Droplet dynamics in cloud turbulence: A numerical investigation

Bipin Kumar

HPCS Indian Institute of Tropical Meteorology, Pune, 411008, INDIA

Raymond Shaw (MTU) Joerg Schumacher (Ilmenau) Thara Prabhkaran (IITM Pune) W. W. Grabowski (NCAR)

21-Jun-

>Introduction

- ➢ Numerical model
- ➢ Results
 - Comparison with observation
 - Computational details
- ➤ Future direction

Mixing process at cloud edge

How does the intermittent turbulence microstructure at the clear air-cloud interface couple to the droplet dynamics at Kolmogorov scale?

Model

Eulerian

 $\nabla \cdot \mathbf{u} = 0$ $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho_0} \nabla p + \nu \nabla^2 \mathbf{u} + g \left[\frac{T - T_0}{T_0} + \epsilon (q_v - q_{v0}) - q_l \right] \vec{e_z} + f_{LS}$ $\partial_t q_v + (\mathbf{u} \cdot \nabla) q_v = D \nabla^2 q_v - C_d$ $\partial_t T + (\vec{u} \cdot \nabla) T = \kappa \nabla^2 \vec{u} + \frac{L}{c_p} C_d$ $\kappa : \text{thermal conductivity}$ $\begin{aligned} R_v : \text{vapor gas constant} \\ R_d : \text{dry air gas constant} \\ q_v : \text{vapor mixing ratio} \\ q_l : \text{liquid water content} \end{aligned}$

Periodic BC

Lagrangian

- $\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \frac{1}{\tau_p} [\mathbf{u}(\mathbf{X}, t) \mathbf{V}(\mathbf{X}, t)] + \mathbf{g}$ $r(\mathbf{X}, t) \frac{\mathrm{d}r(\mathbf{X}, t)}{\mathrm{d}t} = KS(\mathbf{X}, t)$ $d\mathbf{X}$
- $\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{V}(\mathbf{X}, t)$ $S(\mathbf{X}, t) = \frac{q_v(\mathbf{x}, t)}{q_{v,s}} 1$

$$au_p = rac{2
ho_l r^2}{9
ho_0
u}$$
 Finite particle response time

f₁^s: turbulent forcing

(form large scale)

$$o_l$$
 : water density

- $\rho_0 \quad : \text{ air density}$
- ν : kinematic viscosity

Kumar et al., JAS, 2014 | JAMES, 2017 | Götzfried et al., JFM 2017

21-Jun-

Simulation set up

Evolution stages

Isosurface of saturation mixing ratio

Kumar et al. TCFD 2013, NJP 2012

Droplet Spreading

21-Jun-

Size distribution (data analysis)

PDF: Probability Distribution Function

TROPICAL

Comparison from observation

Comparison from observation

CAIPEEX RF45

Varying domain size

On going work

Varying domain size

On going work

Computational details

Five different domains

D1 :	12.8 cm^3 ,	D2:	25.6 cm^3 ,
D3:	51.2 cm^3 ,	D4:	102.4 cm^3
D5:	204.8 cm^3		,

Total times for 60000 iteration using 1024 cores with 2 OpenMP threads.

Domain (cm ³)	Time (sec)	Diff	N _t
D1	2759	1	108134
D2	10947	4	865075
D3	70394	6.43	6920601
D4	579642	8.23	57378078
D5	6989561 (Estimated) 80 days	12.1	433166745

`Diff1 is the difference in times with respect t previous small domain.

Conclusions

DNS carried out in Eulerian-Lagrangian framework. Evaluation stage were analysed. Turbulace affect droplet dynamics Results were compared with field observation.

Computational details provide projected time for bigger simulation.

Further directions

Model extension

$\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}t} = \frac{1}{\tau_p} [\mathbf{u}(\mathbf{X}, t) - \mathbf{V}(\mathbf{X}, t)] + \mathbf{g}$ $\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{V}(\mathbf{X}, t) \qquad S(\mathbf{X}, t) = \frac{q_v(\mathbf{x}, t)}{q_{v,s}} - 1 \qquad \rho_l \qquad \text{response}$ $r(\mathbf{X},t) \frac{\mathrm{d}r(\mathbf{X},t)}{\mathrm{d}t} = KS(\mathbf{X},t)$

- $\tau_p = \frac{2\rho_l r^2}{9\rho_0 \nu}$ Finite particle response time

 - ρ_0 : air density
 - ν : kinematic viscosity

Collision- coalescence physics.

For Aerosols

Lagrangian

$$r_a(\mathbf{X},t)\frac{dr_a(\mathbf{X},t)}{dt} = K\left(S(\mathbf{X},t) - \frac{c}{r_a} + \frac{h}{r_a^3}\right)$$
$$\left[r_a(\mathbf{X},t)\frac{dr_a(\mathbf{X},t)}{dt} = K\left(S(\mathbf{X},t) - \frac{c}{r_a} + \frac{h}{r_a^3}\right)\right]_i$$

c: curvature coefficient. h: hygroscopic coefficient.

$$i = 1, 2, 3....$$

Total number of particles will increase.

21-Jun-

Future directions

$LES \leftarrow \rightarrow DNS$

Requirement (for one experiment)

Core: min (16384) *

km 10

Ζ

- More memory per core/node *
- Very fast inter-processor connections *

Contributions:

- ✓ Better understanding of micro-physics
- \checkmark Can provide seamless information to LES.

✓ Improvement of LES will be helpful for parameterization of large models.

Future directions

- ✓ K.E. Dissipation rate
- ✓ Vertical velocity PDF
- ✓ Condensation rate
- ✓ Evaporation rate
- ✓ Entrainment rate

Bigger scale models

LÈS

	Thank you for your attention					
12.8		25.6				
51.2		Vapor mixing ratio	102.4			
- 21-Ju	n-	Bipin Kumar	Manufacture Control Cal	METERSON AND		

Thank you for your attention

12.8

25.6

51.2

Temperature

102.4

The WITH From the

Inhomogeneous mixing

