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Schwarzschild convection

whether the displaced blob experiences a restoring force? 
assumptions: adiabatic, slow (compared to sound crossing time)
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for unmagnetized plasma

Q = ��b̂⇥kT = ��b̂(b̂ ·⇥)T
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for magnetized plasma

particles move along B w. small Larmor radii but 
diffuse along B with a path length of mfp; mfp>>ρL

true for all transport coeffts.
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Magnetized, dilute plasmas

for typical clusters

solar corona



Galaxy clusters
Springel et al.

most normal matter is 
in diffuse X-ray emitting 

plasma: ICM 

DM provides  
background gravity 

Wikipedia



Buoyancy instabilities w. 
anisotropic conduction

 ρL<< mfp < L 

weak B: only role is 
aniso. cond. 

tcond << tbuoy~(H/g)1/2

=> flow is unstable 
 if dT/dz < 0 even if ds/dz>0! 
a similar instability for dT/dz>0!

[Balbus 2000, Quataert 2008]
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Magnetothermal 
Instability (MTI)

temperature  
maximum at 

bottom 

reflective BCs 
at top and 

bottom 

outflow more  
realistic

[from Ian Parrish’s website]
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Equations w. aniso. 
conduction

zero for adiabatic fluids
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ABSTRACT

I calculate the linear stability of a stratified low-collisionality plasma in the presence of a weakmagnetic field. Heat
is assumed to flow only along magnetic field lines. In the absence of a heat flux in the background plasma, Balbus
demonstrated that plasmas in which the temperature increases in the direction of gravity are buoyantly unstable to
convective-like motions (the ‘‘magnetothermal instability’’). I show that in the presence of a background heat flux, an
analogous instability is present when the temperature decreases in the direction of gravity. The instability is driven by
the background heat flux, and the fastest growing mode has a growth time of order the local dynamical time. Thus,
independent of the sign of the temperature gradient, weakly magnetized low-collisionality plasmas are unstable on a
dynamical time tomagnetically mediated buoyancy instabilities. The instability described in this paper is predicted to
be present in clusters of galaxies at radii!0.1Y100 kpc, where the observed temperature increases outward. Possible
consequences for the origin of cluster magnetic fields, ‘‘cooling flows,’’ and the thermodynamics of the intercluster
medium are briefly discussed.

Subject headinggs: convection — galaxies: clusters: general — instabilities — MHD — plasmas

1. INTRODUCTION

Thermally stratified fluids are buoyantly unstable when the
entropy increases in the direction of gravity, a result of consider-
able importance to the theory of stellar structure (Schwarzschild
1958). Remarkably, however, this well-known result changes in
a low-collisionality plasma in which (1) the collisional mean free
path of electrons is larger than the electron Larmor radius and
(2) thermal conduction is the dominant mode of heat transport
(Balbus 2000). In such a plasma, heat is transported primarily
along magnetic field lines. For the simple problem of a horizontal
magnetic field in a vertically stratified plasma, Balbus (2000)
showed that the condition for the plasma to be buoyantly un-
stable becomes that the temperature (not entropy) increase in the
direction of gravity. The resulting ‘‘magnetothermal instability’’
(MTI) has been studied with nonlinear simulations by Parrish &
Stone (2005, 2007).

In a subsequent paper, Balbus (2001) generalized his initial
result to rotating flows and magnetic fields of arbitrary orienta-
tion, but still under the assumption that there is no heat flux in the
background plasma (i.e., that the field lines are initially isothermal).
This latter assumption is unlikely to hold inmany low-collisionality
astrophysical plasmas such as clusters of galaxies and hot accretion
flows onto black holes.

In this paper I extend Balbus’s calculation and study the sta-
bility of weakly magnetized plasmas in the presence of a back-
ground heat flux. I show that the presence of a heat flux drives a
buoyancy instability analogous to theMTI when the temperature
decreases in the direction of gravity (a situation that is MTI
stable according to Balbus’s analysis). This instability is distinct
from the heat fluxYdriven overstabilities described in Socrates et al.
(2008).2 In the next two sections I summarize the equations and
assumptions used inmy analysis (x 2) and the results of the linear
stability calculation (x 3). I then discuss possible applications of

the heat fluxYdriven version of theMTI, in particular to the inter-
cluster plasma in clusters of galaxies (x 4).

2. BASIC EQUATIONS AND LINEAR PERTURBATIONS

The equations used for my analysis are those of ideal mag-
netohydrodynamics, supplemented by a heat flux along magnetic
field lines; they are identical to those given in Balbus (2001) and
Socrates et al. (2008). The equations are the conservation of mass,
momentum, magnetic flux, and an internal energy equation,
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where ! is the mass density, v is the fluid velocity, B is the mag-
netic field, ggg is the gravitational acceleration, P is the pressure, T
is the temperature, s is the entropy per unit mass, b̂ ¼ B/B is a unit
vector in the direction of the magnetic field, and d/dt ¼ @/@tþ
v = : is a Lagrangian time derivative. I consider an ideal gas with
an adiabatic index of 5/3 throughout this paper.
The internal energy equation (eq. [4]) accounts for the fact that

the heat fluxQ in a plasma is primarily along magnetic field lines
when the electron Larmor radius is small compared to the elec-
tron mean free path (e.g., Braginskii1965). In this limit, the heat
flux is given by

Q ¼ &#b̂ b̂ = :
! "

T ; ð5Þ

where the thermal diffusivity due to electrons is (Spitzer 1962)

# ’ 6 ; 10&7T5=2 ergs cm&1 K&1: ð6Þ

I often use $ ¼ #T /P in place of # for convenience ($ has units
of cm2 s&1, i.e., of a diffusion coefficient).

1 Astronomy Department and Theoretical Astrophysics Center, 601 Campbell
Hall, University of California, Berkeley, CA 94720; eliot@astro.berkeley.edu.

2 In my analysis below, I utilize the Boussinesq approximation to focus on
nearly incompressible perturbations. In this limit, Socrates et al. predict that the
slowmode is stable, while the fast mode is unstable on a dynamical time. Because
the Boussinesq approximation filters out fast waves, I do not expect any version
of their overstabilities to be present in my analysis.
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Linear Analysis
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2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ
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:P " ik

#P

!
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" ik(B = #B)
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; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ
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!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3

0 ¼ !!̃2 þ i!cond !̃
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d ln T

dz

# $
1" 2b2
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to

!2 ’ g
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz

# $
k 2
?
k 2

: ð18Þ

Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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weak B field

2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ
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The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "
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where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz
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k 2
?
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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local WKB analysis

2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by
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The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
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" "b̂ #b̂ = :T
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" i"b̂ b̂ = k
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#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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where
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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d ln T
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þ 2bxbzkxkz
k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz

# $
k 2
?
k 2

: ð18Þ

Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.

BUOYANCY INSTABILITIES 759

2.1. Background Plasma

The fastest growing modes described below have very short
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In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
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y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
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The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by
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where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
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I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
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magnetic forces are dynamically unimportant. The only role of the
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3.1. dT /dz < 0
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
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local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P

!
þ i(B = k)#B

4$!
" ik(B = #B)

4$!
; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ

5

2
i!P

#!

!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3

0 ¼ !!̃2 þ i!cond !̃
2 " N 2!

k 2
?
k 2

" i!condg
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
; ð13Þ

where

N 2 ¼ 2

5

mp

kB
g
ds

dz
¼ "g

d ln !

dz
" 3

5

d ln p

dz

% &
ð14Þ

is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to

!2 ’ g
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz

# $
k 2
?
k 2

: ð18Þ

Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P

!
þ i(B = k)#B

4$!
" ik(B = #B)

4$!
; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ

5

2
i!P

#!

!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3

0 ¼ !!̃2 þ i!cond !̃
2 " N 2!

k 2
?
k 2

" i!condg
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
; ð13Þ

where

N 2 ¼ 2

5

mp

kB
g
ds

dz
¼ "g

d ln !

dz
" 3

5

d ln p

dz
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ð14Þ

is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to

!2 ’ g
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz

# $
k 2
?
k 2

: ð18Þ

Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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weak B field

2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P

!
þ i(B = k)#B

4$!
" ik(B = #B)

4$!
; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ

5

2
i!P

#!

!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3

0 ¼ !!̃2 þ i!cond !̃
2 " N 2!

k 2
?
k 2

" i!condg
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
; ð13Þ

where

N 2 ¼ 2

5

mp

kB
g
ds

dz
¼ "g

d ln !

dz
" 3

5

d ln p

dz

% &
ð14Þ

is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to

!2 ’ g
d ln T

dz

# $
1" 2b2

z

! " k 2
?
k 2

þ 2bxbzkxkz
k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,

!2 ’ g
d ln T

dz

# $
k 2
?
k 2

: ð18Þ

Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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local WKB analysis

2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P

!
þ i(B = k)#B

4$!
" ik(B = #B)

4$!
; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ

5

2
i!P

#!

!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3

0 ¼ !!̃2 þ i!cond !̃
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where
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,

!̃2 ¼ !2 " (k = vA)2; ð15Þ

vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and

!cond ¼
2

5
% b̂ = k
! "2 ð16Þ

is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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d ln T
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k 2

% &
: ð17Þ

3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,
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d ln T

dz
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k 2
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k 2
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
x þ k 2

y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P
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þ i(B = k)#B

4$!
" ik(B = #B)
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; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ
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!
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The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by

#Q ¼ ""#b̂ b̂ = :T
! "

" "b̂ #b̂ = :T
! "

" i"b̂ b̂ = k
! "

#T ; ð12Þ

where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,
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vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
and
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is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by

Q ¼ "" bxbzx̂þ b2
z ẑ

! " dT
dz

: ð7Þ

In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2

? ¼ k 2
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y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by
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The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by
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where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2
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I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2
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2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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dispersion relation in fast conduction, weak B limit:

[Quataert 2008]
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2.1. Background Plasma

The fastest growing modes described below have very short
wavelengths (where thermal conduction has the largest effect).
Thus, a simplified model for the background plasma suffices. I
assume that the plasma is thermally stratified in the presence of a
uniform gravitational field in the vertical direction, ggg ¼ "g ẑ.With-
out loss of generality, the magnetic field is taken to beB ¼ Bx x̂þ
Bz ẑ. I also introduce the dimensionless x and z magnetic field
strengths, bx ¼ Bx/B and bz ¼ Bz/B, where B is the magnitude of
the initial magnetic field (note that bx and bz can be either positive
or negative). The initial magnetic field is assumed to be veryweak
so that force balance implies dP/dz ¼ "!g. Because b̂ = :T 6¼ 0,
there is a heat flux in the background state, given by
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In order for the initial equilibrium to be in steady state, : =
Q ¼ 0, which implies a temperature that varies linearly with height
z. Although this steady state assumption is formally required, it is
worth noting that as long as the timescale for the evolution of the
system is longer than the local dynamical time, the general features
of the instabilities described here are unlikely to depend critically
on the system actually being in steady state.

2.2. Linear Perturbations

I carry out a standardWentzel-Kramers-Brillouin (WKB) per-
turbation analysis on the background described in x 2.1. All dy-
namical variables are assumed to vary as exp ("i!t þ ik = x),
where k ¼ kx x̂þ ky ŷþ kzẑ and the WKB assumption requires
kH 31, where H is the local scale height of the system. I also
define k 2
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y to be the wavevector perpendicular to the
local gravitational field (but not perpendicular to the initial mag-
netic field). The growing modes of interest have growth times
much longer than the sound crossing time of the perturbation. As
a result, it is sufficient to work in the Boussinesq approximation,
as in Balbus (2000, 2001).

With the above assumptions, the linearly perturbed versions
of equations (1)Y(5) are given by

k = #v ¼ 0; ð8Þ

"i!#v ¼ #!

!2
:P " ik

#P

!
þ i(B = k)#B

4$!
" ik(B = #B)

4$!
; ð9Þ

!#B ¼ "(B = k)#v; ð10Þ

5

2
i!P

#!

!
þ !T (#v = :s) ¼ "ik = #Q: ð11Þ

The key equation for understanding the instabilities discussed
in this paper is that for the perturbed heat flux, which is given by
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where #b̂ ¼ #(B/B) ¼ #B/B" b̂(#B/B) and #B is the perturbation
to the magnitude of the magnetic field. A term proportional to
#" / #T should formally be included in equation (12), but is
small in the local WKB (kH 31) limit considered here. Equa-
tions (8)Y(12) differ from the nonrotating limit of Balbus’s (2001)
corresponding equations only in the first term in equation (12),
which is the portion of the linearly perturbed heat flux due to the
presence of a background heat flux in the plasma.

3. RESULTS

After some algebraic manipulation, equations (8)Y(12) can be
combined to yield the following dispersion relation:3
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is the hydrodynamic Brunt-Väisälä frequency, mp is the proton
mass, kB is Boltzmann’s constant,
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vA ¼ B/(4$!)1/2 is theAlfvén speed,k = vA is theAlfvén frequency,
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is the characteristic frequency at which conduction acts on a given
perturbation. For % ¼ B ¼ 0, equation (13) reduces to the usual
dispersion relation for hydrodynamic convection and internal
gravity waves, !2 ¼ N 2k 2

?/k
2.

I now consider equation (13) under the assumption that the
frequencies of interest in the problem can be ordered as !cond 3
!dyn 3k = vA, where !dyn & (g /H )1/2 is the local dynamical
frequency. This ordering of timescales can always be achieved if
the magnetic field is sufficiently weak (see x 3.3). In this limit,
magnetic forces are dynamically unimportant. The only role of the
magnetic field is to enforce an anisotropic transport of heat. With
this timescale ordering, the dispersion relation reduces to
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3.1. dT /dz < 0

For plasmas in which dT /dz < 0, i.e., in which the tempera-
ture increases in the direction of gravity, equation (17) describes
the MTI discovered by Balbus (2000). This is easiest to see if we
consider the simple case in which Bz ¼ 0 in the initial state. In
that case,
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Equation (18) implies that the plasma is unstable on the local
dynamical time. Physically, theMTI arises because magnetically
connected fluid elements remain nearly isothermal as they are

3 The referee pointed out correctly that a more precise implementation of the
Boussinesq approximation is to set #(P þ B2/8$) ¼ 0 in the energy equation, not
#P ¼ 0 as I havedone (since it is only the total pressure perturbation that is guaranteed
to be small, not just the gas pressure perturbation). This leads to an additional term
in eq. (13) given by 2ig&"1(k 2

?/k
2)(b̂ = k) bz " kz/kxð Þbx½ ((3!/5þ i!cond), where

& ¼ P/(B2/8$). This additional term is, however, small compared to the domi-
nant terms in eq. (13) by at least a factor of && 1/2, and thus, I neglect it throughout
this paper.
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unstable irrespective of dT/dz if I can choose B geometry!
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Fig. 1.—Snapshots of the magnetic field in a 2D simulation initialized with
a single-mode perturbation having . The HBI drives the initially verticalk p kx z

field to become largely horizontal. The units of time in Figs. 1–4 are such
that the dynamical time .!1/2(g d ln T/dz) ≈ 1.4

TABLE 1
Table of Nonlinear Runs

Run B0/(4p)1/2 kk DAB2S rms Mach AvBS ˜f p Q/Q

R1 . . . . . . 10!5 5 # 10!3 327 5.1 # 10!4 5.8! 0.51%
R2 . . . . . . 10!4 5 # 10!3 36.4 7.7 # 10!4 17.2! 7.7%
R3 . . . . . . 10!5 1.5 # 10!2 384 5.1 # 10!4 3.8! 0.31%

Fig. 2.—Time evolution of the volume-averaged magnetic energy density
and kinetic energy density in the HBI-unstable region of run R1. The magnetic
energy is amplified by a factor of ∼300; the kinetic energy is in approximate
equipartition with the magnetic energy and the convection remains highly
subsonic.

initial temperature profile was , the tem-T(z) p T (1 " z/2)0

perature scale height at the midplane is 2, and the size of the
domain is ; note that the simulations are local. The pres-2(0.1)
sure and density were chosen so that the atmosphere was in
hydrostatic equilibrium with . The magnetic field isp ∼ r ∼ 1
chosen to be weak initially and purely vertical with

, so that magnetic tension forces are1/2 !4B /(4p) p 5 # 100

negligible. The purely anisotropic thermal diffusivity is k p
, where k has units of a diffusion coefficient, i.e.,!2x T/P p 10C

cm2 s . With these parameters, the conduction time for small-!1

scale perturbations is much less than the dynamical time, which
is the limit of fastest growth for the HBI (and MTI).

Figure 1 shows that perturbations with nonzero andk kx z

generate converging and diverging field lines. The heat flux
follows these field lines leading to (conductive) heating and
cooling of the plasma. In a plasma with , a fluiddT/dz 1 0
element displaced upward is thus heated by the background
heat flux, causing it to rise further and become buoyant. Note
that the magnetic field snapshots in Figure 1 look very similar
to snapshots for the MTI rotated by 90 .!

For a weak vertical magnetic field, the growth rate of the
HBI in the limit of rapid conduction is

2d ln T k⊥2q ≈ !g . (6)( ) 2dz k

For the parameters of our simulation, we predict a growth rate
of 0.5 for . Measurement of the growth rate in our singlek p kx z

mode simulation verifies this prediction to within 1%. In the
2D simulation, we find that the magnetic energy is amplified
by a factor of ∼52 during the course of the run.

3. NONLINEAR SATURATION IN THREE DIMENSIONS

Only in 3D can we accurately explore the saturation of the
HBI since the nature of convection differs significantly in 2D
and 3D. Using 3D simulations, we now quantify the amplifi-

cation of the magnetic field by the HBI and the resulting heat
flux through the plasma.

The computational setup we use is nearly identical to the
stratified box presented in § 2.3 of Parrish & Stone (2007); we
refer the reader there for details. The box consists of three
vertical layers of equal size in which the central region has a
linear temperature profile with and pure anisotropic!T/!z 1 0
conduction along magnetic field lines, such that it is unstable
to the HBI. The top and bottom layers are isothermal atmo-
spheres (exponential pressure and density profiles) and act as
a buffer to the penetrative convection that takes place. These
regions have isotropic conductivity and are stable to the HBI.
For all of the simulations in this Letter, the isotropic conduc-
tivity in the top and bottom layers is equal to the parallel
anisotropic conductivity in the middle region. It is important
to note that our box size is again small compared to the tem-
perature scale height (0.2 and 2, respectively), so that our sim-
ulations are local in nature. Table 1 gives the initial magnetic
field and conductivity for our 3D runs; we will primarily focus
on R1, our fiducial simulation.

Figure 2 shows the amplification of magnetic energy as a
function of time for R1. The net amplification can be defined
by

2AB Sfin2DAB S { , (7)2AB Sinit

[Parrish & Quataert 2008]
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for SCDM50, Mtot(<720 kpc) = 5.41+1.13
−0.76 × 1014 M⊙ and

Mtot(<720 kpc) = 4.56 ± 0.35 × 1014 M⊙ being Allen et al.
(2001)’s value and our estimate, respectively.

– For NGC 533, A 1837 and Sérsic 159−3 a fair comparison
with previous work is not possible.

To reiterate, the remainder of our analysis of our final sam-
ple of 13 objects relies on the validity of extrapolating pro-
files fitted to the inner region of the data: for both SCDM50
and ΛCDM70, the number of objects for which the outer ra-
dius Rout is larger than (or equal to) r∆ at the 95 percent level
of confidence is: 11 (NGC 533, A 262, A 1837, Sérsic 159–3,
2A 0335+096, MKW 3s, A 2052, A 4059, A 3112, A 1795 and
A 1835) for ∆ = 2500, 7 (NGC 533, A 1837, Sérsic 159–3,
MKW 3s, A 4059, A 1795 and A 1835) for ∆ = 1500, only 3
(A 1837, Sérsic 159–3 and A 1835) for ∆ = 1000 and none
for ∆ = 500.

4. Scaled temperature profiles

In the following we investigate the structure of the tempera-
ture profiles for our final sample of 13 cooling flow clusters.
In Figs. 1 (for SCDM50) and 2 (for ΛCDM70), we present the
deprojected radial profiles plotted against the radius in units
of rvir (≈r180 for SCDM and ≈r101 for ΛCDM at z = 0), where
the temperature has been normalized by the mean emission-
weighted temperature ⟨TX⟩. From a visual inspection it is ev-
ident that a temperature gradient is present at large radii and
that when normalized and scaled by the virial radius, tempera-
ture profiles are remarkably similar. In addition almost all the
individual profiles clearly show a break radius rbr, a decrease
of temperature from rbr inwards and a decline at radii larger
than rbr. In the following, we investigate the shape in detail.

4.1. The break radius

In the following we compute the break radius of the individual
clusters in units of rvir. For each cluster we divide the scaled
temperature profiles in two radial intervals: from the innermost
bin to the bin i and from the bin i + 1 to the outermost one.
Temperature profiles in each of the two intervals are then fit-
ted using straight lines, power laws and exponential functions.
All the nine combinations are used and for each pair of fit-
ting functions, i is varied until the best fit is achieved. Clusters
that do not show a clear temperature decrease in the outer re-
gion are excluded. These are A 262, A 496 and Perseus. For
the remaining clusters the bin i which gives the best fit is inde-
pendent of the choice of the fitting functions. The break radius
xbr = rbr/rvir is then defined as (xi + xi+1)/2 (where xi is the
distance of the bin i from the center in units of rvir) and its un-
certainty (xi+1−xi)/2. In Fig. 3 we show the break radius xproj

br =

rproj
br /rvir of the projected temperature profiles in SCDM50 as a

function of redshift. The mean value of xproj
br is 0.11 with a stan-

dard deviation of 0.01. Using a different method, De Grandi &
Molendi (2002) find 0.20 for the mean value of xproj

br for a sam-
ple of 11 cooling flow and 10 non-cooling flow clusters and
a lower value, 0.16, for the cooling flow clusters only. Taking
into account that De Grandi & Molendi (2002), who also used
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Fig. 1. Scaled temperature profiles (deprojected) in SCDM50 cos-
mology: the radius is scaled with the virial radius rvir = r180,
while the temperature is normalized by the mean emission-weighted
temperature ⟨TX⟩. Clusters are related to symbols as follows:
NGC 533 (crosses), A 262 (filled squares), A 1837 (filled diamonds),
Sérsic 159−3 (filled circles), 2A 0335+096 (open triangles), MKW 3s
(open pentagons), A 2052 (filled triangles), A 4059 (open diamonds),
A 496 (open hexagon), A 3112 (open stars), A 1795 (open squares),
Perseus (open circles) and A 1835 (filled stars).
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Fig. 2. Same as Fig. 1, but in ΛCDM70 cosmology.

projected profiles, computed the break radius for cooling flow
clusters by excluding the cooling region and fitting the pro-
files with a constant temperature for r < rproj

br and with a line
for r > rproj

br , the fact that their estimate is larger than ours is
not surprising. In ΛCDM70 the mean value of xproj

br is reduced
to 0.08 with a standard deviation of 0.01. In agreement with
De Grandi & Molendi (2002) we find that the intrinsic disper-
sion of the parent population of scaled break radii (assumed to
be distributed like a Gaussian) is consistent with 0 (for both
SCDM50 andΛCDM70). By performing the same analysis us-
ing deprojected temperature profiles we find 0.12 and 0.09 for
the mean value of xdeproj

b for SCDM50 and ΛCDM70, respec-
tively, and standard deviation of 0.01. This latter results shows
consistency between break radii of projected and deprojected
profiles.

4.2. The outer region

For comparison with other studies, we quantify the decline
seen in Fig. 1 (i.e. in a SCDM50 cosmology) for radii larger

[Piffaretti et al. 2005]
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Figure 2. Evolution of the HBI with an initially vertical magnetic field in a local, 2D simulation (simulation h1 in Table 1). Colour shows temperature and black
lines show magnetic field lines. A small velocity perturbation to the initial state seeds exponentially growing modes which dramatically reorient the magnetic
field to be predominantly horizontal. The induced velocities are always highly subsonic and, after t ∼ 20tbuoy, are also almost entirely horizontal. Once the
plasma reaches its saturated state, it is buoyantly stable to vertical displacements. The plasma does not resist horizontal displacements, but the saturated state
is nearly symmetric to these displacements and they do not change its character.

Fig. 2 shows snapshots of the evolution of temperature and mag-
netic field lines in a local, 2D HBI simulation. We chose this simu-
lation to simplify the field-line visualization, but the results in Fig. 2
apply equally to our local and global 3D simulations. We initialized
this simulation in an unstable equilibrium state with vertical mag-
netic field lines (b̂z = 1). As described in Section 3.1, we seed this
initial condition with small velocity perturbations; the HBI causes
these perturbations to grow in the first three panels of Fig. 2. The
evolution becomes non-linear in the third panel, when the velocity
perturbations reach ∼4 per cent of the sound speed. Afterwards,
the instability begins to saturate and the plasma slowly settles into
a new equilibrium state. The last panel in Fig. 2 shows that this
saturated state is highly anisotropic: the magnetic field lines are al-
most entirely orthogonal to gravity. Flux conservation implies that
the fluid motions must also be anisotropic, with most of the kinetic
energy in horizontal motions at late times (see Fig. 3, discussed
below). These horizontal motions are very subsonic: in all of our
simulations, the velocities generated by the HBI are significantly
less than 1 per cent of the sound speed in the saturated state.

Because the fluid velocities remain small, the linear dispersion
relation (equation 7) captures much of the evolution of the HBI,
even at late times. For any magnetic field orientation, the fastest-
growing modes are the ones with k along the axis b̂× (b̂× g); these
modes have the growth rate

pmax = |ωbuoy b̂z|, (11)

which decreases as the field lines become horizontal. Additionally,
when b̂2

z < 1/2, only modes with k̂2
z > 1 − 4(b̂2

z − b̂4
z ) are unsta-

ble. Since the HBI saturates by making the field lines horizontal
(b̂z → 0), both the maximum growth rate of the instability and
the volume of phase space for unstable modes decrease as the HBI
develops. This strongly limits the growth of the perturbations, and
helps explain why the instability saturates relatively quiescently.

As argued by Parrish & Quataert (2008), the HBI saturates when
its maximum growth rate pmax vanishes, so that no unstable modes
remain. While this is clearly a sufficient condition for the plasma
to reach a new stable equilibrium, it is by no means necessary. The
instability could, e.g. saturate via non-linear effects, but in practice
this is not the case (at least for simulations without an additional
source of turbulence; see Section 5.1). Equation (11) for pmax shows
that the HBI can saturate by making either ∂T/∂z or b̂z vanish;
intuitively, the HBI is powered by a conductive heat flux, which it
must extinguish in order to stop growing. Erasing the temperature
gradient might seem like the more natural saturation channel, since
the conduction time across the domain is much shorter than other

Figure 3. Evolution of the vertical and horizontal kinetic energy in a local,
2D HBI simulation (simulation h1 in Table 1). The units are such that the
thermal pressure P ≈ 1 and the initial magnetic energy is B2/8π = 10−12.
After a period of exponential growth in which the x and z motions are in
approximate equipartition, HBI saturates and the kinetic energy ceases to
grow. At this point, the energy in the vertical motion is in the form of
stable oscillations, which decay non-linearly. The horizontal motions are
unhindered, however, and persist for the entire duration of the simulation.
These horizontal motions are responsible for the asymmetry of the magnetic
field shown in Fig. 4.

time-scales in the problem. In an astrophysical setting, however, the
large-scale temperature field is often controlled by cooling, accre-
tion or other processes apart from the HBI. We therefore impose
the overall temperature gradient on our simulations by fixing the
temperature at the top and bottom of the domain, so that ωbuoy is
roughly independent of time, and saturation requires b̂z = 0.

Since the HBI saturates by making the magnetic field lines hor-
izontal, we take the b̂z → 0 limit in equation (7) to understand the
late-time behaviour of the plasma:

ω = ± ωbuoy
(
1 − k̂2

z

)1/2
. (12)
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FIGURE 2. Cartoon for the blob displaced from the initial stable/saturated HBI state (with horizontal
field lines shown by the solid line) for dT/dz > 0 (ẑ is taken along the radial direction). The blob is
displaced vertically by ∆z; the dashed line shows the perturbedweak magnetic field. In the fast-conduction
limit the blob temperature is the same as the temperature of the initial field line; i.e., Tb = T0. In the
Boussinesq limit the blob pressure equals the background pressure at ∆z (= p0+∆zdp/dz). The buoyancy
force on the blob is (ρb− ρ0−∆zdρ/dz)g, corresponding to the density difference of the blob relative
to its surroundings. Expressing the density in terms of the temperature and pressure, the buoyancy force
reduces to ρg∆zd lnT/dz in the direction of gravity, i.e., a restoring force.

EFFECT OF TURBULENT FORCING

There is a fundamental difference between convection in anisotropically conducting
plasmas and the more well-known Schwarzschild convection that arises in adiabatic
plasmas. While the energy in Schwarzschild convection is mainly transported by fluid
motions, it is transported by thermal conduction in anisotropically conducting plasmas
(even when dT/dz > 0 [ẑ is along the radial direction], in which case field lines in the
saturated state are aligned almost perpendicular to the temperature gradient). In addition,
the turbulent velocities in the saturated state in buoyantly unstable, anisotropically
conducting plasmas are very small (e.g., table 1 in [12] shows that the rmsMach numbers
are∼< 10

−3 even when the vertical temperature gradient is large and the temperatures are
fixed at the vertical boundaries; also [17]). In contrast, in Schwarzschild convection the
turbulent velocities can be much larger, and turbulent velocities are larger for larger
entropy gradients across the box.
From the above discussion (that the velocities are negligible with free convection

[MTI/HBI] in anisotropically conducting plasma) we can consider a static saturated state
for these instabilities with anisotropic thermal conduction. Figure (2) considers a blob
being perturbed from its HBI saturated state (dT/dz> 0 in the background plasma) with
horizontal field lines. The perturbed blob is at the same temperature as the original field
line (T0). In the Boussinesq limit the blob is at the same pressure as the background
pressure at the perturbed position. The buoyancy force on the blob is a restoring force
(ρg∆zd lnT/dz), bringing the blob back to its original position (see the figure caption).
In this sense the HBI saturated state with horizontal field lines (and negligible velocities)
is the stable state of an anisotropically conducting plasma with dT/dz > 0. Analogous
considerations for theMTI saturated state with vertical field lines when dT/dz< 0, show
that a vertically displaced blob experiences a similar restoring force (ρg∆z|d lnT/dz|).1

1 The vertical field lines are not isothermal, but the conductive heat flux Q in the displaced blob satisfies
∇ ·Q = 0; see [16] who invoke a similar argument for the destabilization of vertical field lines with
dT/dz> 0.

[Sharma et al. 2009]
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Figure 2. Evolution of the HBI with an initially vertical magnetic field in a local, 2D simulation (simulation h1 in Table 1). Colour shows temperature and black
lines show magnetic field lines. A small velocity perturbation to the initial state seeds exponentially growing modes which dramatically reorient the magnetic
field to be predominantly horizontal. The induced velocities are always highly subsonic and, after t ∼ 20tbuoy, are also almost entirely horizontal. Once the
plasma reaches its saturated state, it is buoyantly stable to vertical displacements. The plasma does not resist horizontal displacements, but the saturated state
is nearly symmetric to these displacements and they do not change its character.

Fig. 2 shows snapshots of the evolution of temperature and mag-
netic field lines in a local, 2D HBI simulation. We chose this simu-
lation to simplify the field-line visualization, but the results in Fig. 2
apply equally to our local and global 3D simulations. We initialized
this simulation in an unstable equilibrium state with vertical mag-
netic field lines (b̂z = 1). As described in Section 3.1, we seed this
initial condition with small velocity perturbations; the HBI causes
these perturbations to grow in the first three panels of Fig. 2. The
evolution becomes non-linear in the third panel, when the velocity
perturbations reach ∼4 per cent of the sound speed. Afterwards,
the instability begins to saturate and the plasma slowly settles into
a new equilibrium state. The last panel in Fig. 2 shows that this
saturated state is highly anisotropic: the magnetic field lines are al-
most entirely orthogonal to gravity. Flux conservation implies that
the fluid motions must also be anisotropic, with most of the kinetic
energy in horizontal motions at late times (see Fig. 3, discussed
below). These horizontal motions are very subsonic: in all of our
simulations, the velocities generated by the HBI are significantly
less than 1 per cent of the sound speed in the saturated state.

Because the fluid velocities remain small, the linear dispersion
relation (equation 7) captures much of the evolution of the HBI,
even at late times. For any magnetic field orientation, the fastest-
growing modes are the ones with k along the axis b̂× (b̂× g); these
modes have the growth rate

pmax = |ωbuoy b̂z|, (11)

which decreases as the field lines become horizontal. Additionally,
when b̂2

z < 1/2, only modes with k̂2
z > 1 − 4(b̂2
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ble. Since the HBI saturates by making the field lines horizontal
(b̂z → 0), both the maximum growth rate of the instability and
the volume of phase space for unstable modes decrease as the HBI
develops. This strongly limits the growth of the perturbations, and
helps explain why the instability saturates relatively quiescently.

As argued by Parrish & Quataert (2008), the HBI saturates when
its maximum growth rate pmax vanishes, so that no unstable modes
remain. While this is clearly a sufficient condition for the plasma
to reach a new stable equilibrium, it is by no means necessary. The
instability could, e.g. saturate via non-linear effects, but in practice
this is not the case (at least for simulations without an additional
source of turbulence; see Section 5.1). Equation (11) for pmax shows
that the HBI can saturate by making either ∂T/∂z or b̂z vanish;
intuitively, the HBI is powered by a conductive heat flux, which it
must extinguish in order to stop growing. Erasing the temperature
gradient might seem like the more natural saturation channel, since
the conduction time across the domain is much shorter than other

Figure 3. Evolution of the vertical and horizontal kinetic energy in a local,
2D HBI simulation (simulation h1 in Table 1). The units are such that the
thermal pressure P ≈ 1 and the initial magnetic energy is B2/8π = 10−12.
After a period of exponential growth in which the x and z motions are in
approximate equipartition, HBI saturates and the kinetic energy ceases to
grow. At this point, the energy in the vertical motion is in the form of
stable oscillations, which decay non-linearly. The horizontal motions are
unhindered, however, and persist for the entire duration of the simulation.
These horizontal motions are responsible for the asymmetry of the magnetic
field shown in Fig. 4.

time-scales in the problem. In an astrophysical setting, however, the
large-scale temperature field is often controlled by cooling, accre-
tion or other processes apart from the HBI. We therefore impose
the overall temperature gradient on our simulations by fixing the
temperature at the top and bottom of the domain, so that ωbuoy is
roughly independent of time, and saturation requires b̂z = 0.

Since the HBI saturates by making the magnetic field lines hor-
izontal, we take the b̂z → 0 limit in equation (7) to understand the
late-time behaviour of the plasma:

ω = ± ωbuoy
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1 − k̂2
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FIGURE 2. Cartoon for the blob displaced from the initial stable/saturated HBI state (with horizontal
field lines shown by the solid line) for dT/dz > 0 (ẑ is taken along the radial direction). The blob is
displaced vertically by ∆z; the dashed line shows the perturbedweak magnetic field. In the fast-conduction
limit the blob temperature is the same as the temperature of the initial field line; i.e., Tb = T0. In the
Boussinesq limit the blob pressure equals the background pressure at ∆z (= p0+∆zdp/dz). The buoyancy
force on the blob is (ρb− ρ0−∆zdρ/dz)g, corresponding to the density difference of the blob relative
to its surroundings. Expressing the density in terms of the temperature and pressure, the buoyancy force
reduces to ρg∆zd lnT/dz in the direction of gravity, i.e., a restoring force.

EFFECT OF TURBULENT FORCING

There is a fundamental difference between convection in anisotropically conducting
plasmas and the more well-known Schwarzschild convection that arises in adiabatic
plasmas. While the energy in Schwarzschild convection is mainly transported by fluid
motions, it is transported by thermal conduction in anisotropically conducting plasmas
(even when dT/dz > 0 [ẑ is along the radial direction], in which case field lines in the
saturated state are aligned almost perpendicular to the temperature gradient). In addition,
the turbulent velocities in the saturated state in buoyantly unstable, anisotropically
conducting plasmas are very small (e.g., table 1 in [12] shows that the rmsMach numbers
are∼< 10

−3 even when the vertical temperature gradient is large and the temperatures are
fixed at the vertical boundaries; also [17]). In contrast, in Schwarzschild convection the
turbulent velocities can be much larger, and turbulent velocities are larger for larger
entropy gradients across the box.
From the above discussion (that the velocities are negligible with free convection

[MTI/HBI] in anisotropically conducting plasma) we can consider a static saturated state
for these instabilities with anisotropic thermal conduction. Figure (2) considers a blob
being perturbed from its HBI saturated state (dT/dz> 0 in the background plasma) with
horizontal field lines. The perturbed blob is at the same temperature as the original field
line (T0). In the Boussinesq limit the blob is at the same pressure as the background
pressure at the perturbed position. The buoyancy force on the blob is a restoring force
(ρg∆zd lnT/dz), bringing the blob back to its original position (see the figure caption).
In this sense the HBI saturated state with horizontal field lines (and negligible velocities)
is the stable state of an anisotropically conducting plasma with dT/dz > 0. Analogous
considerations for theMTI saturated state with vertical field lines when dT/dz< 0, show
that a vertically displaced blob experiences a similar restoring force (ρg∆z|d lnT/dz|).1

1 The vertical field lines are not isothermal, but the conductive heat flux Q in the displaced blob satisfies
∇ ·Q = 0; see [16] who invoke a similar argument for the destabilization of vertical field lines with
dT/dz> 0.

[Sharma et al. 2009]

DISCUSSION

On cluster core scales, where the thermal conduction time is shorter than the Brunt-
Väisälä timescale, a hypothetical, isotropically conducting plasma would have Ri ≈
0 (a neutral buoyant response to external forcing; see previous section), and hence
the efficient mixing seen in Figure (1). On the other hand, anisotropically conducting
intracluster plasma naturally evolves to its stable saturated state (i.e., magnetic field
lines perpendicular to ∇T when dT/dr > 0), in which the gentle positive temperature
gradient (as compared to a steep entropy gradient) results in a small stabilizing buoyant
force. Defining Ri≡ gr(d lnT/d lnr)/u2 for the anisotropically conducting core, where
g is the gravitational acceleration, u is the typical forcing velocity and r is the radius (r is
assumed to be the only scale in the problem but if the most effective turbulent driving is
at a different scale this definition should be rescaled accordingly); for adiabatic plasma
the temperature gradient is replaced by the entropy gradient. Thus, the Richardson
number evaluated for typical cluster conditions is

Ri≈ 3g−8r10
d lnT/d lnr

u2100
, (1)

where g−8 is the gravitational acceleration in the units of 10−8 cm2s−1, r10 is the scale
height (taken roughly to be the radius) in the units of 10 kpc, u100 is the shear velocity
in the units of 100 km s−1. A typical logarithmic temperature gradient in cluster cores
is d lnT/d lnr ≈ 0.15, and the typical logarithmic entropy gradient is d lns/d lnr ≈ 0.6
(e.g., [15]). Thus, from the requirement that Ri < Ric (since only a single spatial scale
is used in defining Ri in Eq. [1], Ric ≈ 1/4 is only a rough estimate for the critical
value) for efficient turbulent mixing, turbulent velocities∼ 100 km s−1 are sufficient for
efficient mixing in the cluster core and for overcoming the restoring force experienced
by a plasma in the HBI-saturated state (see Fig. [5] in [18]; similar velocities are seen
in vigorously stirred regions in the top panel of Fig. [1]; although turbulent velocities
in [18] are driven by cosmic-ray convection the above criterion for turbulent mixing
applies more generally). Because ds/d lnr ≃ 4|d lnT/dr|, a four-times-larger turbulent
energy would be required to induce forced mixing in a hypothetical adiabatic cluster
core. Since isotropically conducting plasma has a neutral buoyant response, it can be
effectively mixed by much smaller turbulent velocities. Consistent with the above, the
turbulent velocities (in the well-mixed regions) in the isotropically conducting case are
the smallest, followed by the anisotropically conducting case, and by the adiabatic case.
Although these considerations provide a qualitative understanding of mixing and

turbulence in the ICM, realistic numerical simulations, including cooling, are required
for understanding the role of forced turbulence (e.g., by cosmic rays, shear instabilities at
the jet boundary, etc.) in heating the ICM and spreading the heat isotropically. Although
we have focused on cluster cores with dT/dr > 0, similar considerations for mixing
and turbulence apply at larger radii where dT/dr < 0. The ICM plasma can be driven
turbulent by the infalling dark-matter halos and galaxy wakes if large turbulent velocities
(10-100 km/s) are generated. The stability of the anisotropic plasma in its saturated state
(i.e., horizontal field lines with dT/dr > 0 and vertical field lines with dT/dr < 0) has
important implications for the effective thermal conductivity of the ICM. It is sometimes
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FIGURE 1. Metallicity (logarithmic) profiles (scaled by its maximum value in the particular plot)
at different times for runs with anisotropic thermal conduction (top row), isotropic thermal conduction
(middle row), and adiabatic plasma (bottom row). A passive scalar initialized within inner four grid points
(<1.25 kpc) is used as a proxy for metallicity. While mixing driven by cosmic-ray convection is most
efficient with isotropic thermal conduction, it is least effective for an adiabatic plasma. See the text for
details.

Figure (1) shows metallicity profiles at different times for runs with anisotropic con-
duction (top row), isotropic conduction (middle row), and no thermal conduction (i.e.,
adiabatic plasma; bottom row). Mixing is efficient with thermal conduction, and a large
volume of plasma (even at the equator, although the cosmic-ray source only operates
near the poles) is mixed by cosmic-ray-driven convection. This figure is analogous to
Figure (11) in [18], but is based on two-dimensional (axisymmetric) simulations and in-
cludes the isotropic conduction case. Here, instead of the ratio of cosmic-ray and plasma
pressures (as in Fig. [11] of [18]), we show metallicity. Like metals, cosmic rays (and
possibly heat from other sources of ICM heating) are also more efficiently spread out
(in both r and θ ) with conduction than without it. It is curious that mixing with isotropic
thermal conduction is even more widespread than with anisotropic thermal conduction.
These differences are explained in detail in the next section.

anisotropic conduction

isotropic conduction

adiabatic

passive scalar mixing:
[Sharma et al. 2009]
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Figure 5. Evolution of the MTI with an initially horizontal magnetic field in a local, 2D simulation (simulation m1 in Table 2). Grey horizontal lines show the
transition to the buoyantly neutral layers described in Section 3.2; the colour scale is identical to that in Fig. 2. Initial perturbations grow by the mechanism
described in Section 2.2 (Fig. 1); rising and sinking plumes rake out the field lines until, by t = 6tbuoy, they are mostly vertical. This configuration is, however, non-
linearly unstable to horizontal displacements, which generate a horizontal magnetic field and thus continually seed the MTI (see Fig. 6). The result is vigorous,
sustained convection in marked contrast to the saturation of the HBI in Fig. 2. In this local simulation, buoyant plumes accelerate until they reach the neutrally
stable layers. The boundaries prematurely stop the growth of the MTI, and the local simulation underpredicts the kinetic energy generated by the MTI (see
Fig. 7).

resulting stably stratified plasma then resists vertical mixing and, in
the absence of strong external forcing, we expect the fluid velocities
and magnetic field lines to be primarily horizontal. In Section 5, we
perturb this state with externally driven, isotropic turbulence and
test the strength of the stabilizing force.

4.2 Saturation of the MTI

Fig. 5 shows the evolution of one of our local, 2D MTI simulations.
As in the HBI simulation shown in Fig. 2, we initialized this simu-
lation in an unstable equilibrium state (a weak horizontal magnetic
field) and seeded it with the small velocity perturbations described
in Section 3.1. The MTI and HBI stem from very similar physics,
and as a result have very similar linear dynamics. The non-linear be-
haviour of the two instabilities is entirely different, however. While
the HBI saturates relatively quiescently by driving the plasma to
a buoyantly stable and highly anisotropic state, the MTI gener-
ates vigorous, sustained convection that tends to isotropize both the
magnetic and velocity fields.

As we did for the HBI, we study the saturation of the MTI using
2D and 3D simulations spanning a range of domain sizes L/H.
Table 2 summarizes the simulations presented in this section.

Since the linear dispersion relation successfully describes the
non-linear evolution and saturation of the HBI, it is a good place
to begin our discussion of the MTI. The MTI is described by equa-
tion (7) when ∂T/∂z < 0. The linear evolution of the MTI is the
opposite of that of the HBI: the MTI operates when the temperature
decreases with height, its fastest growing modes are the ones with
wave vectors k parallel to b̂, and the force that destabilizes the MTI
is exactly that which stabilizes the HBI in its saturated state. Equa-
tion (7) shows that the maximum growth rate of the MTI goes to
zero when b̂z = 1. By analogy with the HBI, it thus seems reason-
able to expect that the MTI also saturates quiescently, by making
the field lines vertical.

The first three panels of Fig. 5 show that this is nearly what
happens. As the perturbations grow exponentially, the buoyantly

Table 2. Parameters for MTI simulations (Section 4.2).

Name D res L/H κ Field configuration

m1 2 64 0.033 7.07 horizontal
m2 2 64 0.033 7.07 vertical
m3 3 64 0.033 7.07 horizontal
m4 3 64 0.033 7.07 vertical
m5∗ 3 128 0.500 0.31 horizontal
m6∗ 3 128 1.400 0.35 horizontal
m7 3 256 0.500 0.06 horizontal

The definitions of L, D, and κ are the same as in Table 1. All simulations use
the local set-up (equation 9), except for the one with L/H = 1.4, which is
global (equation 10). Each of these simulations was initialized with a weak
magnetic field B/

√
4π = 10−4 with the orientation indicated in the table.

∗We also repeated simulations m5 and m6 with initial field strengths
B/

√
4π = 10−4, 0.0014, 0.0245.

rising and sinking blobs rake out the field lines, making them largely
vertical. The growth rate of the MTI goes to zero when the field
lines become vertical; since the velocities are still small at this point
in the evolution (∼10−2cs), one might expect the MTI to operate
like the HBI and quiescently settle into this stable equilibrium state.
Instead, however, the MTI drives sustained turbulence for as long
as the temperature gradient persists. The plasma never becomes
buoyantly stable, and the magnetic field and fluid velocities are
nearly isotropic at late times.

We can understand this evolution using the same approach we
employed for the HBI. Although the plasma in our MTI simulations
never reaches a state in which the MTI growth rate is zero, examin-
ing the properties of this state is very instructive. The equilibrium
state of the MTI with b̂z = 1 (i.e. a vertical field) has precisely the
same dispersion relation as the saturated state of the HBI, given
by equation (12). There are again zero-frequency (neutrally stable)
modes of the dispersion relation which correspond to horizontal
perturbations to the equilibrium state of the MTI; these experience
no restoring force, because the restoring force is buoyant in nature

C⃝ 2011 The Authors, MNRAS 413, 1295–1310
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS

[McCourt et al. 2010]

can stir clusters 
at large radii 
bias mass 

measurements 
of clusters that 
assume HSE 

horizontal motion requires no energy as buoyancy force does not act. Flux-freezing 
 creates horizontal B-field that is again unstable to MTI. Can lead to robust convection! 

Magnetic reorientation doesn’t shut it off, like normal magneto-convection



Summary
• magnetic tension & Braginskii viscosity 

further suppress HBI/MTI 

• since mfp<~L, kinetic instabilities: mirror, IC, 
etc. a lot of plasma physics 

• turbulence, transport and dynamos in the 
ICM 

• implications for cooling flows and cluster 
mass estimates; hot accretion flows

Thank You!


