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@ Minimal model - the need for a mechanistic picture
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Intuitive understanding of instabilities

When buoyancy drives the flow:

Unstable

Stable equilibrium

/ Indifferent
or neutral
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Equilibrium
(a) Basics of instability (b) Rayleigh Taylor
instability (Source: K.
Kadau)

What happens when density stratification is stable, and there is
shear?
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Shear instabilities not as intuitive as buoyancy driven ones

22 GENERAL CRITERIA FOR INSTABILITY 133
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Figure 1: Different shear flows (Drazin & Reid (2004)).

Mathematical theorems give us necessary conditions for instabilities
For unstratified flows there are two theorems: 1) Rayleigh's inflexion point
theorem, and 2) Fjgrtoft's criterion U,,(U(z) — Uinf,point) < 0. For
stratified flows there is Miles'-Howard criterion: Ri(z) = N?/U? < 1/4.
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Do shear instabilities always yield turbulence?
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Figure 3: Barotropic instability.

Source: Guha et al. (PRE 2013)
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Kinematics and dynamics of an interface in density
stratified shear flows (inviscid, incompressible flow)

Vorticity evolution equation (x — z plane)

Dt Va2 %

D/Dt = 9/t + UD/Ox is the linearized material derivative, —U,,
analogous to 3 effect for Rossby waves, N is the buoyancy frequency,
g = wx — U is the perturbation vorticity.

Kinematic condition

be_
Dt

For now, let’s make life even simpler. Assume N = 0. The above two
equations can then be combined to yield

q= CUzz-
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A lonely vorticity /Rossby-edge wave

Figure 4: The mechanism why a wave (a) moves to the right, and (b) moves to
the left.

Crucial point: (g > 0 implies a right moving wave, while (g < 0 implies
a left moving wave.
But how will this motion sustain? For that we need a relation between ¢

and (. Recall from the last slide

q= CUzz- J
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The same principles work for interfacial gravity waves

Figure 5: The mechanism why a gravity wave (a) moves to the right, and (b)
moves to the left.

Dt Ox’
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Figure 6: Two interfacial waves in presence of a background velocity shear. (a)
Pro-counter, (b) counter-pro, (c) pro-pro, and (d) counter-counter.
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Inferences only based on inspection

@ Only counter-propagating waves can lead to sustained mutual growth,
like what observed in normal-mode instabilities.

@ (Cq) is small (or even zero due to symmetry between mutually
amplifying pair of waves).

o (U¢q) <O0.
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Two new concepts: Pseudo-momentum and Pseudo-energy

@ In unstable shear flows, we saw that the amplitude of the waves are
increasing = wave energy is not conserved (energy exchanges
occur between waves and mean flow).

o Pseudo-momentum and pseudo-energy are conserved wave
activities in shear flows.

@ Before our work, expressions for pseudo-momentum and
pseudo-energy were known only for unstratified flows. We extended it
to general Boussinesq stratified flows.
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Two new concepts: Pseudo-momentum and pseudo-energy

1. Pseudo-momentum theorem: In 2D inviscid, non-diffusive,
Boussinesq flows, the domain integrated pseudo-momentum

_ = &
f@b - <Cq - U222>

0Py

ot
2. Pseudo-energy theorem: /n 2D inviscid, non-diffusive, Boussinesq
flows, the domain integrated pseudo-energy

is a conserved quantity. Hence 0l

o = <; (v 4+ w? + N2C?) + U%,>

. . 074
is a conserved quantity. Hence .

Heifetz & Guha (JFM 2017) Summer School on Buoyancy Driven Flows 17 June 2017 13 /23




What is pseudo-momentum for unstratified/homogeneous

flows?

For homogeneous flows
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Pseudo-momentum and pseudo-energy for normal-mode

perturbations

1 1 -
P, = _/ / (qdxdz = —/ / (2 U,,dxdz = constant.
2 /xJz 2 /xJz

Assume exponentially growing perturbations: ((x, z, t) = {(x, z,0)e“'’.
This occurs for normal-mode instabilities. Hence 2,(t) = 22,(0)e?*it.
Only possible constant that satisfies is .

* Pseudo-momentum and pseudo-energy are zero for normal-mode
instabilities. The flow can be homogeneous or stratified.

Lest we forget...we hypothesized | ((q) = 0| ONLY by inspecting the

counter-propagating waves.
Rayleigh's inflexion point theorem:

1 1 -
gZh__//quxdz_—//CZUzzdxdz—O —
2 /x )z 2 /xJz

U,, = 0 somewhere in the domain.
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Pseudo-momentum and pseudo-energy for normal-mode

perturbations

Similarly for Pseudo-energy 7} one can show

%z//(E—i—lUCq)dxdz:O,
xJz 2

where E = %(u2 + w?) is positive definite. This implies <UCq> < 0.

Again...we hypothesized <L_/Cq> < 0| ONLY by inspecting the
counter-propagating waves.
Recall

q= CUzz~
Substitute for g to obtain
Fjgroft's criterion:

/ / G0,,C2dxdz < 0 —> 0, < 0.
X JZ
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Summary till this point

@ Shear instabilities are apparently not physically intuitive (unlike
buoyancy driven ones).

@ Whether a shear flow is stable/unstable is guided by mathematical
theorems (Rayleigh, Fjgrtoft).

o Counter-propagating waves perspective offers physical insight into
normal-mode instabilities in shear flows. Furthermore it predicts

o ((g) = 0 (from which comes Rayleigh's inflexion point theorem).
° <UCq> < 0 (from which comes Fjgrtoft's criterion).

Heifetz & Guha (JFM 2017) Summer School on Buoyancy Driven Flows 17 June 2017 17 / 23



Summary till this point

e Two conserved wave activities, pseudo-momentum (PM) and
pseudo-energy (PE) for general (Boussinesq stratified) shear flow are
stated. They are 0 for normal-mode instabilities.

o Rayleigh’s and Fjgrtoft’s criteria are imprinted in PM and PE
respectively.

o The condition for mutual wave amplification (hence Rayleigh's
theorem) comes from the vanishing of PM for normal mode instability.

e The condition for counter-propagation and hence phase-locking (and
hence Fjgrtoft's criterion) is derived from the vanishing of PE.
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Canonical Hamiltonian formalism - single interface

Figure 7: A vorticity-density interface

C_Iz = _Uzz = AC—705(Z - ZO)a N2 = ANgé(Z - ZO)‘

Interfacial Rossby/vorticity-gravity wave dispersion relation

AG AGo\> AN
cizUo—ﬂ:I:BO, where ,805\/<ﬂ> + v
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Canonical Hamiltonian formalism - single interface

¢ — q eigen-structure of the normal modes is determined by the
requirement that their spatial structure should not change with time. ( —gq
can be divided into kernels, each kernel should conserve its structure.

q = e"[G5 (1) + do (1)]6(z — 20), ¢=e™ [ () +¢ (D], (4)
G =aplo:  ap =2k(cy — o). (5)
Expressing waves' displacements in terms of their amplitudes and phases:
oo+
(o =2Zye"0,  xg(t)=(5 — ), (6)
where kqﬁoi, are the phases of the waves at t = 0.
Substitute (4) and (5) in PM and PE expressions to obtain:
Po = —kBo(Z§)? + kBo(Zy ) = P + Py, (7)
and

= —(cP)g — (cP)y = (xP)g + (xP)q - (8)
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Canonical Hamiltonian formalism

J is not a function of the wave phases. Furthermore, the waves are

neutral with constant amplitude. Thus (7)-(8) yield the canonical
Hamilton's equations:

oty . A
0

, —F=-Py=0
IXs 0 J

The idea can be extended to two (and also multiple) interfaces:

2
A =" [(xP)" +(xP) ],

2 o o
0 ax+ ox~ :
:Z[ ( Xi)P++( Xi>P_] —_PE  p=12
dxn =i Oxn Oxn j
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Summary of the Hamiltonian formalism

@ Equations of interacting waves in stratified shear flows become the
canonical Hamilton equations.

@ Pseudo-energy serves as the Hamiltonian of the system.

@ The contributions of each wave to the pseudo-momentum are the
generalized momenta.

@ The the waves' phases, scaled by the wavenumber, are the generalized
coordinates.
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Thank you!
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