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Outline

* buoyancy instabilities in dilute astrophysical
plasmas: MTI, HBI

* applications: galaxy clusters



Schwarzschild convection
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Schwarzschild convection
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Magnetized, dilute plasmas

Q = —kVT = —xnkgVT for unmagnetized plasma : Z%&,

Q= _H;ISVHT — —/1[;(15 - V)T for magnetized plasma

particles move along B w. small Larmor radii but t! %
difftuse along B with a path length of mfp; mfp>>pL 2:?
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Galaxy clusters
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Buoyancy Instabilities w.
anisotropic conduction

oL<< mfp < L

=> flow IS unstable
weak B: only role is if dT/dz < O even if ds/dz>0!

aniso. cond.

oo << touoy~(H/q) 12 a similar instability for dT/dz>0!
con uoy ~

[Balbus 2000, Quataert 2008]



Magnetothermal
Instability (MTI)

[from lan Parrish’s website]
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Cguations w. aniso.

conduction
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| Inear Analysis

[Quataert 2008]

weak B field

local WKB analysis

kH > 1

dispersion relation: 0 = w&? + iweong @° — N *w —=
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| Inear Analysis

[Quataert 2008]
g=—9z:B=DB,2+ B,z

weak Bfield  dP/dz = —pg.
local WKB analysis  exp(—iwt+ik*x) k=kx+k,y+kx2
kH>1 ki =kl 4k

dispersion relation in fast conduction, weak B limit:
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nstable irrespective of dT/dz it | can choose B geometry!



Heat-flux Buoyancy
Instabilitv (HBI)

[Parrish & Quataert 2008]
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cuts off thermal conduction



Temperature profiles
N ga\axy clusters

[Piffaretti et al. 2005] |

but stably stratified in
T ‘ terms of| entropy!

% _
o
o1 02 03 04
prone to HBI " 1 ir]
prone to MTI



HBI| saturated state IS

[McCourt et al. 2010]
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HBI saturates by reorienting B; negligible fluid motion in saturated state;

implication for cooling flow problem
[Sharma et al. 2009]
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blob experiences a restoring force once B is reoriented; HBI is guenched in absence of
vertical B; can define a turbulent Richardson number for mixing!
this stabilization can be overcome by a turbulent velocity of ~ 100 km/s



HBI| saturated state IS
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Mixing w. conduction
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passive scalar mixing.

anisotropic conduction

Isotropic conduction
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But M 11 1s a robust
instability

[McCourt et al. 2010]

can stir clusters
at large radi
bias mass
measurements
of clusters that
assume HSE

horizontal motion requires no energy as buoyancy force does not act. Flux-freezing
creates horizontal B-field that is again unstable to MTI. Can lead to robust convection!

Magnetic reorientation doesn’t shut it off, like normal magneto-convection



summary

® magnetic tension & Braginskii viscosity
further suppress HBI/MTI

® since mfp<~L, kinetic instabilities: mirror, IC,
etc. a lot of plasma physics

® turbulence, transport and dynamos in the
ICM

® implications for cooling flows and cluster
mass estimates; hot accretion flows

Thank You!



