
Turbulent superstructures in Rayleigh-Bénard
convection for varying Prandtl numbers

Ambrish Pandey & Jörg Schumacher

Institut für Thermo- und Fluiddynamik
Technische Universität Ilmenau, Germany

June 16, 2017

Introduction Results Conclusions

1/ 23



Outline

Introduction
Motivation
Equations
Simulation Details

Results
Mean profiles and global transport of heat and momentum
Instantaneous and time-averaged patterns of velocity and temperature
Defects in patterns

Conclusions

Introduction Results Conclusions

2/ 23



Outline

Introduction
Motivation
Equations
Simulation Details

Results
Mean profiles and global transport of heat and momentum
Instantaneous and time-averaged patterns of velocity and temperature
Defects in patterns

Conclusions

Introduction Results Conclusions

3/ 23



Motivation : Solar Granulation and Supergranulation

I Ra & 1022 and Pr . 10−3

I Granules: a physical pattern
covering the surface of the quiet
Sun1

I Diameter of a typical granule is
about 1, 000− 2, 000 km.

I Supergranules are bigger
structures with typical horizontal
scale ∼ 30, 000 km

I Regular patterns at extreme
Rayleigh and Prandtl numbers!

1Rieutord and Rincon, Living Rev. Solar Phys., 7 (2010)
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Cloud Streets over the Bering Sea (NASA’s MODIS Mission)

Ra ∼ 1018 Pr ≈ 0.7

Again! Regular patterns at very high Rayleigh numbers.
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Motivation

Patterns are formed in horizontally extended fully turbulent systems, which we will
call turbulent superstructures.

I Where do these superstructures come from?
I What is their statistical impact?
I To answer these questions, we study the simplest case of thermal convection:

Rayleigh-Bénard convection (RBC).
I A fluid is placed between two horizontal plates, which is heated from below

and cooled from above.

I Turbulent transport of heat and momentum depends on fluid parameters and
imposed temperature gradient.

I We focus on extended system, in which regular patterns will appear after the
turbulent fluctuations are removed (by time-averaging), which are termed as
turbulent superstructures.

I Using direct numerical simulations, we characterize their slow dynamics as a
function of the Prandtl number.
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Governing equations

Conservation of mass, momentum, and internal energy leads to governing
equations of RBC.
Under Boussinesq approximations, these equations are:

∂u
∂t

+ u · ∇u = −
∇p
ρ0

+ αg(T − T0)ẑ + ν∇2u,

∂T
∂t

+ u · ∇T = κ∇2T ,

∇ · u = 0

u(x, y, z) : velocity field
T (x, y, z) : temperature field
p(x, y, z) : pressure field

g : acceleration due to gravity
ν : kinematic viscosity
κ : thermal diffusivity

Important parameters

Ra = αg(∆T )H3

νκ
Pr = ν

κ
Γ = L

H
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Simulation details

I Geometry : Rectangular box of dimensions 25 : 25 : 1
I Velocity BC : No-slip at all the walls
I Temperature BC : Isothermal at top and bottom; adiabatic on sidewalls
I Numerical method : Spectral element solver NEK50002,3

I Pr = 0.021 (mercury), 0.7 (air), 7.0 (water) & Ra = 105

x

z

Y

Figure: Isosurfaces of 〈uz T 〉t=0.5td for Pr = 0.7. Structures are moving upward.

2Fischer, J. Comp. Phys. 133 (1997)
3Scheel, Emran, and Schumacher, New J. Phys. 15 (2013)
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Temperature and velocity profiles

Horizontally-averaged temperature 〈T 〉A,t and rms horizontal velocity

Urms =
√
〈u2

x + u2
y 〉A,t vary strongly near the top and bottom plates.

Enhanced momentum 
transport

conduction profile

Figure: Dashed lines represent thermal boundary thicknesses.

For Pr = 7, 〈T 〉A,t exhibits positive gradient in the bulk, possibly due to plume
overshoot.

Introduction Results Conclusions

10/ 23



Nondimensional heat and momentum transfer

Nusselt number (Nu): A measure of the turbulent heat transfer

Nu(z) =
〈uzT 〉A,t − κ

∂〈T〉A,t
∂z

κ∆T
H

= const,

Nu = 1 +
H

κ∆T
〈uzT 〉V ,t

Reynolds number (Re): A measure of the turbulent momentum transfer

Re =
UH
ν
,

where
U =

√
〈u2

i 〉V ,t

Nu ∼ RaαPrβ , α ≈ 0.25− 0.33 Re ∼ RaγPrζ , γ ≈ 0.42− 0.60

Introduction Results Conclusions

11/ 23



Nondimensional heat and momentum transfer

Nusselt number (Nu): A measure of the turbulent heat transfer

Nu(z) =
〈uzT 〉A,t − κ

∂〈T〉A,t
∂z

κ∆T
H

= const,

Nu = 1 +
H

κ∆T
〈uzT 〉V ,t

Reynolds number (Re): A measure of the turbulent momentum transfer

Re =
UH
ν
,

where
U =

√
〈u2

i 〉V ,t

Nu ∼ RaαPrβ , α ≈ 0.25− 0.33 Re ∼ RaγPrζ , γ ≈ 0.42− 0.60

Introduction Results Conclusions

11/ 23



Turbulent transport

Turbulent heat transport Turbulent momentum transport

Dashed curve: fit from the model of Pandey and Verma (POF 2016, PRE 2016)

Re =
−c4 +

√
c2

4 + 4(c1 − c2)c3Ra/Pr

2(c1 − c2)

The coefficients ci (Ra,Pr) have been determined using simulation data.

Nu(Pr) and Re(Pr) are also consistent with the predictions of GL theory4.
4Grossmann and Lohse, J. Fluid Mech. 407 (2000)
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Time-scales in RBC

I Free-fall time tf = H
uf

= H√
αg(∆T )H

I Diffusion time td = H2

κ
=
√

RaPrtf

I Viscous time tv = H2

ν
=

√
Ra
Pr tf

I Plume detachment time scale5 ∼ tf
I Lagrangian eddy turnover time6 ∼ 10tf

Table: Typical diffusion time scales for Ra = 105

Pr tf td tv
0.021 1.0 45.8 2182
0.7 1.0 264.6 378.0
7 1.0 836.6 119.5

In the following we study dynamics in units of the vertical diffusion time.
5Shi, Emran and Schumacher, J. Fluid Mech. 706 (2012)
6Emran and Schumacher, Phys. Rev. E 82 (2010)
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Temperature field in mid-horizontal plane

〈T (x , y , z = H/2)〉t for Pr = 0.7
Averaging interval centered around the instantaneous snapshot.

Instantaneous Averaged for 0.1 td Averaged for 0.5 td Averaged for 1.0 td

Averaging should be long enough for patters to appear.

Should not be too long to wash out all patterns.

We find that t = 0.5td is the appropriate time scale for subsequent analysis.
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Velocity streamlines and temperature contours for
time-averaged field

Pr = 0.021 Pr = 0.7 Pr = 7

Regular pattern for all Prandtl numbers!
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Vertical velocity field and its Fourier transform

〈uz (x , y , z = H/2)〉t=0.5td

Pr = 0.021 Pr = 0.7 Pr = 7

0

Y

XFFT FFT FFT

Characteristic scales grow with increasing Pr .

Introduction Results Conclusions

16/ 23



Vertical velocity field and its Fourier transform

〈uz (x , y , z = H/2)〉t=0.5td

Pr = 0.021 Pr = 0.7 Pr = 7

0

Y

XFFT FFT FFT

Characteristic scales grow with increasing Pr .

Introduction Results Conclusions

16/ 23



Time-averaged correlation functions
uz (x, y, z) = 〈uz (x, y, z = H/2)〉t=0.5td

Cx
uz (r) =

〈uz (x + r , y, z)uz (x, y, z)〉A,z=H/2

〈u2
z (x, y, z)〉A,z=H/2

Cy
uz (r) =

〈uz (x, y + r , z)uz (x, y, z)〉A,z=H/2

〈u2
z (x, y, z)〉A,z=H/2

θ(x, y, z) = 〈θ(x, y, z = H/2)〉t=0.5td

Cx
θ(r) =

〈θ(x + r , y, z)θ(x, y, z)〉A,z=H/2

〈θ2(x, y, z)〉A,z=H/2

Cy
θ(r) =

〈θ(x, y + r , z)θ(x, y, z)〉A,z=H/2

〈θ2(x, y, z)〉A,z=H/2
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Figure: Solid curves: Cx (r). Dashed curves: Cy (r)

Again scales grow with increasing Pr .
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Defects in patterns

Morris et al.7 observed defects8 in Γ = 78 cell near the onset of convection
(∆T = 1.116∆Tc ).

Disclination

Dislocation

Focus Singularity

We also detect defects in the time-averaged temperature field.
7Morris et al., Phys. Rev. Lett. 77 (1993)
8Bodenschatz et al., Annu. Rev. Fluid Mech. 32 (2000)
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Sliding average of temperature field

Each frame in movies is averaged for half a thermal diffusion time.

Pr = 0.021 Pr = 0.7 Pr = 7

I Defects are detected for all Prandtl numbers.
I Pattern evolves by annihilation and creation of defects.
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Movement of defects for Pr = 0.7

Patterns evolve on a slow time scale of the order of the diffusion time.
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Summary

I We study the characteristics of turbulent superstructures in a large aspect
ratio RBC.

I Performed long-term DNS for Pr = 0.021, 0.7, 7 and Ra = 105 for more than
three vertical diffusion times.

I Pr -dependence of Nu and Re is consistent with results for Γ ≈ 1 RBC.

I Time-averaged fields reveal patterns similar to those for lower Ra.
I Characteristic length scale of these patterns is determined in Fourier space,

and consistent with correlation scale in physical space.
I Typical pattern scale increases with increasing Prandtl number at fixed Ra.

I Defects in the time-averaged patterns are detected for all the Prandtl numbers.
I The defects are annihilated and created on the order of a thermal diffusion

time.

I We are continuing our analysis for larger Rayleigh numbers and smaller
Prandtl numbers (Pr = 0.005).

I We also started to analyze superstructures in the Lagrangian frame of
reference by spectral graph clustering.
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