SUMMER SCHOOL AND DISCUSSION MEETING ON BUOYANCY-DRIVEN FLOWS

by
Rajaram Lakkaraju
Department of Mechanical Engineering
Indian Institute of Technology Kharagpur

SUMMER SCHOOL
AND
DISCUSSION MEETING ON BUOYANCY-DRIVEN FLOWS

by **Rajaram Lakkaraju** ment of Mechanical End

Department of Mechanical Engineering Indian Institute of Technology Kharagpur

Acknowledgement INSPIRE-DST, Govt. India

Methane streams in oceans-climatic change

Methane streams in oceans-climatic change

Enhanced oil recovery

Methane streams in oceans-climatic change

Enhanced oil recovery

Methane streams in oceans-climatic change

Enhanced oil recovery

Drinks

Methane streams in oceans-climatic change

Aeration of ponds- O₂ levels

Drinks

Enhanced oil recovery

Methane streams in ocear

It is RBC...

Drinks

Enhanced oil recovery

Methane streams in ocear

It is RBC...

Aeration of ponds- O_2 le

Umm. Open top...

Methane streams in ocear

It is RBC...

Aeration of ponds- O₂ lo Umm. Open top... it is okay...

Production

Well

Initially began with traditional RBC

Initially began with traditional RBC...

Initially began with traditional RBC... How about boiling RBC?

Initially began with traditional RBC... How about boiling RBC?

Initially began with traditional RBC... How about boiling RBC?

Initially began with traditional RBC... How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

Initially began with traditional RBC... How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

Incompressible flow for liquid - Euler

Point size – Lagrange

Growth/Condensation

Initially began with traditional RBC... How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

Incompressible flow for liquid - Euler

Point size – Lagrange

Growth/Condensation

Wait a minute...

Initially began with traditional RBC... How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

Incompressible flow for liquid - Euler

Point size – Lagrange

Growth/Condensation

Wait a minute...

Are these real bubbles?
Can they rotate, coalesce, bounce, tumble,
Oscillate, create wake?

Initially began with traditional RBC... How about boiling RBC? LSC, plumes, heatflux, structure functions...what not...

A beautiful mathematical framework

Incompressible flow for liquid - Euler

Point size – Lagrange

Growth/Condensation

Wait a minute...

Are these real bubbles?
Can they rotate, coalesce, bounce, tumble,
Oscillate, create wake?

NO!

But, see we can publish papers... hmm...

Then we started to work on real bubbles

Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.

Then we started to work on real bubbles

Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.

Raja, we are waiting for colorful dynamics

Show us some fancy animation

Then we started to work on real bubbles

Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.

Raja, we are waiting for colorful dynamics

Show us some fancy animation

How about rising bubble in a quiscent liquid?

Then we started to work on real bubbles

Which can deform, rotate, coalesce, bounce, tumble...blah blah blah.

Raja, we are waiting for colorful dynamics

Show us some fancy animation

How about rising bubble in a quiscent liquid?

Size ~ 5 mm cylinder of 16 cm x 2 cm Rise velocity ~ 20 cm/s

Let us see if a small bubble trails a leading big one

Let us see if a small bubble trails a leading big one

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble

Why?

Let us see if a small bubble trails a leading big one

Small trailing bubble rises fast and approaches big leading bubble

Why?

In next 15 min., we will see why...

bubble rises due to gravity and based on the bubble size they may reach steady rise

bubble rises due to gravity and based on the bubble size they may reach steady rise

bubble rises due to gravity and based on the bubble size they may reach steady rise

bubble rises due to gravity and based on the bubble size they may reach steady rise

bubble rises due to gravity and based on the bubble size they may reach steady rise

These parameters are

```
Archimedes number = buoyancy / viscous
Eotvos number = buoyancy / surface tension
```

These parameters are

Archimedes number = buoyancy / viscous

These parameters are

Archimedes number = buoyancy / viscous Eotvos number = buoyancy / surface tension

These parameters are

```
Archimedes number = buoyancy / viscous

Eotvos number = buoyancy / surface tension
```

Rise velocity: bubble Reynolds number

These parameters are

```
Archimedes number = buoyancy / viscous

Eotvos number = buoyancy / surface tension
```

Rise velocity: bubble Reynolds number

Shape dynamics?

These parameters are

Archimedes number = buoyancy / viscous Eotvos number = buoyancy / surface tension

Rise velocity: bubble Reynolds number

Shape dynamics?

Known in scientific world

These parameters are

```
Archimedes number = buoyancy / viscous

Eotvos number = buoyancy / surface tension
```

Rise velocity: bubble Reynolds number

Shape dynamics?

Known in scientific world

Flow features in the wake- Not much known

For larger bubbles (mm or cm) the solution is different

For larger bubbles (mm or cm) the solution is different

For larger bubbles (mm or cm) the solution is different

Because of wakes, deformability, 3-dimensionality, contamination

For larger bubbles (mm or cm) the solution is different

Because of wakes, deformability, 3-dimensionality, contamination

Increase/decrease in rise velocity may happen with increase in bubble size

For larger bubbles (mm or cm) the solution is different

Because of wakes, deformability, 3-dimensionality, contamination

Increase/decrease in rise velocity may happen with increase in bubble size

If suffieciently far from boundaries

For larger bubbles (mm or cm) the solution is different

Because of wakes, deformability, 3-dimensionality, contamination

Increase/decrease in rise velocity may happen with increase in bubble size

from boundaries

Do we see any steady rise velocities for a pair?

Inline pair

Do we see steady rise velocities?

Long outstanding problem

Inline pair

Do we see steady rise velocities?

Side by side pair

Do we see steady rise velocities?

Long outstanding problems

Stokes flow (Re~0)

Various theories counter-intutive results

Moderate Re

Potential flow (Re very large)

Stokes flow (Re~0)

Stokes flow (Re~0)

Steady rise never approach

Stokes flow (Re~0)

Steady rise never approach

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow & thin wake

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow & thin wake

Equilibrium distance (Harper 1970)

<u>Potential flow</u> (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Moderate Re

Potential flow & thin wake

Equilibrium distance (Harper 1970)

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow & thin wake

Equilibrium distance (Harper 1970)

Moderate Re

Axisymmetric bubbles

Equilibrium distance (Prosperetti 1994)

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow & thin wake

Equilibrium distance (Harper 1970)

Moderate Re

Axisymmetric bubbles Equilibrium distance (Prosperetti 1994) Experiments

coalescence (Meneveau 1996)

Potential flow (Re very large) & no wake

Stokes flow (Re~0)

Steady rise never approach

Potential flow & thin wake

Equilibrium distance (Harper 1970)

<u>Potential flow</u> (Re very large) & no wake

They repel vertically (van Wijngaarden 1982)

Moderate Re

Axisymmetric bubbles Equilibrium distance (Prosperetti 1994) Experiments coalescence (Meneveau 1996)

Why this discrepancy?

Because of wakes, deformability, 3-dimensionality, contamination

Let us ask a question...

Moderate Re

Instead an equal size pair if an unequal size pair rises then?

Let us ask a question...

Moderate Re

Instead an equal size pair if an unequal size pair rises then?

Experiments are right

Let us ask a question...

Moderate Re

Instead an equal size pair if an unequal size pair rises then?

Experiments are right

Let us ask a question...

Moderate Re

Instead an equal size pair if an unequal size pair rises then?

Buoyancy force ~ d³

d/2

Buoyancy force ~ (1/8)d³

Experiments are right

In case of pair of bubbles

Let us ask a question...

Moderate Re

Instead an equal size pair if an unequal size pair rises then?

Experiments are right

Can this small bubble catches-up?

Inline pair - Simulations

Inline pair – Simulations

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial(\rho_m \mathbf{u})}{\partial t} + \nabla \cdot (\rho_m \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot [\mu_m (\nabla \mathbf{u} + \nabla \mathbf{u}^T)] + \rho_m \mathbf{g} + \mathbf{f}_s$$

$$\rho_m = \rho_g \alpha + \rho_l (1 - \alpha)$$

$$\mu_m = \mu_g \alpha + \mu_l (1 - \alpha)$$

$$\mathbf{f}_s = \gamma \kappa \nabla \alpha$$

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{u}) - \nabla \cdot [\alpha (1 - \alpha) \mathbf{u}_r)] = 0$$

$$\mathbf{u_r} = \mathbf{n} \min(c_{\gamma} \frac{|\phi|}{|S|}, max(\frac{|\phi|}{|S|}))$$

Our observation

Our observation

Increase in buoyancy

Increase in buoyancy

Shape dynamics

Shape oscillations during coalescence

Let us look at velocity vectors

Let us look at velocity vectors

Leading bubble's wake

Let us look at velocity vectors

Leading bubble's wake

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

Leading bubble's wake plays a role

Leading bubble's wake play a big role- so trailing bubble speeds-up

Q-criterion based vortex structures Color mapped by streamwise vorticity

- → Hairpin like structures during rise
- → Jet ejections away from bubble
- → Toroidal roll development at coalescence

Buoyancy increases

Buoyancy increases

Liquid velocity fluctuations?

Liquid velocity fluctuations?

Vertical component is dominant

Liquid velocity fluctuations?

Vertical component is dominant

$$\frac{1}{2}\Sigma_i < u_i^2 > \propto t^{\gamma}$$

• Rising bubbles show hairpin vortex structures in the wake

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, $U_s/U_L \sim t^2$

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, U_s/U_L ~ t²
- Due to bubble rise- liquid vertical velocity component is dominant

- Rising bubbles show hairpin vortex structures in the wake
- Small trailing bubbles speeds-up in the wake, $U_s/U_L \sim t^2$
- Due to bubble rise- liquid vertical velocity component is dominant
- Liquid KE increases with time $\frac{1}{2}\Sigma_i < u_i^2 > \propto t^\gamma$

What happend with boiling...

What happend with boiling...

I think we are still on track

What happend with boiling...

I think we are still on track

Are these real bubbles?
Can they rotate, coalesce, bounce, tumble,
Oscillate, create wake?

