpha_{m}}\right]=0 \tag{4}
\end{align*}
$$

or, in other words, if it is covariantly constant along the direction of the curve

$$
\begin{equation*}
u^{\mu} \nabla_{\mu} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}=0 \tag{5}
\end{equation*}
$$

A geodesic is a curve $x^{\mu}(\tau)$ which parallel transports its own tangent vector:

$$
\begin{equation*}
\frac{d u^{\alpha}}{d \tau}+\Gamma_{\mu \nu}^{\alpha} u^{\mu} u^{\nu}=0 \quad \Leftrightarrow \quad u^{\mu} \nabla_{\mu} u^{\alpha}=0 \tag{6}
\end{equation*}
$$

This is called the geodesic equation.
Unlike ordinary partial derivatives, covariant derivatives do not commute. The Riemann curvature tensor $R^{\alpha}{ }_{\beta \gamma \delta}$ may be defined as a measure of their failure to commute

$$
\begin{equation*}
\left(\nabla_{\gamma} \nabla_{\delta}-\nabla_{\delta} \nabla_{\gamma}\right) v^{\alpha}=R_{\beta \gamma \delta}^{\alpha} v^{\beta}, \tag{7}
\end{equation*}
$$

from which we find (check this)

$$
\begin{equation*}
R_{\beta \gamma \delta}^{\alpha}=\Gamma_{\beta \delta, \gamma}^{\alpha}-\Gamma_{\beta \gamma, \delta}^{\alpha}+\Gamma_{\gamma \sigma}^{\alpha} \Gamma_{\beta \delta}^{\sigma}-\Gamma_{\delta \sigma}^{\alpha} \Gamma_{\beta \gamma}^{\sigma} . \tag{8}
\end{equation*}
$$

Eq. (7) is called the Ricci identity. More generally, the commutator of two covariant derivatives acting on a tensor is given by (check this):

$$
\begin{align*}
\left(\nabla_{\gamma} \nabla_{\delta}-\nabla_{\delta} \nabla_{\gamma}\right) T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}} & =R_{\mu \gamma \delta}^{\alpha_{1}} T_{\beta_{1} \ldots \beta_{n}}^{\mu \ldots \alpha_{m}}+\ldots+R_{\mu \gamma \delta}^{\alpha_{m}} T_{\beta_{1} \ldots \beta_{n}}^{\alpha_{1} \ldots \mu} \\
& -R_{\beta_{1} \gamma \delta}^{\mu} T_{\mu \ldots \beta_{n}}^{\alpha_{1} \ldots \alpha_{m}}-\ldots-R_{\beta_{n} \gamma \delta}^{\mu} T_{\beta_{1} \ldots \mu}^{\alpha_{1} \ldots \alpha_{m}} \tag{9}
\end{align*}
$$

The Riemann tensor may be contracted to give the Ricci curvature tensor:

$$
\begin{equation*}
R_{\alpha \beta} \equiv R_{\alpha \gamma \beta}^{\gamma} . \tag{10}
\end{equation*}
$$

1.3 The metric.

Note that everything we have done so far does not make use of a metric - so we see that ideas like tensors, differentiation, parallel transport, geodesics, and curvature are all well-defined, even before we have introduced any notion of distance on our manifold. What new features arise from adding a metric tensor $g_{\alpha \beta}$, and its inverse $g^{\alpha \beta}$ (defined such that $g^{\alpha \beta} g_{\beta \gamma}=\delta_{\gamma}^{\alpha}$)?

We can raise and lower indices $\left(v^{\alpha}=g^{\alpha \beta} v_{\beta}, v_{\alpha}=g_{\alpha \beta} v^{\beta}\right)$ and define an inner product $\left(a \cdot b=g_{\alpha \beta} a^{\alpha} b^{\beta}=g^{\alpha \beta} a_{\alpha} b_{\beta}\right)$. We can define the Ricci scalar

$$
\begin{equation*}
R \equiv g^{\alpha \beta} R_{\alpha \beta} \tag{11}
\end{equation*}
$$

The metric $g_{\mu \nu}$ picks out a preferred connection on \mathcal{M} (the Levi-Civita connection): the unique connection such that $\nabla_{\mu} g_{\alpha \beta}=0$:

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \delta}\left[g_{\beta \delta, \gamma}+g_{\gamma \delta, \beta}-g_{\beta \gamma, \delta}\right] \tag{12}
\end{equation*}
$$

(Derive this. Hint: start from $g_{\beta \delta ; \gamma}+g_{\gamma \delta ; \beta}-g_{\beta \gamma ; \delta}=0$.)
We can define the length of a curve $x^{\mu}(\tau)$, connecting two points A and B; it is $\int_{A}^{B} d s$ where the line element is

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \tag{13}
\end{equation*}
$$

Now geodesics have another special property: they are paths from A to B whose length is stationary under small variations of the path. This is reminiscent of classical mechanics, in which classical trajectories are paths from A to B whose action is stationary under small variations of the path. Indeed, this perspective gives a different (and often more convenient) route to the geodesic equation, as the Euler-Lagrange equations

$$
\begin{equation*}
\frac{\partial L}{\partial x^{\mu}}=\frac{d}{d \tau}\left[\frac{\partial L}{\partial \dot{x}^{\mu}}\right] \quad L=\frac{1}{2} g_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta} \tag{14}
\end{equation*}
$$

where, in this equation, $\dot{x}^{\mu}=d x^{\mu} / d \tau$, where τ is an affine parameter along the curve (which, for a massive particle, is proportional to its proper time). Check that Eqs. (6) and (14) are equivalent.

Before moving on to General Relativity, note that the Riemann tensor satisfies the Bianchi identity:

$$
\begin{equation*}
R_{\beta \gamma \delta ; \epsilon}^{\alpha}+R_{\beta \delta \epsilon ; \gamma}^{\alpha}+R_{\beta \epsilon \gamma ; \delta}^{\alpha}=0 . \tag{15}
\end{equation*}
$$

and $R_{\alpha \beta \gamma \delta}=g_{\alpha \mu} R^{\mu}{ }_{\beta \gamma \delta}$ has a number of symmetries under index permutation:

$$
\begin{equation*}
R_{\alpha \beta \gamma \delta}=R_{\gamma \delta \alpha \beta}=-R_{\beta \alpha \gamma \delta}=-R_{\alpha \beta \delta \gamma}, \quad R_{\alpha[\beta \gamma \delta]}=R_{[\alpha \beta \gamma \delta]}=0 \tag{16}
\end{equation*}
$$

where and [...] indicates anti-symmetrization of the enclosed indices.

2 General Relativity

General Relativity is defined by the action

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left[\frac{R-2 \Lambda}{16 \pi G_{N}}+\mathcal{L}_{m}\right] \tag{17}
\end{equation*}
$$

where g is the determinant of $g_{\mu \nu}, G_{N}$ is Newton's gravitational constant, and Λ is the cosmological constant. The action is a functional of the gravitational field $g_{\mu \nu}$, as well as the various matter fields (which are all contained in \mathcal{L}_{m}). We obtain the classical equations of motion for the matter fields Φ by demanding that the action must be stationary $(\delta S=0)$ under an arbitrary variation $\delta \Phi$ around a classical solution Φ.

We could obtain the Einstein equations (the classical equations of motion for the metric) in a similar way, by demanding that $\delta S=0$ under an arbitrary variation $\delta g_{\mu \nu}$ around a classical solution $g_{\mu \nu}$; but this turns out to be rather cumbersome, and there is an easier and better way: the Palatini method. In the Palatini method, we start by forgetting the relationship (12) between the metric and the connection, and regarding $g^{\mu \nu}$ and $\Gamma_{\beta \gamma}^{\alpha}$ as independent fields to be varied. Thus we write the action in the form

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left[\frac{g^{\alpha \beta} R_{\alpha \beta}-2 \Lambda}{16 \pi G_{N}}+\mathcal{L}_{m}\right] \tag{18}
\end{equation*}
$$

and note that $R_{\alpha \beta}$ is independent of the metric (it only depends on $\Gamma_{\beta \gamma}^{\alpha}$), while everything else in the action (except for $R_{\alpha \beta}$) is independent of $\Gamma_{\beta \gamma}^{\alpha}$.

We start by varying $\Gamma_{\beta \gamma}^{\alpha}$. Note that $\delta \Gamma_{\beta \gamma}^{\alpha}$ is a tensor, even though $\Gamma_{\beta \gamma}^{\alpha}$ is not; and the variation of the action is:

$$
\begin{align*}
\delta S & =\int d^{4} x \sqrt{-g} \frac{g^{\alpha \beta}\left(\delta \Gamma_{\alpha \beta ; \gamma}^{\gamma}-\delta \Gamma_{\alpha \gamma ; \beta}^{\gamma}\right)}{16 \pi G_{N}} \\
& =\int d^{4} x \sqrt{-g} \frac{\left(g_{; \mu}^{\alpha \mu} \delta_{\gamma}^{\beta}-g_{; \gamma}^{\alpha \beta}\right) \delta \Gamma_{\alpha \beta}^{\gamma}}{16 \pi G_{N}} \tag{19a}
\end{align*}
$$

where we have integrated by parts in the second line. Thus, $\delta S=0$ implies $g^{\alpha \mu}{ }_{; \mu} \delta_{\gamma}^{\beta}-g^{\alpha \beta}{ }_{; \gamma}=0$, which implies $g_{\alpha \beta ; \gamma}=0$. In other words, varying $\Gamma_{\beta \gamma}^{\alpha}$ leads us back to the Levi-Civita connection formula (12).

Before proceeding with the metric variation, we need the following two facts. First, if we make a variation $\delta g_{\mu \nu}$, what is the induced variation $\delta g^{\mu \nu}$ in the inverse metric? The answer is obtained by varying the relation $g^{\alpha \beta} g_{\beta \gamma}=\delta_{\gamma}^{\alpha}$ to obtain $g_{\gamma \beta} \delta g^{\beta \alpha}+g^{\alpha \beta} \delta g_{\beta \gamma}=0$. Second, if we make a variation $\delta g_{\mu \nu}$ in the metric (or in any invertible matrix, for that matter), what is the induced variation δg in its determinant? The answer is given by Jacobi's formula from linear algebra: $\delta g=g g^{\alpha \beta} \delta g_{\alpha \beta}$; also note that this result can be derived from another famous fact in linear algebra: for a square matrix $A, \operatorname{Det} A=\exp [\operatorname{Tr}(\ln A)]$. With these facts, we can apply a variation in $\delta g^{\mu \nu}$ to Eq. (18)

$$
\begin{equation*}
\delta S=\int d^{4} x \sqrt{-g} \delta g^{\mu \nu}\left[\frac{R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}}{16 \pi G_{N}}-\frac{1}{2} g_{\mu \nu} \mathcal{L}_{m}+\frac{\partial \mathcal{L}_{m}}{\partial g^{\mu \nu}}\right] \tag{20}
\end{equation*}
$$

from which we obtain the Einstein equation

$$
\begin{equation*}
G_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G_{N} T_{\mu \nu} \tag{21}
\end{equation*}
$$

where we have defined the Einstein tensor

$$
\begin{equation*}
G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R \tag{22}
\end{equation*}
$$

and the energy-momentum tensor (a.k.a. the stress-energy tensor):

$$
\begin{equation*}
T_{\mu \nu}=g_{\mu \nu} \mathcal{L}_{m}-2 \frac{\partial \mathcal{L}_{m}}{\partial g^{\mu \nu}} \tag{23}
\end{equation*}
$$

(Check the preceding few steps.)
By contracting the Bianchi identities, we learn that $G_{; \beta}^{\alpha \beta}=0$; together with the Einstein equations (21), this implies that $T^{\mu \nu}$ is locally conserved

$$
\begin{equation*}
T_{; \beta}^{\alpha \beta}=0 \tag{24}
\end{equation*}
$$

We will return, in a subsequent lecture, to a fuller discussion of $T_{\mu \nu}$ and its physical meaning. For now, consider the example in which the only matter field is a single real scalar field φ with Lagrangian

$$
\begin{equation*}
\mathcal{L}_{m}=-\frac{1}{2} g^{\mu \nu} \varphi_{, \mu} \varphi_{, \nu}-V(\varphi) \tag{25}
\end{equation*}
$$

then $T_{\mu \nu}$ is given by

$$
\begin{equation*}
T_{\mu \nu}=\varphi_{, \mu} \varphi_{, \nu}-g_{\mu \nu}\left[\frac{1}{2} g^{\alpha \beta} \varphi_{, \alpha} \varphi_{, \beta}+V(\varphi)\right] \tag{26}
\end{equation*}
$$

A final point: in the absence of external (non-gravitational) forces, test particles move along geodesics of the metric $g_{\mu \nu}$.

3 Yang-Mill Theory

Let us briefly look at Yang-Mills theory. You can learn a lot by comparing its structure to that of General Relativity.

We first introduce the gauge covariant derivative

$$
\begin{equation*}
D_{\mu} \equiv \partial_{\mu}+i g A_{\mu} \tag{27}
\end{equation*}
$$

Then we use the Ricci identity to define the Yang-Mills field strength $F_{\mu \nu}$ as the curvature of the gauge connection A_{μ} :

$$
\begin{equation*}
\left[D_{\mu}, D_{\nu}\right]=i g F_{\mu \nu} \tag{28}
\end{equation*}
$$

This implies

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \tag{29}
\end{equation*}
$$

Under a Yang-Mills gauge transformation $U(x)$, we want the covariant derivative operator to transform "nicely":

$$
\begin{equation*}
D_{\mu} \rightarrow \tilde{D}_{\mu}=U D_{\mu} U^{-1} \tag{30}
\end{equation*}
$$

which implies that A_{μ} transforms as

$$
\begin{equation*}
A_{\mu} \rightarrow \tilde{A}_{\mu}=U A_{\mu} U^{-1}-\frac{i}{g} U\left(\partial_{\mu}\left(U^{-1}\right)\right)=U A_{\mu} U^{-1}+\frac{i}{g}\left(\partial_{\mu} U\right) U^{-1} \tag{31}
\end{equation*}
$$

From Eqs. $(28,30)$ we see that $F_{\mu \nu}$ also transforms nicely:

$$
\begin{equation*}
F_{\mu \nu} \rightarrow \tilde{F}_{\mu \nu}=U F_{\mu \nu} U^{-1} \tag{32}
\end{equation*}
$$

From here we see that the term

$$
\begin{equation*}
-\frac{1}{4 \xi} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right] \tag{33}
\end{equation*}
$$

is both Lorentz- and gauge-invariant; this is the gauge-boson kinetic term, with ξ a normalization constant discussed below. For concreteness, let the YangMills gauge group be a unitary (or special unitary) group, and let Φ and Ψ be multiplets of scalar and spinor fields, respectively, which transform as

$$
\begin{equation*}
\Phi \rightarrow \tilde{\Phi}=U \Phi \quad \Psi \rightarrow \tilde{\Psi}=U \Psi \tag{34}
\end{equation*}
$$

then we can construct gauge invariant scalar and spinor kinetic terms as follows:

$$
\begin{equation*}
\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right) \quad i \bar{\Psi} \not D \Psi \tag{35}
\end{equation*}
$$

Now introduce a basis of generators

$$
\begin{equation*}
A_{\mu}=A_{\mu}^{a} T^{a}, \quad F_{\mu \nu}=F_{\mu \nu}^{a} T^{a}, \quad\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c} \tag{36}
\end{equation*}
$$

which are chosen to be orthonormal in the following sense

$$
\begin{equation*}
\operatorname{Tr}\left(T^{a} T^{b}\right)=\xi \delta^{a b} \tag{37}
\end{equation*}
$$

where ξ is a constant which defines our generator normalization convention. From here it follows that

$$
\begin{equation*}
f^{a b c}=\frac{-i}{\xi} \operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right) \tag{38}
\end{equation*}
$$

which implies that $f^{a b c}$ is totally anti-symmetric. When expanded in components, the field strength is

$$
\begin{equation*}
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \tag{39}
\end{equation*}
$$

and the gauge kinetic term (33) becomes

$$
\begin{equation*}
-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu} \tag{40}
\end{equation*}
$$

