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Intuitive understanding of instabilities

When buoyancy drives the flow:

(a) Basics of instability (b) Rayleigh Taylor
instability (Source: K.
Kadau)

What happens when density stratification is stable, and there is
shear?
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Shear instabilities not as intuitive as buoyancy driven ones

Figure 1: Different shear flows (Drazin & Reid (2004)).

Mathematical theorems give us necessary conditions for instabilities
For unstratified flows there are two theorems: 1) Rayleigh’s inflexion point
theorem, and 2) Fjørtoft’s criterion Ūzz(Ū(z)− Ūinf−point) ≤ 0. For
stratified flows there is Miles’-Howard criterion: Ri(z) = N2/Ū2

z < 1/4.
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Do shear instabilities always yield turbulence?

Figure 2: Kelvin-Helmholtz instability.

Figure 3: Barotropic instability.

Source: Guha et al. (PRE 2013)
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Kinematics and dynamics of an interface in density
stratified shear flows (inviscid, incompressible flow)

Vorticity evolution equation (x − z plane)

Dq

Dt
= w

d2Ū

dz2
− N2 ∂ζ

∂x
.

D/Dt ≡ ∂/∂t + Ū∂/∂x is the linearized material derivative, −Ūzz

analogous to β effect for Rossby waves, N is the buoyancy frequency,
q = wx − uz is the perturbation vorticity.

Kinematic condition

Dζ

Dt
= w .

For now, let’s make life even simpler. Assume N = 0. The above two
equations can then be combined to yield

q = ζŪzz .
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A lonely vorticity/Rossby-edge wave

Figure 4: The mechanism why a wave (a) moves to the right, and (b) moves to
the left.

Crucial point: ζq > 0 implies a right moving wave, while ζq < 0 implies
a left moving wave.
But how will this motion sustain? For that we need a relation between q
and ζ. Recall from the last slide

q = ζŪzz .
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The same principles work for interfacial gravity waves

Figure 5: The mechanism why a gravity wave (a) moves to the right, and (b)
moves to the left.

Dq

Dt
= −N2 ∂ζ

∂x
.
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A tale of two vorticity/Rossby-edge waves

Figure 6: Two interfacial waves in presence of a background velocity shear. (a)
Pro-counter, (b) counter-pro, (c) pro-pro, and (d) counter-counter.

Heifetz & Guha (JFM 2017) Summer School on Buoyancy Driven Flows 17 June 2017 10 / 23



Inferences only based on inspection

Only counter-propagating waves can lead to sustained mutual growth,
like what observed in normal-mode instabilities.

〈ζq〉 is small (or even zero due to symmetry between mutually
amplifying pair of waves).〈
Ūζq

〉
< 0.
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Two new concepts: Pseudo-momentum and Pseudo-energy

In unstable shear flows, we saw that the amplitude of the waves are
increasing =⇒ wave energy is not conserved (energy exchanges
occur between waves and mean flow).

Pseudo-momentum and pseudo-energy are conserved wave
activities in shear flows.

Before our work, expressions for pseudo-momentum and
pseudo-energy were known only for unstratified flows. We extended it
to general Boussinesq stratified flows.
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Two new concepts: Pseudo-momentum and pseudo-energy

Theorem

1. Pseudo-momentum theorem: In 2D inviscid, non-diffusive,
Boussinesq flows, the domain integrated pseudo-momentum

Pb =

〈
ζq − Ūzz

ζ2

2

〉

is a conserved quantity. Hence
∂Pb

∂t
= 0 .

2. Pseudo-energy theorem: In 2D inviscid, non-diffusive, Boussinesq
flows, the domain integrated pseudo-energy

Hb =

〈
1

2

(
u2 + w2 + N2ζ2

)
+ ŪPb

〉

is a conserved quantity. Hence
∂Hb

∂t
= 0 .
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What is pseudo-momentum for unstratified/homogeneous
flows?

Pb =

〈
ζq − Ūzz

ζ2

2

〉
. (1)

For homogeneous flows

q = ζŪzz . (2)

Combining (1) and (2) we obtain

Pseudo-momentum for homogeneous flows

Ph = −1

2
〈ζq〉 = −1

2

〈
ζ2Ūzz

〉
. (3)
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Pseudo-momentum and pseudo-energy for normal-mode
perturbations

Ph = −1

2

∫
X

∫
Z
ζqdxdz = −1

2

∫
X

∫
Z
ζ2Ūzzdxdz = constant.

Assume exponentially growing perturbations: ζ(x , z , t) = ζ(x , z , 0)eωi t .
This occurs for normal-mode instabilities. Hence Ph(t) = Ph(0)e2ωi t .

Only possible constant that satisfies is Ph = 0 .
* Pseudo-momentum and pseudo-energy are zero for normal-mode

instabilities. The flow can be homogeneous or stratified.

Lest we forget...we hypothesized 〈ζq〉 = 0 ONLY by inspecting the
counter-propagating waves.
Rayleigh’s inflexion point theorem:

Ph = −1

2

∫
X

∫
Z
ζqdxdz = −1

2

∫
X

∫
Z
ζ2Ūzzdxdz = 0 =⇒

Ūzz = 0 somewhere in the domain.
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Pseudo-momentum and pseudo-energy for normal-mode
perturbations

Similarly for Pseudo-energy Hh one can show

Hh =

∫
X

∫
Z

(
E +

1

2
Ūζq

)
dxdz = 0,

where E = 1
2(u2 + w2) is positive definite. This implies

〈
Ūζq

〉
< 0.

Again...we hypothesized
〈
Ūζq

〉
< 0 ONLY by inspecting the

counter-propagating waves.
Recall

q = ζŪzz .

Substitute for q to obtain
Fjøroft’s criterion:∫

X

∫
Z
ŪŪzzζ

2dxdz < 0 =⇒ ŪŪzz < 0.
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Summary till this point

Shear instabilities are apparently not physically intuitive (unlike
buoyancy driven ones).

Whether a shear flow is stable/unstable is guided by mathematical
theorems (Rayleigh, Fjørtoft).

Counter-propagating waves perspective offers physical insight into
normal-mode instabilities in shear flows. Furthermore it predicts

〈ζq〉 = 0 (from which comes Rayleigh’s inflexion point theorem).〈
Ūζq

〉
< 0 (from which comes Fjørtoft’s criterion).
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Summary till this point

Two conserved wave activities, pseudo-momentum (PM) and
pseudo-energy (PE) for general (Boussinesq stratified) shear flow are
stated. They are 0 for normal-mode instabilities.

Rayleigh’s and Fjørtoft’s criteria are imprinted in PM and PE
respectively.

The condition for mutual wave amplification (hence Rayleigh’s
theorem) comes from the vanishing of PM for normal mode instability.
The condition for counter-propagation and hence phase-locking (and
hence Fjørtoft’s criterion) is derived from the vanishing of PE.
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Canonical Hamiltonian formalism - single interface

Figure 7: A vorticity-density interface

q̄z = −Ūzz = ∆q̄0δ(z − z0) , N2 = ∆N2
0δ(z − z0).

Interfacial Rossby/vorticity-gravity wave dispersion relation

c±0 = U0 −
∆q̄0
4k
± β0, where β0 ≡

√(
∆q̄0
4k

)2

+
∆N2

0

2k
.

Heifetz & Guha (JFM 2017) Summer School on Buoyancy Driven Flows 17 June 2017 19 / 23



Canonical Hamiltonian formalism - single interface

ζ − q eigen-structure of the normal modes is determined by the
requirement that their spatial structure should not change with time. ζ − q
can be divided into kernels, each kernel should conserve its structure.

q = e ikx [q̃+0 (t) + q̃−0 (t)]δ(z − z0) , ζ = e ikx [ζ+0 (t) + ζ−0 (t)], (4)

q̃±0 = α±
0 ζ

±
0 , α±

0 ≡ 2k(c±0 − U0). (5)

Expressing waves’ displacements in terms of their amplitudes and phases:

ζ±0 ≡ Z±
0 e ikχ

±
0 , χ±

0 (t) = (φ±0 − c±0 t), (6)

where kφ±0 , are the phases of the waves at t = 0.
Substitute (4) and (5) in PM and PE expressions to obtain:

P0 = −kβ0(Z+
0 )2 + kβ0(Z−

0 )2 ≡ P+
0 + P−

0 , (7)

and
H0 = −(cP)+0 − (cP)−0 = (χ̇P)+0 + (χ̇P)−0 . (8)
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Canonical Hamiltonian formalism

H0 is not a function of the wave phases. Furthermore, the waves are
neutral with constant amplitude. Thus (7)-(8) yield the canonical
Hamilton’s equations:

∂H0

∂P±
0

= χ̇±
0 ,

∂H0

∂χ±
0

= −Ṗ±
0 = 0

The idea can be extended to two (and also multiple) interfaces:

H =
2∑

n=1

[
(χ̇P)+ + (χ̇P)−

]
n
.

∂H

∂P±
n

= χ̇±
n , n = 1, 2

∂H

∂χ±
n

=
2∑

j=1

[ (
∂χ̇+

∂χ±
n

)
P+ +

(
∂χ̇−

∂χ±
n

)
P−
]
j

= −Ṗ±
n . n = 1, 2

Heifetz & Guha (JFM 2017) Summer School on Buoyancy Driven Flows 17 June 2017 21 / 23



Summary of the Hamiltonian formalism

Equations of interacting waves in stratified shear flows become the
canonical Hamilton equations.

Pseudo-energy serves as the Hamiltonian of the system.

The contributions of each wave to the pseudo-momentum are the
generalized momenta.

The the waves’ phases, scaled by the wavenumber, are the generalized
coordinates.
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Thank you!
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