Dynamics of a bubble

Kirti Chandra Sahu Department of Chemical Engineering
IIT Hyderabad
Email: ksahu@iith.ac.in

Collaborators
Badarinath Karri (IIT Hyderabad)
Dilin M. Sharaf (IIT Hyderabad)
Premlata A. R. (IIT Hyderabad)
Manoj Kumar Tripathi (IISER Bhopal)

Ink-jet printing

Fluidized bed reactor
ink droplet \longrightarrow

Some peculiar dynamics

Normal fluids

Self-rewetting fluids

Tripathi et al., JFM, 2015

Tripathi et al., JNNFM, 2015

Shear-thinning fluids
Normal fluids

Non-spherical drop

\square
Initially oblate shape drop

Oblate:
$A_{r}=a / b>1 \quad A_{r}=a / b<1$

Vortex

shedding
promotes
shape
oscillations

Rising bubble

- Unconfined:

No boundary effect

- Initially fluids are stationary
- Isothermal

$$
\begin{aligned}
G a & \equiv \frac{\rho_{A} g^{1 / 2} R^{3 / 2}}{\mu_{A}} \\
E o & \equiv \frac{\rho_{A} g R^{2}}{\sigma} \\
\rho_{r} & \equiv \frac{\rho_{B}}{\rho_{A}} \\
\mu_{r} & \equiv \frac{\mu_{B}}{\mu_{A}}
\end{aligned}
$$

An additional dimensionless parameter:

$$
M o \equiv \frac{E o^{3}}{G a^{4}}=\frac{g \mu_{B}^{4}}{\rho_{B} \sigma^{3}}
$$

Governing equations

$$
\nabla \cdot \mathbf{u}=0
$$

$$
\begin{aligned}
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla p+\frac{1}{G a} \nabla \cdot\left[\mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)\right] \\
& +\delta \frac{\nabla \cdot \mathbf{n}}{E o} \mathbf{n}-\rho \mathbf{j} \\
\frac{\partial c}{\partial t}+\mathbf{u} \cdot \nabla c & =0
\end{aligned}
$$

Dimensionless density and viscosity are given by

$$
\begin{aligned}
\rho & =(1-c) \rho_{r}+c \\
\mu & =(1-c) \mu_{r}+c
\end{aligned}
$$

Previous studies

Clift et al. (1978),
Bhaga \& Weber, JFM 1981
Unbroken bubbles

$$
V_{s}=\sqrt{g R}
$$

Tripathi, Sahu \& Govindarajan, Nature Communications, 2015

Several researchers have been working on bubbles and drops from 1500!!

Some results from Tripathi et al. (2015)

A region III bubble $\mathrm{Ga}=100, \mathrm{Eo}=3$

Peripheral break-up ($\mathrm{Ga}=70.7$, $\mathrm{Eo}=20$)
Region IV

Central break-up
($\mathrm{Ga}=70.7$, $\mathrm{Eo}=200$) Region V

Experimental set-up

- Close to 300 experiments
- Aqueous solutions of 19 different concentrations of glycerol
- Smallest bubble: $\mathrm{R}=1.4 \mathrm{~mm}$
- Biggest bubble: $\mathrm{R}=26.7 \mathrm{~mm}$

Fluid properties of the water-glycerol mixtures

Sample number	\% of Glycerol	μ_{0} $(P a . s)$	ρ_{0} $\left(K g / m^{3}\right)$	σ $(m N / m)$	$M o$
1	100	1657	1260	62.1	230.314
2	99.8	1524	1259	62.2	163.38
3	98.2	1115	1256	62.3	46.48
4	97	967.8	1254	62.4	28.259
5	96	797	1249	62.6	12.9
6	94.8	681	1246	62.8	6.83
7	93.7	581	1243	63.0	3.6
8	92.2	478	1241	63.1	1.6
9	90.8	319.7	1235	63.4	0.3256
10	88.5	258	1230	63.6	0.1372
11	85	170	1222	64.2	0.0253
12	80	96.9	1209	64.8	0.00263
13	70	57.8	1182	65.8	0.000324
14	60	26	1154	66.6	1.315×10^{-5}
15	50	15.1	1127	67.5	1.5×10^{-6}
16	40	9.6	1100	68.4	2.4×10^{-7}
17	25	7	1061	69.5	6.57×10^{-8}
18	10	4.3	1023	69.8	9.56×10^{-9}
19	Pure water	1	1000	72.8	2.52×10^{-11}

Phase diagram

Region I: Axisymmetric
Region II: Skirted
Region III: Wobbling
Region IV: Breakup

Comparison with
Tripathi et al. (2015):
Central breakup (Region V) is not observed

Possible reasons:

- Non-spherical shape
- The actual density and viscosity ratios
- Change in surface properties due to experimental conditions:
Contaminations

Region I bubbles

Region II bubbles

97\% of glycerol

$$
\begin{aligned}
\mu_{r} & =1.03 \times 10^{-5} \\
\rho_{r} & =7.97 \times 10^{-4}
\end{aligned}
$$

Radius: 19.27 mm

Region III bubble

Another Region III bubble

Effect of viscosity ratio

$G a=230.8, E o=3$
$\rho_{r}=10^{-3}$

Effect of density ratio

Trajectories

$$
\mu_{r}=10^{-4}, \rho_{r}=10^{-3}
$$

$$
\mu_{r}=10^{-2}, \rho_{r}=10^{-4}
$$

Break-up bubbles

70\% of glycerol Radius: 22.8 mm

$$
\begin{aligned}
\mu_{r} & =1.73 \times 10^{-4}, \\
\rho_{r} & =8.46 \times 10^{-4}
\end{aligned}
$$

80\% of glycerol Radius: 26.7 mm
$\mu_{r}=5.9 \times 10^{-5}$,
$\rho_{r}=8.27 \times 10^{-4}$

Concluding remarks

- The dynamics of a rising bubble in aqueous solutions of glycerol is investigated experimentally. Close to 300 bubbles are studied.
- A phase plot in Ga - Eo plane is generated, which shows different regions in terms of bubble behavior, namely, axisymmetric, skirted, spiraling and breakup.
- Apart from Reynolds and Eotvos numbers, which were thought to be the only governing parameters for rising bubbles in air-liquid systems, our results show that the dynamics is also influenced by the actual density and viscosity ratios.
- The present result provides an useful extension to the classical region map of Bhaga and Weber (1981) and Clift et al. (1978).

Thank you

