Dynamics of a bubble

Kirti Chandra Sahu Department of Chemical Engineering IIT Hyderabad Email: ksahu@iith.ac.in

Collaborators

Badarinath Karri (IIT Hyderabad) Dilin M. Sharaf (IIT Hyderabad) Premlata A. R. (IIT Hyderabad) Manoj Kumar Tripathi (IISER Bhopal)

Summer School and Discussion Meeting on Buoyancy-Driven Flows 2017

Some peculiar dynamics

Rising bubble

$$Ga \equiv \frac{\rho_A g^{1/2} R^{3/2}}{\mu_A}$$
$$Eo \equiv \frac{\rho_A g R^2}{\sigma}$$
$$\rho_r \equiv \frac{\rho_B}{\rho_A}$$
$$\mu_r \equiv \frac{\mu_B}{\mu_A}$$

- Unconfined: No boundary effect
- Initially fluids are stationary
- Isothermal

An additional dimensionless parameter:

$$Mo \equiv \frac{Eo^3}{Ga^4} = \frac{g\mu_B^4}{\rho_B\sigma^3}$$

Governing equations

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Ga} \nabla \cdot \left[\mu (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right]$$

$$+ \delta \frac{\nabla \cdot \mathbf{n}}{Eo} \mathbf{n} - \rho \mathbf{j}$$

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = 0$$

Dimensionless density and viscosity are given by

$$\rho = (1 - c)\rho_r + c$$
$$\mu = (1 - c)\mu_r + c$$

Previous studies

Clift et al. (1978), Bhaga & Weber, *JFM* 1981 Unbroken bubbles

$$V_s = \sqrt{gR}$$

Tripathi, Sahu & Govindarajan, Nature Communications, 2015

Several researchers have been working on bubbles and drops from 1500!!

Some results from Tripathi et al. (2015)

A region III bubble Ga=100, Eo=3

Peripheral break-up (Ga = 70.7, Eo = 20) Region IV Central break-up (Ga = 70.7,Eo = 200) Region V

Experimental set-up

- Close to 300 experiments
- Aqueous solutions of 19 different concentrations of glycerol
- Smallest bubble: R=1.4 mm
- Biggest bubble: R=26.7 mm

Fluid properties of the water-glycerol mixtures

Sample	% of	μ_0	$ ho_0$	σ	Mo
number	Glycerol	(Pa.s)	(Kg/m^3)	(mN/m)	
1	100	1657	1260	62.1	230.314
2	99.8	1524	1259	62.2	163.38
3	98.2	1115	1256	62.3	46.48
4	97	967.8	1254	62.4	28.259
5	96	797	1249	62.6	12.9
6	94.8	681	1246	62.8	6.83
7	93.7	581	1243	63.0	3.6
8	92.2	478	1241	63.1	1.6
9	90.8	319.7	1235	63.4	0.3256
10	88.5	258	1230	63.6	0.1372
11	85	170	1222	64.2	0.0253
12	80	96.9	1209	64.8	0.00263
13	70	57.8	1182	65.8	0.000324
14	60	26	1154	66.6	1.315×10^{-5}
15	50	15.1	1127	67.5	1.5×10^{-6}
16	40	9.6	1100	68.4	2.4×10^{-7}
17	25	7	1061	69.5	6.57×10^{-8}
18	10	4.3	1023	69.8	9.56×10^{-9}
19	Pure water	1	1000	72.8	2.52×10^{-11}

c er

Phase diagram

Region I: Axisymmetric Region II: Skirted Region III: Wobbling Region IV: Breakup Comparison with Tripathi *et al.* (2015):

Central breakup (Region V) is not observed

Possible reasons:

- Non-spherical shape
- The actual density and viscosity ratios
- Change in surface properties due to experimental conditions: Contaminations

Region I bubbles

8.5

6.8

5.0

3.2

 $z_{cg} = 1.5$

This agrees with Clift *et al.* (1978) and Tripathi *et al.* (2015)

 $\mu_{T} = 3.13 \times 10^{-5},$ $\rho_{T} = 8.1 \times 10^{-4}$ $p_{T} = 8.1 \times 10^{-4}$ $\rho_{T} = 8.1 \times 10^{-4}$ $\rho_{T} = 8.1 \times 10^{-4}$

7.8 mm

Region II bubbles

97% of glycerol $\mu_r = 1.03 \times 10^{-5},$ Radius: 19.27 mm $\rho_r = 7.97 \times 10^{-4}$

Region III bubble

25% of glycerol Radius: 2 mm $\mu_r = 1.43 \times 10^{-3},$ $\rho_r = 9.43 \times 10^{-4}$ Ga = 44.06, Eo = 0.68

Another Region III bubble

Effect of viscosity ratio

$$Ga = 230.8, Eo = 3$$

 $\rho_r = 10^{-3}$

Effect of density ratio

$$Ga = 230.8, Eo = 3$$

 $\mu_r = 10^{-2}$

Trajectories

Break-up bubbles

Concluding remarks

- The dynamics of a rising bubble in aqueous solutions of glycerol is investigated experimentally. Close to 300 bubbles are studied.
- A phase plot in *Ga Eo* plane is generated, which shows different regions in terms of bubble behavior, namely, axisymmetric, skirted, spiraling and breakup.
- Apart from Reynolds and Eotvos numbers, which were thought to be the only governing parameters for rising bubbles in air-liquid systems, our results show that the dynamics is also influenced by the actual density and viscosity ratios.
- The present result provides an useful extension to the classical region map of Bhaga and Weber (1981) and Clift *et al.* (1978).

Thank you