Rising bubbles in a liquid column

SUMMER SCHOOL AND
DISCUSSION MEETING ON BUOYANCY-DRIVEN FLOWS

by
Rajaram Lakkaraju
Department of Mechanical Engineering
Indian Institute of Technology Kharagpur

Acknowledgement INSPIRE-DST, Govt. India

Rising bubbles in a liquid column

SUMMER SCHOOL AND DISCUSSION MEETING ON BUOYANCY-DRIVEN FLOWS
 by
 Rajaram Lakkaraju
 Department of Mechanical Engineering
 Indian Institute of Technology Kharagpur

Acknowledgement INSPIRE-DST, Govt. India

Where do we see bubbles?

Methane streams in oceans-climatic change

Where do we see bubbles?

Methane streams in oceans-climatic change

Enhanced oil recovery

Where do we see bubbles?

Methane streams in oceans-climatic change

Aeration of ponds- O_{2} levels

Enhanced oil recovery

Where do we see bubbles?

Methane streams in oceans-climatic change

Aeration of ponds- O_{2} levels

Enhanced oil recovery

Drinks

Where do we see bubbles?

Methane streams in oceans-climatic change

Aeration of ponds- O_{2} levels

Enhanced oil recovery

Drinks

Where do we see bubbles?

Aeration of ponds- $\mathrm{O}_{2} \mathrm{ll}$

Drinks

Enhanced oil recovery

Where do we see bubbles?

Methane streams in ocear

It is

Aeration of ponds- $\mathrm{O}_{2} \mathrm{ll}$ Umm. Open top...

Drinks

Where do we see bubbles?

Methane streams in ocear

It is

Aeration of ponds- $\mathrm{O}_{2} \mathrm{ll}$ Umm. Open top... it is okay...

Drinks

Where do we see bubbles?

How we started into this

Initially began with traditional RBC

How we started into this

Initially began with traditional RBC...
LSC, plumes, heatflux, structure functions...what not... cold

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not... cold

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework
Incompressible flow for liquid - Euler
Point size - Lagrange $+$
Growth/Condensation

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework
Incompressible flow for liquid - Euler
Point size - Lagrange

Growth/Condensation Wait a minute...

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework
Incompressible flow for liquid - Euler

> Point size - Lagrange
$+$
Growth/Condensation
Wait a minute...
Are these real bubbles?
Can they rotate, coalesce, bounce, tumble, Oscillate, create wake?

How we started into this

Initially began with traditional RBC...
How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework
Incompressible flow for liquid - Euler
Point size - Lagrange
$+$
Growth/Condensation
Wait a minute...
Are these real bubbles?
Can they rotate, coalesce, bounce, tumble, Oscillate, create wake?

NO!

But, see we can publish papers... hmm...

How we started into this

Then we started to work on real bubbles
Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.

How we started into this

Then we started to work on real bubbles
Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.
Raja, we are waiting for colorful dynamics
Show us some fancy animation

How we started into this

Then we started to work on real bubbles
Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.
Raja, we are waiting for colorful dynamics

Show us some fancy animation

How about rising bubble in a quiscent liquid?

How we started into this

Then we started to work on real bubbles
Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.
Raja, we are waiting for colorful dynamics

Show us some fancy animation

How about rising bubble in a quiscent liquid?

Size $\sim 5 \mathrm{~mm}$
cylinder of $16 \mathrm{~cm} \times 2 \mathrm{~cm}$ Rise velocity $\sim 20 \mathrm{~cm} / \mathrm{s}$

Rising bubbles in a liquid column

Let us see if a small bubble trails a leading big one

Rising bubbles in a liquid column

Let us see if a small bubble trails a leading big one

Rising bubbles in a liquid column

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble

Rising bubbles in a liquid column

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble
Why?

Rising bubbles in a liquid column

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble
Why?

In next 15 min., we will see why...

A single bubble rising in a column

bubble rises due to gravity and based on the bubble size they may reach steady rise

A single bubble rising in a column

bubble rises due to gravity and based on the bubble size they may reach steady rise

Based on parameters they show various shapes

A single bubble rising in a column

bubble rises due to gravity and based on the bubble size they may reach steady rise

Based on parameters they show various shapes
Bhaga \& Weber (1981)

A single bubble rising in a column

bubble rises due to gravity and based on the bubble size they may reach steady rise

Based on parameters they show various shapes

A single bubble rising in a column

bubble rises due to gravity and based on the bubble size they may reach steady rise

Based on parameters they show various shapes

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy / viscous
Eotvos number = buoyancy / surface tension

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy / viscous

High Archimedes
Quick rise

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy / viscous
Eotvos number = buoyancy / surface tension

High Archimedes Quick rise

High Eotvos
Large deformation

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy / viscous
Eotvos number = buoyancy / surface tension

Rise velocity: bubble Reynolds number

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy $/$ viscous
Eotvos number = buoyancy / surface tension

Rise velocity: bubble Reynolds number
Shape dynamics?

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy $/$ viscous
Eotvos number = buoyancy / surface tension

Rise velocity: bubble Reynolds number
Shape dynamics?
Known in scientific world

A single bubble rising in a column

These parameters are
Archimedes number = buoyancy $/$ viscous
Eotvos number = buoyancy / surface tension

Rise velocity: bubble Reynolds number
Shape dynamics?
Known in scientific world

Flow features in the wake- Not much known

Single bubble rise velocity

If suffieciently far from boundaries

Single bubble rise velocity

If suffieciently far from boundaries

Single bubble rise velocity

If suffieciently far from boundaries

Single bubble rise velocity

If suffieciently far from boundaries

Single bubble rise velocity

If suffieciently far from boundaries

Single bubble rise velocity

If suffieciently far from boundaries

For larger bubbles (mm or cm) the solution is different

Single bubble rise velocity

For larger bubbles (mm or cm) the solution is different

Single bubble rise velocity

For larger bubbles (mm or cm) the solution is different Because of wakes, deformability, 3-dimensionality, contamination

If suffieciently far from boundaries

Single bubble rise velocity

For larger bubbles (mm or cm) the solution is different
Because of wakes, deformability, 3-dimensionality, contamination Increase/decrease in rise velocity may happen with increase in bubble size

If suffieciently far from boundaries

Single bubble rise velocity

For larger bubbles (mm or cm) the solution is different
Because of wakes, deformability, 3-dimensionality, contamination Increase/decrease in rise velocity may happen with increase in bubble size

If suffieciently far from boundaries

Single bubble rise velocity

For larger bubbles (mm or cm) the solution is different
Because of wakes, deformability, 3-dimensionality, contamination Increase/decrease in rise velocity may happen with increase in bubble size

If suffieciently far from boundaries

In case of pair of bubbles

Do we see any steady rise velocities for a pair?

In case of pair of bubbles

Do we see any steady rise velocities for a pair?

In case of pair of bubbles

Inline pair

Do we see steady rise velocities?

In case of pair of bubbles

Inline pair

Do we see steady rise velocities?

Side by side pair

Do we see steady rise velocities?
\pm
Long outstanding problems

In case of pair of bubbles

Stokes flow
(Re~0)

Potential flow (Re very large)

Various theories counter-intutive results

Moderate Re

In case of pair of bubbles

Stokes flow (Re~0)

In case of pair of bubbles

Stokes flow ($\mathrm{Re} \sim 0$)

Steady rise never approach

In case of pair of bubbles

Stokes flow
 ($\mathrm{Re} \sim 0$)

Steady rise never approach

Potential flow (Re very large)
 \& no wake

Inline pair
(2)

In case of pair of bubbles

Stokes flow ($\mathrm{Re} \sim 0$)

Steady rise never approach

Potential flow

 (Re very large)\& no wake
They repel vertically (van Wijngaarden 1982)

In case of pair of bubbles

Stokes flow ($\mathrm{Re} \sim 0$)

Steady rise never approach

Potential flow
 \& thin wake

Potential flow

 (Re very large)\& no wake
They repel vertically
(van Wijngaarden 1982)

Inline pair
(c)

In case of pair of bubbles

Potential flow

 (Re very large) \& no wakeThey repel vertically
(van Wijngaarden 1982)

In case of pair of bubbles

Moderate Re

Potential flow

 (Re very large) \& no wakeThey repel vertically (van Wijngaarden 1982)

In case of pair of bubbles

Stokes flow
($\mathrm{Re} \sim 0$)
Steady rise never approach

Moderate Re

Axisymmetric bubbles Equilibrium distance (Prosperetti 1994)

Potential flow

\& thin wake

Equilibrium distance (Harper 1970)

$\mathrm{t}=0$

Potential flow (Re very large) \& no wake

They repel vertically (van Wijngaarden 1982)

Inline pair
\rightarrow

In case of pair of bubbles

Stokes flow
($\mathrm{Re} \sim 0$)
Steady rise never approach

Potential flow

\& thin wake

Equilibrium distance (Harper 1970)

Moderate Re

Axisymmetric bubbles Equilibrium distance (Prosperetti 1994)

Experiments
coalescence
(Meneveau 1996)

Potential flow

 (Re very large) \& no wakeThey repel vertically (van Wijngaarden 1982)

Inline pair

In case of pair of bubbles

Stokes flow
(Re~0)
Steady rise never approach

Potential flow

 \& thin wakeEquilibrium distance (Harper 1970)

Moderate Re

Axisymmetric bubbles Equilibrium distance (Prosperetti 1994)

Experiments
coalescence
(Meneveau 1996)

Potential flow

 (Re very large) \& no wakeThey repel vertically (van Wijngaarden 1982)

Why this discrepancy?

Because of wakes, deformability, 3-dimensionality, contamination

In case of pair of bubbles

Let us ask a question...

 Moderate Re Instead an equal size pair if an unequal size pair rises then?
In case of pair of bubbles

Let us ask a question... Moderate Re

 Instead an equal size pair if an unequal size pair rises then?

Experiments are right

In case of pair of bubbles

Let us ask a question... Moderate Re

 Instead an equal size pair if an unequal size pair rises then?

Experiments are right

In case of pair of bubbles

Let us ask a question...

 Moderate Re Instead an equal size pair if an unequal size pair rises then?

Experiments are right

In case of pair of bubbles

Let us ask a question...

 Moderate Re Instead an equal size pair if an unequal size pair rises then?

Buoyancy force $\sim(1 / 8) d^{3}$
Experiments are right

Inline pair - Simulations

1.6 cm

$d_{L}=0.50 \mathrm{~cm}$

Inline pair - Simulations

$$
\nabla \cdot \mathbf{u}=0
$$

$$
\frac{\partial\left(\rho_{m} \mathbf{u}\right)}{\partial t}+\nabla \cdot\left(\rho_{m} \mathbf{u u}\right)=-\nabla p+\nabla \cdot\left[\mu_{m}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)\right]+\rho_{m} \mathbf{g}+\mathbf{f}_{s}
$$

$$
\rho_{m}=\rho_{g} \alpha+\rho_{l}(1-\alpha)
$$

$$
\mathbf{f}_{s}=\gamma \stackrel{\rightharpoonup}{\kappa} \nabla \alpha
$$

$$
\mu_{m}=\mu_{g} \alpha+\mu_{l}(1-\alpha)
$$

$\left.\frac{\partial \alpha}{\partial t}+\nabla \cdot(\alpha \mathbf{u})-\nabla \cdot\left[\alpha(1-\alpha) \mathbf{u}_{r}\right)\right]=0$

$$
\mathbf{u}_{\mathbf{r}}=\mathbf{n} \min \left(c_{\gamma} \frac{|\phi|}{|S|}, \max \left(\frac{|\phi|}{|S|}\right)\right)
$$

Our observation

Our observation

Increase in buoyancy

Increase in buoyancy

Shape dynamics

Shape oscillations during coalescence

Let us look at velocity vectors

Let us look at velocity vectors

Leading bubble's wake

Let us look at velocity vectors

Leading bubble's wake

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

$U_{s} / U_{L}=$?
$\underset{\text { к!эоןәл ןеэ! пиәл }}{\text { К }}$

Wake is very complex

Wake is very complex

Q-criterion based vortex structures Color mapped by streamwise vorticity

\rightarrow Hairpin like structures during rise
\rightarrow Jet ejections away from bubble
\rightarrow Toroidal roll development at coalescence

Wake is very complex

Buoyancy increases

Wake is very complex

Buoyancy increases

Wake is very complex

Streamlines twined on hairpin structures

Trailing bubble speed: $\mathbf{U}_{\mathbf{s}} / \mathrm{U}_{\mathrm{L}}$ ratio

Trailing bubble speed: U_{S} / U_{L} ratio

Trailing bubble speed: \mathbf{U}_{S} / U_{L} ratio

Trailing bubble speed: U_{s} / U_{L} ratio

Trailing bubble speed: $\mathbf{U}_{\mathbf{s}} / \mathrm{U}_{\mathrm{L}}$ ratio

Trailing bubble speed: $\mathbf{U}_{\mathbf{s}} / \mathrm{U}_{\mathrm{L}}$ ratio

Liquid velocity fluctuations?

Liquid velocity fluctuations?

Vertical component is dominant

Liquid velocity fluctuations?

Vertical component is dominant

KE increases in liquid as bubbles rise

KE increases in liquid as bubbles rise

KE increases in liquid as bubbles rise

$$
\frac{1}{2} \Sigma_{i}<u_{i}^{2}>\propto t^{\gamma}
$$

KE increases in liquid as bubbles rise

$$
\frac{1}{2} \Sigma_{i}<u_{i}^{2}>\propto t^{\gamma}
$$

Summary

Summary

- Rising bubbles show hairpin vortex structures in the wake

Summary

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, $U_{S} / U_{L} \sim t^{2}$

Summary

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, $U_{S} / U_{L} \sim t^{2}$
- Due to bubble rise- liquid vertical velocity component is dominant

Summary

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, $U_{S} / U_{L} \sim t^{2}$
- Due to bubble rise- liquid vertical velocity component is dominant
- Liquid KE increases with time $\frac{1}{2} \Sigma_{i}<u_{i}^{2}>\propto t^{\gamma}$

What happend with boiling...

What happend with boiling...

I think we are still on track

What happend with boiling...

I think we are still on track

Are these real bubbles?
Can they rotate, coalesce, bounce, tumble, Oscillate, create wake?

boiling

