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Superfluid Helium

Heike Kamerlingh-Onnes
using the
compressor Piotr Leonidovich Kapitza Jack Allen

Noble prize 1913.

“for his investigation of

the properties of matter at

low temperature which led

to the production of liquid

Helium”.

liquified He at T=4.2 K

in July 10, 1908.

K-O & coworkers in 1924

discovered density charge

at T=2.18 K.

Noble prize 1978.

“for his inventions and

discoveries in the area of

low-temperature Physics”.

P.L. Kapitza in Mascow

discovered and named in

1937.

and his student Donald
Missener

independently discovered
superfluidity in
Cambridge’s lab.
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Superfluid Helium (4He)

The He II can be described as macroscopic wavefunction Ψ = |Ψ|e iφ ⇒ velocity∼ ∇φ.

The vortices are quantized ∮
Vs · dS = n

h

2m4

= nκ.

Every vortex has the same circulation (κ = 9.97 × 10−8m2 − sec−1).
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Quantum vortices in the experiments

Bewely, Lathrop, Sreenivasan, Nature 441, 558 (2006).
Fonda et al., PNAS 111, 4653 (2014).

Paoletti et al., J. Phys. Soc. Japan 77, (2008).
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Quantum Turbulence
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Turbulence in a superfluid was predicted first by Richard Feynman in 1955 and found experimentally (in

counterflow 4He) by Henry Hall and Joe Vinen in 1956.
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The turbulence in normal fluid and superfluid

Normal fluid

Energy injection at large scale generates the large eddies.
Non-linear interaction helps to generate the smaller and
smaller eddies until energy dissipates at the viscous scale.
The smaller eddies (small k) interact with one another and
produces the smaller eddies (with large k) with high strain and
shear that dissipates the energy into heat.

Superfluid fluid

The vortex core is fixed in size and there is no viscous losses.
Bundles of nearly parallel vortex lines form.
The energy from one vortex lines to another vortex lines is
transmitted through the vortex reconnections.
The Reconnection generates the Kelvin wave which due to the
nonlinear interaction generates the higher and higher
wavenumbers until they loose the energy due to the emission
of the phonon modes.BDF17@ICTS Superfluid turbulence in a channel



Counterflow turbulence

Two states: TI-Superfluid:turbulent; Normal:laminar.
T2-both component becomes turbulent.

Hall and Vinen Proc. Roy. Soc. A 238, 204-214 (1956).
Guo etal. Phys. Rev. Lett. 105, 045301 (2010).

Guo etal. PNAS 111, 4653 (2014).
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Experimental results

TI state: Low vortex line density (vn laminar, vs turbulent); TII
state: High vortex line density state (Both turbulent).

W. F. Vinen, Proc. R. Soc.. Lon. A, 243, 400 (1958).
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The Gross-Pitaevskii model

iℏ
∂ψ

∂t
= − ℏ

2

2m
∇2ψ + gψ|ψ|2 − µψ (GPE )

Macroscopic wave function: ψ =
√
ρexp(iφ(r , t)).

p̂ = iℏ∇ → vs =
ℏ

m4
∇φ→ curlvs = 0

Density ρ = |ψ|2, Velocity v=(ℏ/m)∇φ

∂ρ

∂t
+∇ · (ρv) = 0 (continuity)

ρ

(

∂vj
∂t

+ vk
∂vj
∂xk

)

= − ∂p

∂xj
+
∂
∑

jk

∂xk
(almostEuler)

Pressure p = g
2m2 ρ

2, Quantum stress
∑

jk =
(

ℏ

2m

)2
ρ ∂2lnρ
∂xj∂xk

.

At length scale larger than ξ = (ℏ2/mµ)1/2 neglect
∑

jk and recover
compressible Euler.
∑

jk is responsible for vortex reconnections.BDF17@ICTS Superfluid turbulence in a channel



The vortex Filament model

Neglect density variation and GPE reduces to incompressible
Euler.
Assume vortex as a thin filament Euler reduces to Biot-Savart
law for space curve s(t):

Vsnolocal(s(i ,j ,k)) =
κ

4π

∫

C

(s1 − s(i ,j ,k))× ds1

|s1 − s(i ,j ,k)|3

Reconnections performed by using particular scheme.
(Schwarz PRB 1988).
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Vortex filament dynamics in presence of normal component
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Must take account of: two-fluid behaviour, at least at high temperature.

Rotation of superfluid component is possible only through the presence of the quantized vortex lines,
circulation.

Mutual friction fD = −γ0κ̂ × [κ̂ × (vn − vL)] + γ′
0κ̂ × (vn − vL).

Magnus effect fm = ρsκκ̂ × (vL − vs ).

Balance of forces fD + fm = 0

viscosity of normal fluid: very small for 4He.

Hence fD = −αρsκκ̂ × [κ̂ × (vn − vs )] − α′ρsκκ̂ × (vn − vs ).

vL = vs + ακ̂ × (vn − vs ) − α′κ̂ × [κ̂ × (vn − vs )] if α, α′ ≪ 1, vL ≈ vs . (where vL = ds
dt

)
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Different Length scales of turbulence

Normal fluid vs. superfluid at T → 0 limit:
-Normal fluid kinematic viscosity ν 6= 0 vs. ν ≡ 0 in superfluids.
-Two scales in normal fluids: Outer scale L and dissipative
microscale η ≪ L.
-Two additional scales in superfluids due to quantization of vortex
lines:

a: Vortex core diameter a0 ≃ 1Å b:inter-vortex distance ℓ c: Outer scale L

Vortex tangle at large scale. Another interesting quantity vortex line
density L.
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Two-fluid theoretical model of Turbulence

Lev Davidovich Landau
E. Andronikashvili

Laszlo Tizsa

Noble prize 1962.

“for his pioneering theories for condensed matter especially liquid Helium. In particular, he quantized in 1941 the
Tisza-1940 two-fluid model and suggested Andronikashvilii’s 1946 experiment on oscillating in HeII discs. Its period
and damping measures densities of superfluid, ρn and normal, ρs , components:

ρn
∂un

∂t
+ ρn(un · ∇)un = −

ρn

ρ
∇pn − ρsS∇T + Fns + η∆un ,

ρs
∂us

∂t
+ ρs (us · ∇)us = −

ρs

ρ
∇ps + ρsS∇T − Fns .

S-entropy, T-temperature and Fns - mutual friction.
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Hall-Vinen-Bekarevich-Khalatnikov Coarse-grained
equations

In hydrodynamic region of the scales R ≫ ℓ one can neglect the quantization of vortex lines and make use of the

coarse-grained two fluid equation for velocities of the superfluid and normal components us and un with the

densities ρs and ρn and pressures ps and pn :

ρs

[

∂us
∂t

+ (us · ∇)us

]

−∇ps = −Fns , ps =
ρs
ρ
[p − ρn|us − un|2],

ρn

[

∂un
∂t

+ (un · ∇)un

]

−∇pn = ρnν △ un+Fns , pn =
ρn
ρ
[p+ρs |us−un|2],

The above equations are coupled by the mutual friction between the superlfuid and normal fluid components:

Fns = −ρsα′(us − un)× ωs + αω̂s × [ωs × (us − un)] ≈ αρsκL(us − un).

L : Average vortex length per unit volume.

The dynamical equations are not closed. Another equation for vortex line density L is required!
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Phenomenological equation for L (Vinen 1957)

dL
dt

= P(t)−D(t).

Production term P(t) ∝ α-The growth of L due to the extension of the vortex rings by mutual friction,
which is caused by the relative velocity between the normal and super component (Vns ).

Decay term, D(t) ∝ α is again caused by the mutual friction.

Dimensional reasoning:
Pcl = ακL2F (x), ([κ]=m2/sec, [L]=m−2)
Dcl = ακL2G (x).
F (x) and G (x): dimensionless Functions with x = V 2

ns/κ
2L

Earlier suggestions (Vinen 1956, 1957):
P1 = αC1L3/2 for F (x) = x1/2

P2 = αC2LV 2
ns/κ for F (x) = x ;

Dcl = αCdecκL2 for G (x) = 1
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Dynamics of vortex line density (L) in inhomogeneous
channel

Consider the condition in which normal component is laminar
and superfluid is turbulent.

There is inhomoegeneity in the normal flow.

It imposes the inhomogeneous distribution of the tangle in the
box.
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Dynamics of vortex line density in inhomogeneous channel

The vortex line density equation (L:)

∂L(y , t)
∂t

+
∂Jcl(y , t)

∂y
= P3(y , t)−Dcl(y , t) ,

The extra term vortex-line density flux J is added which will be

suggested from our model to have the form as:

Jcl(y , t) = −Cflux(α/2κ)Vns · ∇Vs

We propose the third form of P [corresponding to non-dimensional
F (x) ∝ x3/2]:

P3 = αCprod

√
LV 3

ns/κ
2.

The above dynamical equation may serve the future studies for wall
bounded superfluid turbulence.
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Starting from the first principles: Analytical results

Dynamics of Vortex segment

s’

ξ  s (  ,t)i

i−1 ξ  s    (  ,t)

s’’s’x

s’’

x

y
o

z

∆ξ

dδξ/(δξdt) ≈ αVns · (s′ × s
′′
) .

s(ξ, t) : Coordinate of the quantized vortex lines parameterized by the arc length ξ; s′ = ds/dξ, s′′ = d2s/dξ2.
The counterflow Vns is

Vns = V
n − V

s
, V

s
= V

s
0 + VBS .

V s
0 : Macroscopic potential part of superfluid.

VBS(s) =
κ

4π

∫

C

(s − s1) × ds1

|s − s1|3
⇒ V

s
LIA

+ V
s
nl(s) .

The logarithmically divergent (s1 ⇒ s) can be regularized using vortex core radius a0 and mean vortex line
curvature R = 1/S̄ .

For a0 ≤ |s1 − s| ≤ R:

V
s
LIA = βs

′ × s
′′
, β ≡ (κ/4π)ln(R/a0).
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Microscopic theory of vortex line density (L)
Dynamics of Vortex segment

The nonlocal term V s
nl produced by rest of the configuration C′, with |s1 − s| > R

V
s
nl(s) =

κ

4π

∫

C′

(s − s1) × ds1

|s − s1|3
.

On Integrating over the slice Ω between y and y + δy for all x and z:

dδξ/(δξdt) ≈ αVns · (s′ × s
′′
)

L(y, t) =
∫
CΩ

dξ/Ω.

∂L(y, t)

∂t
+

∂Jnum(y, t)

∂y
= Pnum(y, t) − Dnum(y, t) ,

Flux Term:Jnum(y, t) =
α

Ω

∫
dξ Vns,xs

′
z ,

Production Term:Pnum(y, t) =
α

Ω

∫
dξ (V

n − V
s

0 − V
s

nl
) · (s′ × s

′′
) ,

Decay Term:Dnum(y, t) =
αβ

Ω

∫
dξ |s′′|2 = αβLS̃

2
.
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Numerical simulation using Vortex filament method

Dynamical equation for vortex tangle:

ds

dt
= V

tot
s + αs

′ × (V
ext
n − V

tot
s )

−α
′
s
′ × [s

′ × (Vn − V
tot
s ]

Vs (s): superfluid velocity due to the vortex
tangle; α and α′ : the mutual frictions
parameters; Vn applied external normal
velocity.

Box-size: 0.1cm ×0.05 cm ×0.05 cm.

Boundary condition: no-slip for Vn on the
wall (y); periodic along x and z.

< Vn > = 1.0 cm/sec., 1.2 cm/sec. and 1.5
cm/sec.

Runge-Kutta Fourth order (CFL condition).

T=1.0K, 1.6K, and 1.9K.

Initial condition: 20 random oriented rings

with resolution δξ = 1.6 × 10−3.

Dynamical criteria for the reconnection.
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Numerical results
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Prescribed normal velocity profile- red dash-dotted line.

Resulting normalized counter flow velocity profile- green dash-line.

vortex line density profile (L†(y))- blue solid line.

y
†
= y/h, V

†
= V/

√
< V 2

ns >,L†
= κ

2L/ < V
2
ns > .
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Comparison between the production terms of L
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Pnum(y, t) =
α

Ω

∫
dξ (V

n − V
s

0 − V
s

nl
) · (s′ × s

′′
)

P1 = αC1L3/2
, andP2 = αC2LV

2
ns/κ

P3 = αCprod

√
LV

3
ns/κ

2
.
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Comparison for the Decay of L
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Comparison for the flux of L
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Coupled dynamics of superfluid turbulence

Superfluid component

ds

dt
= Vtot

s + αs′ × (Vext
n − Vtot

s )

−α′s′ × [s′ × (Vn − Vtot
s ]

Vs(s): superfluid velocity due to the vortex tangle; α and α′ : the
mutual frictions parameters; Vn normal velocity.

Normal component

∂Vn(y , t)

∂t
=

dP

dx
+

Fns(y , t)

ρn
+ νn

∂2Vn(y , t)

∂y2

Fns =
ρs
Ω

∫

′

C

(αs ′ × [s ′ × vns ] + α′s ′ × Vns)dξ
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Profile in presence of frozen and dynamic normal
component

Dashed lines: with frozen normal component.

Solid lines: with dynamic normal component.
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Coupled dynamics of superfluid turbulence

Flattening of normal component profile in the middle of
channel.
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Recent experimental observation

Marakov et al., Phys. Rev. B 91, 094503 (2015).

BDF17@ICTS Superfluid turbulence in a channel



Summary and perspectives

We propose inhomogeneous equation for the vortex line
density

∂L
α∂t

− Cflux

2κ
Vns

∂Vs

∂y
=

Cprod

κ2

√
LV 3

ns − CdecκL2.

The vortex line density attains maximum near boundary where
counter flow is minimum.

Profiles for vortex lines density and counter flow velocity
remains same for both frozen and dynamic normal component.

With coupled dynamics the parabolic normal component
profile becomes flat near middle of the box on increase of
external applied pressure (not consistent with the
experimental observation ).

Need to include convective term in the normal component
dynamical equation.
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Thank you for your kind attention!
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