Analysis of an instability in stratified fluid flow
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Boussinesq equations

Assume a two-dimensional, viscous, incompressible fluid flow

Density perturbations only relevant when multiplied by g (acceleration
due to gravity)

Fluid is bounded by two solid walls at z = 0 and z = —h with no-slip
boundary condition (Couette type)

Mean density profile linear in z

O + ulyu + wou = —% 2D + V(Opzu + O22u),
0

1
Orw + udyw + wow = 7; 0.p — gpﬁ + vV(Ozew + 0z2w),
0 0

Ozu+ 0, w =0,
Orp + udzp + wp = WN + K(Ozzp + O22p)



Boussinesq equations

Exact solution

1
Otu + U0z u + wo,u = 7; 2D + V(Oszt + Oz2u),
0

Ow + ud,w + wd,w = —1 0.p — gﬁ + V(Ozaw + Oz:w),
Po Po

Ozu+ 0, w =0,
0tp + u0zp + w0zp = WN + K(Ozap + 0zzp)



Linear stability

Linearise about shear flow

u=U(z)+a w=w, p=p

Introduce a stream function ¢: 4 = —0,%, W = 9z
Hat’s denote Fourier transform with horizontal wave number k

00t — kUL + ik = _;ﬁp UK + Oea),
0
ik + (ik) U = —% 0:p = 9L 4 ik (k) + 0.ed)),
0 0

Oip+ ikUp = ik N + k(—k>p+ 0..p)



Linear stability

Orr-Sommerfeld equation

Combine momentum equations for single function 1& coupled with density
equation
¢:8Z¢:O7 ZZO,_h
p=0, z=0,-h
ZU()

U==-+W

Oy (=022 + k) + ikU (=02 + k) = gz‘k:pﬁ — (0. + k%)%
0
Oup +ikUp = ik)N + k(—k>p + 0..p)



Linear stability

Orr-Sommerfeld equation
Combine momentum equations for single function 1& coupled with density
equation
Y=0:4=0, z=0,-h
p=0, z=0,-h
ZU()

U= tt

Proceed with eigenvalue analysis: 1) = e f(z) p = e

g(z)

Ou(—0.2 + K*) + kU (=022 + k) = gikL — v(—0.. + k%)%
P
0

Oup +ikUp = ik)N + k(—k>p + 0..p)



Linear stability

Orr-Sommerfeld equation
Combine momentum equations for single function 12) coupled with density
equation
Y=0:4=0, z=0,-h
p=0, z=0,-h
ZU()

U==-+W

Proceed with eigenvalue analysis: ¢ = e f(2) p = eMg(2)
Non-normal operator = cannot preclude short time growth even when all
eigenvalues are stable

Ou(—0.2 + K*) + kU (=022 + k) = gikL — v(—0.. + k%)%
P
0

Oup +ikUp = ik)N + k(—k>p + 0..p)



An alternative viewpoint

Caution: new ideas ahead!

How much progress can be made without resorting to numerics?
Step one: reformulate problem (H Segur)

Step two: simplify the problem

Step three: analyse the problem
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Reformulation

recall

Linearise about shear flow

u=U(z)+a w=w, p=p

Introduce a stream function ¥: 4 = —0,%, W = Iz
Hat’s denote Fourier transform with horizontal wave number &k

—O1) — ikUO + i/mz?@ = f;ﬁ;a - y(#fw + 02221)),
ik + (ik)*Udp = _; 0.p — 9 —|—sz/( k2 + 0..1)),
0

Oup+ ikUp = iki)N + /i(—k P+ 0:2p)



Reformulation

w — p — p equations

The two momentum equations are equivalent iff

) 22Ul
(=022 + K2)p = 2p0 (zk)%;O —g0:p



Reformulation

w — p — p equations

The two momentum equations are equivalent iff
2\ A~ . 27 UO
(=0:z + k7)D = 2p0(ik) == — g0zp

To keep things clean, re-introduce % = ik

~ O — kU1 + zkw% = 7%’“@ — (k0.0 + D2220)),
0
ik + (ik)2U = _% 0.5 =L+ ikv(~K + 0..1),
0 0

Oup +ikUp = ikt)N + k(—k*p + 9..p)



Reformulation

w — p — p equations

Boundary conditions

R U .
(—0.. + k*)p = 2P02k‘70w —g0:p

et + kU = — 2 0.p — g + V(=K + 0,.10),
Po Po
Oip+ikUp = wN + k(—k*p+ 0..p)



Reformulation

w — p — p equations

Boundary conditions

p=0, z=0,-h

No boundary conditions for p !

R U .
(=0 + K")p = 2P02k‘70w —99:p

et + kU = — 2 0.p — g + V(=K + 0,.10),
Po Po
Oip+ikUp = wN + k(—k*p+ 0..p)



Reformulation

w — p — p equations

ZU()
U=—+U
h + Uo

General solution to second order ODE

p= po/ G(z—y ( E)p >dy+A( t)poe” "1 + B(t)poe!**

U
(=0.. +E*)p = 2poik701i) —gd.p
I p 2. .
O + kU = —= 0:p — g— + v(—k"w + 0..w),
Po po

oup +ikUp = wN + k(—k*>p + 0..p)



Reformulation

w — p — p equations

ZU()
U=—+U
h + Uo

General solution to second order ODE

p= po/ G(z—y ( E)p >dy+A( t)poe” "1 + B(t)poe!**

No boundary conditions to apply = retain A and B as unknowns.

U
(=0.. +E*)p = 2poik701i) —gd.p
I p 2. .
O + kU = —= 0:p — g— + v(—k"w + 0..w),
Po po

oup +ikUp = wN + k(—k*>p + 0..p)



Reformulation

w — p — p equations
Boundary conditions
Uo . 0:p

0
oW + ikUw = —32/ G(z—vy) (2ik—w —g
—h h Po

— gﬁ + V(—k2w + 0;.0),
Lo
up +ikUp = wN + k(—k*>p + 0..p)

) dy — Alkle”"™* + B|k|e/*!*



Reformulation

w — p — p equations

Boundary conditions

)= (70" )

&
/N
> &

> &

N————
_|_
o

/N

> &



A toy problem

Consider
Orq =if(x)q+ Lq,

where L is some operator (e.g. L = 05,) posed on finite interval (0,1) with
homogeneous BC’s

o If eigenvalues of L are known, then perturbation theory can be used to
find eigenvalues for if(z) + L

e Perturbation theory usually requires f(z) be small

la® ;. — .
Ot 5 dr=Re | ¢"Lqdx

e Energy integral



A toy problem

Consider
Orq =if(x)q+ Lq,

where L is some operator (e.g. L = 05,) posed on finite interval (0,1) with
homogeneous BC’s

o If eigenvalues of L are known, then perturbation theory can be used to
find eigenvalues for if(z) + L

e Perturbation theory usually requires f(x) be small

lq|? .
at/de:Re/q Lqgdx
t "¢*Lq dx
ol =llaollexo ( qui")
0 llall

1
lall? = / lq[2dz
0

e Energy integral

where



A toy problem

g =if(z)q+ Lg,
t * ok
q" Lq dx
= llall = llgoll exp (/ Re 17>
0

llqll?

Num(L) = {z € Clz = [¢* Lo dx V|¢|| =1}

If Lo+ if(x)¢ = A then A € Num(L)

Num(P + @) € Num(P) + Num(Q)

If Re Num(L) < 0 then g is asymptotically stable = all solutions decay
to zero

lall < llgolle™, M = sup{Re Num(L)}

If all eigenvalues of L + if(x) are stable, then M gives the short time

growth rate and we can estimate greatest possible algebraic growth
rate

Long time behavior is dictated by eigenvalues



A toy problem

Moral of the story. ..

Consider
Oq =1if(x)qg+ Lgq,

where L is some operator (e.g. L = 0,5) posed on finite interval (0,1) with

homogeneous BC’s
t *
q"Lq dx
ol = oo ex [ e L4 E0)
0 llall

7 (5)=(%" ) (5 )2 (5)

is the system equivalent of the toy problem and all the claims follow.



The effective boundary-value problem

W=0.0=p=0, z=0,—h

0
o =—-0, | G(z—v) (2@k%w gap”) dy — Alkle™"™* + B|k|el*I*

Oip = wWN + k(—k>p+ 0..p)

o We now seek as much as information about the BVP as possible.



The effective boundary-value problem

A:azﬁ):ﬁzo, z=0,—h

)
=—-0. / G(z — <21 Z 813’0) dy — Alkle™"™* + B|k|el*I*

D“

—g;—!—l/( k? W+ 0,,0),

Otp = wN + li(—k p+0::p)

We now seek as much as information about the BVP as possible.
Claim: this problem can be solved explicitly!

New method to solve boundary value problems: Unified Transform
Method (UTM)

Encompasses the standard methods.

It is more general than the standard methods: UTM handles non
self-adjoint operators (etc.)

Readily obtain eigenvalues, estimate asymptotic behavior, compute
numerical range.

Efficient evaluation of the solution: contour parametrization leading to
stable numerical methods, steepest descent, the residue theorem, etc.



Unified Transform Method

A:azﬁ):ﬁzo, ZZO,—h

)
=—0. / G(z — (21 % (9/),0) dy — Alkle™"™* + B|k|el*I?

- gp— + (=K + 0.10),

Otp = wN + m(—k P+ 0::p)

Developed by Fokas and collaborators (see STAM Review Deconinck,
Trogdon & Vasan 2014)

Recently extended to problems with nonlocal operators (Vasan 2016),
systems of equations (Deconinck et al 2017), interface problems
(Sheils, Pelloni and others)

Solution given as

eikz'fwjt ikr—w;t

NGRS

with Iy, as contours in complex plane. w; is dispersion relation

Go(v) dk

A(km) = 0 give rise to eigenfunctions and w; (k) is the eigenvalue



Concluding remarks

e Fluid shear problems in rectangular domains give rise to
0:5 = —1tkUs+ Kys + L3
§ are the fluid variables of interest, Ky is a compact operator and L is

an operator amenable to UTM.

e Using perturbation theory and numerical range we can estimate
growth rates in terms of £ and shear

e Currently we’re studying interfacial waves with density and viscosity
jump with a background time-dependent shear profile
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e Fluid shear problems in rectangular domains give rise to
0:5 = —1tkUs+ Kys + L3
§ are the fluid variables of interest, Ky is a compact operator and L is

an operator amenable to UTM.

e Using perturbation theory and numerical range we can estimate
growth rates in terms of £ and shear

e Currently we’re studying interfacial waves with density and viscosity
jump with a background time-dependent shear profile

Thank you!



