Turbulent superstructures in Rayleigh-Bénard convection for varying Prandtl numbers

Ambrish Pandey & Jörg Schumacher

Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau, Germany

June 16, 2017

Introduction 000 00

Results

Outline

Introduction

Motivation Equations Simulation Details

Results

Mean profiles and global transport of heat and momentum Instantaneous and time-averaged patterns of velocity and temperature Defects in patterns

Conclusions

Introduction

Results 000 00000 000

Outline

Introduction Motivation

Equations Simulation Details

Results

Mean profiles and global transport of heat and momentum Instantaneous and time-averaged patterns of velocity and temperature Defects in patterns

Conclusions

Introducti	
000	
0	

Results 000 00000 000

Motivation : Solar Granulation and Supergranulation

- $Ra \gtrsim 10^{22}$ and $Pr \lesssim 10^{-3}$
- Granules: a physical pattern covering the surface of the quiet Sun¹
- Diameter of a typical granule is about 1,000 - 2,000 km.
- Supergranules are bigger structures with typical horizontal scale \sim 30,000 km

000

000

Introduction

000

00

¹Rieutord and Rincon, Living Rev. Solar Phys., 7 (2010)

Motivation : Solar Granulation and Supergranulation

- $\textit{Ra} \gtrsim 10^{22}$ and $\textit{Pr} \lesssim 10^{-3}$
- Granules: a physical pattern covering the surface of the quiet Sun¹
- Diameter of a typical granule is about 1,000 - 2,000 km.
- Supergranules are bigger structures with typical horizontal scale ~ 30,000 km
- Regular patterns at extreme Rayleigh and Prandtl numbers!

¹Rieutord and Rincon, Living Rev. Solar Phys., 7 (2010)

Introduction

Results

Cloud Streets over the Bering Sea (NASA's MODIS Mission)

Again! Regular patterns at very high Rayleigh numbers.

0**0**0

Results 000 00000 0000

Cloud Streets over the Bering Sea (NASA's MODIS Mission)

Again! Regular patterns at very high Rayleigh numbers.

Introduction

Results 000 00000 000 Conclusions

CC TECHNISCHE UNIVERSITÄT ILMENAU

5/23

- Where do these superstructures come from?
- What is their statistical impact?
- ► To answer these questions, we study the simplest case of thermal convection: Rayleigh-Bénard convection (RBC).
- A fluid is placed between two horizontal plates, which is heated from below and cooled from above.

- Turbulent transport of heat and momentum depends on fluid parameters and imposed temperature gradient.
- We focus on extended system, in which regular patterns will appear after the turbulent fluctuations are removed (by time-averaging), which are termed as turbulent superstructures.
- Using direct numerical simulations, we characterize their slow dynamics as a function of the Prandtl number.

Introduction	Results	Conclusions	tr
000	000 00000		IECHNISCHE UNIVERSITÄT
õ	000		6/ 2

- Where do these superstructures come from?
- What is their statistical impact?
- ► To answer these questions, we study the simplest case of thermal convection: Rayleigh-Bénard convection (RBC).
- A fluid is placed between two horizontal plates, which is heated from below and cooled from above.

- Turbulent transport of heat and momentum depends on fluid parameters and imposed temperature gradient.
- We focus on extended system, in which regular patterns will appear after the turbulent fluctuations are removed (by time-averaging), which are termed as turbulent superstructures.
- Using direct numerical simulations, we characterize their slow dynamics as a function of the Prandtl number.

Introduction	Results	Conclusions	tr
000	000 00000		TECHNISCHE UNIVERSITAT ILMENAU 6/ 2
×	000		

- Where do these superstructures come from?
- What is their statistical impact?
- ► To answer these questions, we study the simplest case of thermal convection: Rayleigh-Bénard convection (RBC).
- A fluid is placed between two horizontal plates, which is heated from below and cooled from above.

- Turbulent transport of heat and momentum depends on fluid parameters and imposed temperature gradient.
- We focus on extended system, in which regular patterns will appear after the turbulent fluctuations are removed (by time-averaging), which are termed as turbulent superstructures.
- Using direct numerical simulations, we characterize their slow dynamics as a function of the Prandtl number.

Introduction	Results	Conclusions	tr
00 0 0	000 00000		TECHNISCHE UNIVERSITAT
0	000		6/2

- Where do these superstructures come from?
- What is their statistical impact?
- ► To answer these questions, we study the simplest case of thermal convection: Rayleigh-Bénard convection (RBC).
- A fluid is placed between two horizontal plates, which is heated from below and cooled from above.

- Turbulent transport of heat and momentum depends on fluid parameters and imposed temperature gradient.
- We focus on extended system, in which regular patterns will appear after the turbulent fluctuations are removed (by time-averaging), which are termed as turbulent superstructures.
- Using direct numerical simulations, we characterize their slow dynamics as a function of the Prandtl number.

Introduction	Results	Conclusions	tr
000	000		ILMENAU
0	00000		6/ 23

- Where do these superstructures come from?
- What is their statistical impact?
- ► To answer these questions, we study the simplest case of thermal convection: Rayleigh-Bénard convection (RBC).
- A fluid is placed between two horizontal plates, which is heated from below and cooled from above.

- Turbulent transport of heat and momentum depends on fluid parameters and imposed temperature gradient.
- We focus on extended system, in which regular patterns will appear after the turbulent fluctuations are removed (by time-averaging), which are termed as turbulent superstructures.
- Using direct numerical simulations, we characterize their slow dynamics as a function of the Prandtl number.

Introduction	Results	Conclusions	tr
000	000 00000		TECHNISCHE UNIVERSITAT
0	000		6/ 2

Governing equations

Conservation of mass, momentum, and internal energy leads to governing equations of RBC.

Under Boussinesq approximations, these equations are:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\frac{\nabla \rho}{\rho_0} + \alpha g (T - T_0) \hat{z} + \nu \nabla^2 \mathbf{u}, \\ \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T &= \kappa \nabla^2 T, \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

 $\mathbf{u}(x, y, z)$: velocity field T(x, y, z) : temperature field p(x, y, z) : pressure field g: acceleration due to gravity ν : kinematic viscosity

 κ : thermal diffusivity

Governing equations

Conservation of mass, momentum, and internal energy leads to governing equations of RBC.

Under Boussinesq approximations, these equations are:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\frac{\nabla \rho}{\rho_0} + \alpha g (T - T_0) \hat{z} + \nu \nabla^2 \mathbf{u}, \\ \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T &= \kappa \nabla^2 T, \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

 $\mathbf{u}(x, y, z)$: velocity field T(x, y, z): temperature field p(x, y, z): pressure field g : acceleration due to gravity ν : kinematic viscosity

 κ : thermal diffusivity

Simulation details

000

- Geometry : Rectangular box of dimensions 25 : 25 : 1
- Velocity BC : No-slip at all the walls
- Temperature BC : Isothermal at top and bottom; adiabatic on sidewalls
- Numerical method : Spectral element solver NEK5000^{2,3}
- ▶ Pr = 0.021 (mercury), 0.7 (air), 7.0 (water) & Ra = 10⁵

Figure: Isosurfaces of $\langle u_z T \rangle_{t=0.5t_d}$ for Pr = 0.7. Structures are moving upward.

²Fischer, J. Comp. Phys. **133** (1997) ³Scheel, Emran, and Schumacher, New J. Phys. 15 (2013)

Results Conclusions Introduction TECHNISCHE LINIVERSITÄT 000 ILMENAU 8/23 000

Outline

ntroduction Motivation Equations Simulation Details

Results

Mean profiles and global transport of heat and momentum Instantaneous and time-averaged patterns of velocity and temperature Defects in patterns

Conclusions

Introduction

Results 000 00000 000

Temperature and velocity profiles

Horizontally-averaged temperature $\langle T \rangle_{A,t}$ and rms horizontal velocity $U_{\rm rms} = \sqrt{\langle u_x^2 + u_y^2 \rangle_{A,t}}$ vary strongly near the top and bottom plates.

Figure: Dashed lines represent thermal boundary thicknesses.

For Pr = 7, $\langle T \rangle_{A,t}$ exhibits positive gradient in the bulk, possibly due to plume overshoot.

Nondimensional heat and momentum transfer

Nusselt number (Nu): A measure of the turbulent heat transfer

$$Nu(z) = \frac{\langle u_z T \rangle_{A,t} - \kappa \frac{\partial \langle T \rangle_{A,t}}{\partial z}}{\kappa \frac{\Delta T}{H}} = \text{const},$$

$$Nu = 1 + \frac{H}{\kappa \Delta T} \langle u_z T \rangle_{V,t}$$

Reynolds number (Re): A measure of the turbulent momentum transfer

where

$$Re = \frac{UH}{\nu},$$
$$U = \sqrt{\langle u_i^2 \rangle_{V,t}}$$

 $Nu \sim Ra^{\alpha} Pr^{\beta}, \alpha \approx 0.25 - 0.33$ $Re \sim Ra^{\gamma} Pr^{\zeta}, \gamma \approx 0.42 - 0.6$

Nondimensional heat and momentum transfer

Nusselt number (Nu): A measure of the turbulent heat transfer

$$Nu(z) = \frac{\langle u_z T \rangle_{A,t} - \kappa \frac{\partial \langle T \rangle_{A,t}}{\partial z}}{\kappa \frac{\Delta T}{H}} = \text{const},$$

$$Nu = 1 + \frac{H}{\kappa \Delta T} \langle u_z T \rangle_{V,t}$$

Reynolds number (Re): A measure of the turbulent momentum transfer

where

$$Re = \frac{UH}{\nu},$$
$$U = \sqrt{\langle u_i^2 \rangle_{V,t}}$$

 $Nu \sim Ra^{lpha} Pr^{eta}, lpha pprox 0.25 - 0.33$ $Re \sim Ra^{\gamma} Pr^{\zeta}$

$$Re \sim Ra^{\gamma} Pr^{\zeta}, \gamma \approx 0.42 - 0.60$$

Turbulent transport

Dashed curve: fit from the model of Pandey and Verma (POF 2016, PRE 2016)

$$Re = \frac{-c_4 + \sqrt{c_4^2 + 4(c_1 - c_2)c_3Ra/Pt}}{2(c_1 - c_2)}$$

The coefficients *c_i(Ra, Pr)* have been determined using simulation data.

Nu(*Pr*) and *Re*(*Pr*) are also consistent with the predictions of GL theory⁴.

⁴Grossmann and Lohse, J. Fluid Mech. **407** (2000)

Introduction 000 0	Results 00● 00000 000	Conclusions	CC TECHNISCHE UNIVERSITÄT ILMENAU 12	2/ 23
--------------------------	--------------------------------	-------------	---	-------

Turbulent transport

Dashed curve: fit from the model of Pandey and Verma (POF 2016, PRE 2016)

$$Re = \frac{-c_4 + \sqrt{c_4^2 + 4(c_1 - c_2)c_3Ra/Pr}}{2(c_1 - c_2)}$$

The coefficients $c_i(Ra, Pr)$ have been determined using simulation data.

Nu(*Pr*) and *Re*(*Pr*) are also consistent with the predictions of GL theory⁴.

⁴Grossmann and Lohse, J. Fluid Mech. **407** (2000)

Turbulent transport

Dashed curve: fit from the model of Pandey and Verma (POF 2016, PRE 2016)

$$Re = \frac{-c_4 + \sqrt{c_4^2 + 4(c_1 - c_2)c_3Ra/Pr}}{2(c_1 - c_2)}$$

The coefficients $c_i(Ra, Pr)$ have been determined using simulation data.

Nu(Pr) and Re(Pr) are also consistent with the predictions of GL theory⁴.

⁴Grossmann and Lohse, J. Fluid Mech. 407 (2000)

Time-scales in RBC

Free-fall time
$$t_f = \frac{H}{u_f} = \frac{H}{\sqrt{\alpha g(\Delta T)H}}$$

• Diffusion time
$$t_d = \frac{H^2}{\kappa} = \sqrt{RaPr} t_f$$

• Viscous time
$$t_v = \frac{H^2}{\nu} = \sqrt{\frac{Ra}{Pr}} t_f$$

- Plume detachment time scale⁵ ~ t_f
- Lagrangian eddy turnover time⁶ $\sim 10 t_f$

Table: Typical diffusion time scales for $Ra = 10^5$

1.0	
1.0	119.5

In the following we study dynamics in units of the vertical diffusion time.

⁵Shi, Emran and Schumacher, J. Fluid Mech. **706** (2012) ⁶Emran and Schumacher, Phys. Rev. E **82** (2010)

Time-scales in RBC

Free-fall time
$$t_f = \frac{H}{u_f} = \frac{H}{\sqrt{\alpha g(\Delta T)H}}$$

• Diffusion time
$$t_d = \frac{H^2}{\kappa} = \sqrt{RaPr} t_f$$

• Viscous time
$$t_v = \frac{H^2}{\nu} = \sqrt{\frac{Ra}{Pr}} t_f$$

- Plume detachment time scale⁵ ~ t_f
- Lagrangian eddy turnover time⁶ $\sim 10 t_f$

Table: Typical diffusion time scales for $Ra = 10^5$

Pr	t _f	t _d	t _v
0.021	1.0	45.8	2182
0.7	1.0	264.6	378.0
7	1.0	836.6	119.5

In the following we study dynamics in units of the vertical diffusion time.

⁵Shi, Emran and Schumacher, J. Fluid Mech. **706** (2012)
 ⁶Emran and Schumacher, Phys. Rev. E **82** (2010)

Temperature field in mid-horizontal plane

 $\langle T(x, y, z = H/2) \rangle_t$ for Pr = 0.7Averaging interval centered around the instantaneous snapshot.

Averaging should be long enough for patters to appear.

Should not be too long to wash out all patterns.

We find that $t = 0.5t_d$ is the appropriate time scale for subsequent analysis.

Introduction	Results	Conclusions	tri
000	000		TECHNISCHE UNIVERSITA
0	0000		ILMENA
0	000		

14/23

Temperature field in mid-horizontal plane

 $\langle T(x, y, z = H/2) \rangle_t$ for Pr = 0.7Averaging interval centered around the instantaneous snapshot.

Averaging should be long enough for patters to appear.

Should not be too long to wash out all patterns.

We find that $t = 0.5t_d$ is the appropriate time scale for subsequent analysis.

Velocity streamlines and temperature contours for time-averaged field

Regular pattern for all Prandtl numbers!

Results 000 00000 000

Vertical velocity field and its Fourier transform

 $\langle u_z(x, y, z = H/2) \rangle_{t=0.5t_d}$

Characteristic scales grow with increasing Pr.

Introduction	Results	Conclusions	tr
000			TECHNISCHE UNIVERSITAT ILMENAU 16/ 2

Vertical velocity field and its Fourier transform

 $\langle u_z(x, y, z = H/2) \rangle_{t=0.5t_d}$

Characteristic scales grow with increasing Pr.

Introduction	Results	Conclusions	tri
000	000		TECHNISCHE UNIVERSITÄT
0	00000		16/ 2

Time-averaged correlation functions

Figure: Solid curves: $C^{x}(r)$. Dashed curves: $C^{y}(r)$

Again scales grow with increasing Pr

Time-averaged correlation functions

Figure: Solid curves: $C^{x}(r)$. Dashed curves: $C^{y}(r)$

Again scales grow with increasing Pr.

Defects in patterns

Morris et al.⁷ observed defects⁸ in $\Gamma = 78$ cell near the onset of convection $(\Delta T = 1.116\Delta T_c)$.

We also detect defects in the time-averaged temperature field.

⁷Morris et al., Phys. Rev. Lett. 77 (1993)
⁸Bodenschatz et al., Annu. Rev. Fluid Mech. 32 (2000)

Sliding average of temperature field

Each frame in movies is averaged for half a thermal diffusion time.

$$Pr = 0.021$$
 $Pr = 0.7$ $Pr = 7$

- Defects are detected for all Prandtl numbers.
- Pattern evolves by annihilation and creation of defects.

Movement of defects for Pr = 0.7

Patterns evolve on a slow time scale of the order of the diffusion time.

Introduction 000 0 Results 000 00000 000 Conclusions

TECHNISCHE UNIVERSITÄT ILMENAU 20/23

Outline

ntroduction Motivation Equations Simulation Details

Results

Mean profiles and global transport of heat and momentum Instantaneous and time-averaged patterns of velocity and temperature Defects in patterns

Conclusions

Introduction

Results 000 00000 000

- ► We study the characteristics of turbulent superstructures in a large aspect ratio RBC.
- ▶ Performed long-term DNS for Pr = 0.021, 0.7, 7 and $Ra = 10^5$ for more than three vertical diffusion times.
- *Pr*-dependence of *Nu* and *Re* is consistent with results for $\Gamma \approx 1$ RBC.
- ▶ Time-averaged fields reveal patterns similar to those for lower *Ra*.
- Characteristic length scale of these patterns is determined in Fourier space, and consistent with correlation scale in physical space.
- ▶ Typical pattern scale increases with increasing Prandtl number at fixed Ra.
- Defects in the time-averaged patterns are detected for all the Prandtl numbers.
- The defects are annihilated and created on the order of a thermal diffusion time.
- > We are continuing our analysis for larger Rayleigh numbers and smaller Prandtl numbers (Pr = 0.005).
- We also started to analyze superstructures in the Lagrangian frame of reference by spectral graph clustering.

Results Introduction Conclusions TECHNISCHE UNIVERSITÄT 000 II MENAU 00 22/23 000

- ► We study the characteristics of turbulent superstructures in a large aspect ratio RBC.
- ▶ Performed long-term DNS for Pr = 0.021, 0.7, 7 and $Ra = 10^5$ for more than three vertical diffusion times.
- *Pr*-dependence of *Nu* and *Re* is consistent with results for $\Gamma \approx 1$ RBC.
- ► Time-averaged fields reveal patterns similar to those for lower Ra.
- Characteristic length scale of these patterns is determined in Fourier space, and consistent with correlation scale in physical space.
- > Typical pattern scale increases with increasing Prandtl number at fixed *Ra*.
- Defects in the time-averaged patterns are detected for all the Prandtl numbers.
- The defects are annihilated and created on the order of a thermal diffusion time.
- > We are continuing our analysis for larger Rayleigh numbers and smaller Prandtl numbers (Pr = 0.005).
- We also started to analyze superstructures in the Lagrangian frame of reference by spectral graph clustering.

Results Introduction Conclusions TECHNISCHE UNIVERSITÄT 000 II MENAU 00 22/23 000

- ► We study the characteristics of turbulent superstructures in a large aspect ratio RBC.
- ▶ Performed long-term DNS for Pr = 0.021, 0.7, 7 and $Ra = 10^5$ for more than three vertical diffusion times.
- *Pr*-dependence of *Nu* and *Re* is consistent with results for $\Gamma \approx 1$ RBC.
- ► Time-averaged fields reveal patterns similar to those for lower Ra.
- Characteristic length scale of these patterns is determined in Fourier space, and consistent with correlation scale in physical space.
- > Typical pattern scale increases with increasing Prandtl number at fixed *Ra*.
- Defects in the time-averaged patterns are detected for all the Prandtl numbers.
- The defects are annihilated and created on the order of a thermal diffusion time.
- We are continuing our analysis for larger Rayleigh numbers and smaller Prandtl numbers (Pr = 0.005).
- We also started to analyze superstructures in the Lagrangian frame of reference by spectral graph clustering.

Results Introduction Conclusions TECHNISCHE LINIVERSITÄT 000 II MENAU 00 22/23 000

- ► We study the characteristics of turbulent superstructures in a large aspect ratio RBC.
- ▶ Performed long-term DNS for Pr = 0.021, 0.7, 7 and $Ra = 10^5$ for more than three vertical diffusion times.
- *Pr*-dependence of *Nu* and *Re* is consistent with results for $\Gamma \approx 1$ RBC.
- ► Time-averaged fields reveal patterns similar to those for lower Ra.
- Characteristic length scale of these patterns is determined in Fourier space, and consistent with correlation scale in physical space.
- ► Typical pattern scale increases with increasing Prandtl number at fixed *Ra*.
- Defects in the time-averaged patterns are detected for all the Prandtl numbers.
- The defects are annihilated and created on the order of a thermal diffusion time.
- We are continuing our analysis for larger Rayleigh numbers and smaller Prandtl numbers (Pr = 0.005).
- We also started to analyze superstructures in the Lagrangian frame of reference by spectral graph clustering.

th. Results Introduction Conclusions TECHNISCHE UNIVERSITÄT 000 II MENAU 00 22/23 000

Acknowledgement

Computational resources:

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

Large scale project 2017/18.

Financial support: Priority program 1881 on Turbulent Superstructures

Thank You for your attention!

Introduction

Results 000 00000 000

Acknowledgement

Computational resources:

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

Large scale project 2017/18.

Financial support: Priority program 1881 on Turbulent Superstructures

Thank You for your attention!

Results000
00000
0000

