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Modeling levels



Industrial framework
• Need to simulate complex flows

–Multi-components problems (airplane, car)
–Non-homogeneous flows
–High Reynolds numbers
–Multi phase or reacting flows

• Need a result in 1 hour to maximum 1 day
–Research and development tool
–Large number of parameters to investigate

• Limited computational resources
• The cost of the numerical simulations is important

• Need fast and robust methodologies
• Does not have the time to understand the physics.



Research framework
• Restricted to simple (or simplified) geometries 

– Isotropic turbulence (period boundary conditions) 
– Turbulent boundary layer flows 
– Rayleigh-Benard flow 
– Pipe, channel flow, etc. 

• Not limited in time: can afford a one year simulation  
• Access to largest computers (>10 Peta Flops) 
• The cost is not so important 

– The cost is focused in some large simulations 
– The data are accessible to the research community  
– Cost needs to be related to the scientific outcome 

•  Numerical simulation is a tool to understand physics 
•  Need optimized algorithm and accurate results



Industrial and research practices
• Industrial practices

– Most of simulations in steady states (RANS models)
– Unsteady simulations restricted to specific parts of the

flow (URANS,DES, LES)
– Use of robust numerical techniques (usually not

accurate)

• Research practice
– Interest on unsteady flows (turbulence) to understand

the physics
– Increasing popularity and use of DNS and LES
– Intensive research on turbulence models

• Increasing number of LES models since 1980’s
• New development in RANS models (more than 100

models !)



• What is the Reynolds number? 
• Is the flow turbulent? 
• Can I perform a DNS of this flow at reasonable cost? 
• What is the maximum cost (money and time) I can 

afford? 
• Is it important to do unsteady simulations (noise 

emission, ...) ? 
• Do I need statistics at small scales (chemical reactions, 

...)? 

Then, you must do some compromises between the 
accuracy and the cost of your simulation.

How to select your model?



Energy spectrum of turbulent flows
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Energy spectrum of turbulent flows

) km is the inverse of the energy injection scale



Why do we need models
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Why do we need models ?
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RANS modeling
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RANS modeling

) Simulation of the statistical average

) All physical scales are modeled



URANS modeling
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URANS modeling

) Unsteady simulation of the largest scales

) All physical scales are a↵ected by the model



LES modeling
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LES modeling

) Unsteady simulation of large scales

) Modeling of sub-grid scales only



Mid height (Ra = 2·108)

Low 
resolution

High 
resolution

M.S. Emran, J. Schumacher, Fine-scale statistics of temperature and its derivatives in 
convective turbulence. J. Fluid Mech. 611, 13-34 (2008)
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Ø Eddy viscosity type subgrid-scale model:

SGS model

Lagrangian-averaged scale-dependent dynamic model
Bou-Zeid, Meneveau, Parlange, Phys. Fluids 17, 025105 (2005)

Large Eddy Simulations (LES)



Direct Numerical Simulations (DNS)



Navier-Stokes equations for 
incompressible flow

Conservation of momentum 

Conservation of mass 

4 equations for 4 unknowns (3 velocity components and 
pressure) 

Closed system of equations for given initial and boundary 
conditions



Scaling of the smallest eddies

Example

Low Re consistent with dominance 
of viscous dissipations 



Required spatial resolution



Required spatial resolution



Required spatial resolution



Required spatial resolution



Required spatial resolution



Taylor-based Reynolds number

Data points

Dimensional analysis 

Recent results might 
be marginally 
resolved.

A. Celani, Journal of Turbulence, The frontiers of computing in turbulence: 
challenges and perspectives 8, 2007
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Kaneda et al. 2003 DNS 40963
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Largest DNS of Isotropic turbulence

DNS 40963 gris points Kaneda et al.[?]



Yeung et al. 2015 DNS 81923



Ishihara, Morishita, Yokokawa, Uno, 
Kaneda 2016 DNS 122883



How much CPU time is required?
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Remember

How much CPU time is required?



Development supercomputers



www.top500.org, November 2016

Top supercomputers



Taylor-based Reynolds number
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Numerical methods
– Second order central finite difference 

– Energy conserving 
– Better for sharp shocks 
– Easier, more complex physics can be 

incorporated 
– Efficient, suitable for massively parallel 

machines. 

– Pseudo spectral 
– Higher accuracy for given number degrees of 

freedom 
– Requires periodic boundary conditions



AFiD: An universal Navier-Stokes 
solver for wall-bounded flow

R. Verzicco & P. Orlandi, A finite-difference scheme for three-dimensional 
incompressible flow in cylindrical coordinates, J. Comput. Phys. 123, 
402–413 (1996) 

E. P. van der Poel, R. Ostilla-Monico, J. Donners, & R. Verzicco, 
A pencil distributed finite difference code for strongly turbulent wall-
bounded flows, Computers and Fluids 166, 10-16 (2015). 

R. Ostilla-Monico, Y. Yang, E. P. van der Poel, D. Lohse, R. Verzicco, A 
multiple–resolution strategy for Direct Numerical Simulation of scalar 
turbulence, J. Computational Physics 301, 308-321 (2015). 

X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. 
Ostilla-Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J.A.M. 
Stevens, AFiD-GPU: a versatile Navier-Stokes Solver for Wall-Bounded 
Turbulent Flows on GPU Clusters, Submitted to Computer Physics 
Communications (2017).



AFiD code for wall bounded turbulence
- Direct numerical simulation of Navier-Stokes equations, no turbulence modeling

- Spatial discretization: 2nd order finite differences

- Temporal discretization: mixed explicit & implicit treatment of some terms

- Pressure correction method: must solve Poisson equation exactly (most expensive!)

Taylor-Couette flow

Double Diffusive convection

Thermal convectionThermal convection
Double diffusive 

convection Taylor-Couette 
flow
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Simulations performed on state of the 
art supercomputers

SuperMuc (Germany) 
Marconi (Italy) 
Piz Daint (Switzerland) 
Cartesius (Netherlands) 
Archer (Great Britain)

3 out of 5 fastest 
supercomputers in 
Europe



Rayleigh-Bénard convection
Control parameters
Aspect ratio

Hot

Cold

Prandtl number
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van der Poel et al. Computers & Fluids 116 (2015) 10–16 



Convection patterns in very large domains



Full domain Zoom 64 times

Convection patterns in very large domains



Rayleigh-Bénard convection

Hot

Cold



Rayleigh-Bénard convection
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Rayleigh-Bénard convection

Hot

Cold



Rayleigh-Bénard convection

Hot

Cold



Massively parallel supercomputer

Kirk W. Cameron, Rong Ge, Xizhou Feng, High-Performance, Power-Aware Distributed 
Computing for Scientific Application,Computer, vol. 38, no. , pp. 40-47, November 2005



OpenMP versus MPI
OpenMP 
•Pro’s 

– Relatively easy to implement 
– Incremental on a loop per loop basis 

•Con’s 
– Works only on shared memory architecture 

(typically max 32 cores) 

MPI 
•Pro’s 

– Works for all systems  
– up to an arbitrary number of cores 

•Con’s 
– More work to implement





Rayleigh-Bénard convection
Control parameters
Aspect ratio
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Rayleigh-Bénard convection



Introduce the following dimensionless parameters

Rayleigh-Bénard convection
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Rayleigh-Bénard convection



Introduce the following dimensionless parameters

Rayleigh-Bénard convection



Rayleigh-Bénard convection



With

Rayleigh-Bénard convection



With

Rayleigh-Bénard convection



Navier-Stokes equations with Boussinesq approximation 
and additional equation for temperature

Two horizontal periodic directions (y-z), vertical direction (x) is wall-
bounded 
Mesh is equally spaced in the horizontal directions, stretched in the vertical 
direction

With

AFiD code for wall bounded turbulence



AFiD code: Numerical scheme

Conservative centered finite 
difference 

• Staggered grid  
• Fractional step 

• Time marching: low-storage RK3 

(Verzicco and Orlandi, JCP 1996) 

(Orlandi, Fluid Flow Phenomena)



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step 

At each sub-step:

AFiD code: Numerical scheme
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AFiD code: Numerical scheme

H - Explicit terms



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step 

At each sub-step:

AFiD code: Numerical scheme

H - Explicit terms Ai - Viscous 
terms in 
different 
computational 
direction 



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step

At each sub-step:

AFiD code: Numerical scheme

H - Explicit terms Ai - Viscous 
terms in 
different 
computational 
direction 

Gradient 
operator



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step

At each sub-step:

AFiD code: Numerical scheme

H - Explicit terms Ai - Viscous 
terms in 
different 
computational 
direction 

Gradient 
operator

u* intermediate, non-solenoidal velocity field u



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step 

At each sub-step:

AFiD code: Numerical scheme

H - Explicit terms Ai - Viscous 
terms in 
different 
computational 
direction 

Gradient 
operator

u* intermediate, non-solenoidal velocity field u

Time integration coefficients: depend on the used scheme



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step

At each sub-step:

2) Pressure correction is calculated solving the following Poisson equation

AFiD code: Numerical scheme



1) Intermediate non-solenoidal velocity field is calculated using non-
linear, viscous, buoyancy and pressure at the current time sub-step 

At each sub-step:

2) Pressure correction is calculated solving the following Poisson equation

3) The velocity and pressure are then updated using:

Making uj+1 divergence free

AFiD code: Numerical scheme



AFiD code: Parallel implementation
• For large Ra numbers (large temperature difference), the implicit 

integration of the viscous terms in the horizontal directions 
becomes unnecessary (prevents solving tridiagonal matrices in the 
horizontal directions) 

• This simplifies the parallel implementation: 

• Only the Poisson solver requires global communication 

• The code uses a pencil-type decomposition, more general than a 

slab-type one

• The pencil decomposition is based on the Decomp2D library  

www.2decomp.org)



AFiD code: Poisson solver

• The solution of the Poisson equation is always the critical part in
incompressible solvers

• Direct solver:
• Fourier decomposition in the horizontal plane
• Tridiagonal solver in the normal direction



AFiD code: Poisson solver

1) FFT the r.h.s  along y – (b)  (from real NX x NY x NZ to complex NX x (NY+1)/2 x NZ) 

2) FFT the r.h.s. along z – (c)  (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ ) 

3) Solve tridiagonal system in x for each y and z wavenumber - (a) 

4) Inverse FFT the solution along z – (c)  (from complex NX x (NY+1)/2 x NZ to complex NX x (NY+1)/2 x NZ ) 

5) Inverse FFT the solution along y – (b) (from complex NX x (NY+1)/2 x NZ to real NX x NY x NZ)

physical upper bound of Nu ! Ra1=2 [43], indicating that for the
mild assumptions made, the criteria c 6 1=2 is always satisfied.
This signifies that the scaling of Dtu"ru is more restrictive than
Dtmr2u, which results in that using only the non-linear CFL con-
straint in the time-marching algorithm, inherently satisfies the sta-
bility constraints imposed by the explicit integration of the
horizontal components of the viscous terms. Including the vertical
non-uniform grid in this derivation makes this statement even
more valid, as the used CFL time step is based on this grid (Eq.
(9)). Inherent to the big-O-notation is the absorption of the coeffi-
cients and offsets. This makes this derivation only valid for high Ra
flows. For low Ra, the solver will be unstable the viscous constraint
is not satisfied in this regime.

In addition, we note that the previous analysis can be applied
for the scalar (temperature) equation as long as Pr ! Oð1Þ.
If Pr % 1, which is the case in some applications, the CFL con-
straint on the horizontal conductive terms becomes Dtjr2T !

O Pr
1
2Ra

1
2ðDyÞ2

! "
, which means a stricter restriction on the time-

step than Eq. (13). This means that the Ra of the flow required to
make Dtu"ru 6 Dtjr2T will be higher.

5. Code parallelization

In the previous section, we reasoned that for large Ra the impli-
cit integration of the viscous terms in the horizontal direction
becomes unnecessary. The calculation becomes local in space as
the two horizontal directions no longer require implicit solvers
to calculate the intermediate velocity field u&. In this case it is
worth decomposing the domain such that the pencils are aligned
in the wall-normal (x) direction, i.e. that every processor possesses
data from x1 to xN (cf. Fig. 4). Halo updates must still be performed
during the computation of u&, but this memory distribution com-
pletely eliminates all the all-to-all communications associated to
the viscous implicit solvers, as for every pair ðy; zÞ, a single proces-
sor has the full x information, and is able to solve the implicit equa-
tion in x for the pair ðy; zÞ without further communication.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. As the two
wall-parallel directions are homogeneous and periodic, it is natural
to solve the Poisson equation using a Fourier decomposition in two
dimensions. Fourier transforming variables / and the right side in
Eq. (5) reduces the pressure correction equation to:
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where F ð"Þ denotes the 2D Fourier transform operator, and xy;j and
xz;k denote the j-th and k-th modified wavenumbers in y and z
direction respectively, defined as:
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and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
x , the left hand side

of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
complexity. Due to the domain decomposition, several data trans-
poses must be performed during the computation of the equation.
The algorithm for solving the Poisson equation is as follows:

1. Calculate ðDu&Þ=ðalDtÞ from the x-decomposed velocities.
2. Transpose the result of (1) from a x-decomposition to a

y-decomposition.
3. Perform a real-to-complex Fourier transform on (2) in the y

direction.
4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z direction.
6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system of Eq. (15) with a tridiagonal solver

in the x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform on

(8) in z direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transform on (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs / in real space, decomposed in x-oriented
pencils, ready for applying in Eqs. (7) and (8). Once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.

14 E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16



AFiD code: Poisson solver
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5) Inverse FFT the solution along y – (b) (from complex NX x (NY+1)/2 x NZ to real NX x NY x NZ)
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and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
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of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
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The last step outputs / in real space, decomposed in x-oriented
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puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.
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I/O: HDF5 

FFT: FFTW (guru plan) 

Linear algebra: 
BLAS+LAPACK 

Distributed memory: MPI, 
2DDecomp with additional 
x-z and z-x transpose

I/O: HDF5 

FFT: CUFFT 

Linear algebra: custom 
kernels 

Distributed memory: MPI, 
2DDecomp with improved 
x-z and z-x transpose 

Manycore: CUDA Fortran

AFiD Code — Libraries

CPU GPU

Available through Github on 
www.afid.eu
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Scaling of AFiD code

CPU

GPU



Compensated Nusselt Number

Γ =0.5, Pr=0.7

Niemela 
et al. (2000)

Chavanne 
et al. (2001)

Experiments

Funfschilling 
et al. (2009)



Compensated Nusselt Number

Γ =0.5, Pr=0.7

Amati et al. 
(2005)

Simulations

Niemela 
et al. (2000)

Chavanne 
et al. (2001)

Experiments

Funfschilling 
et al. (2009)



Compensated Nusselt Number

Γ =0.5, Pr=0.7
Stevens et al. 
(2009)

Niemela 
et al. (2000)

Chavanne 
et al. (2001)

Experiments

Simulations
Amati et al. 
(2005)

Funfschilling 
et al. (2009)



Rayleigh Bénard convection: 
Direct numerical Simulations

2701x671x2501

Stevens, Verzicco, Lohse, JFM 643, 495–507 (2010) 
Stevens, Lohse, Verzicco, JFM 688, 31-43 (2011)

3D flow



Ra = 2!1012 

Pr = 0.7 

 Γ = 0.5 

3D

Largest DNS
3D flow



Simulation details for Ra = 2 x 1012

• grid = Nϕ x Nr X Nz = 2701 x 671 x 2501 
• 107 DEISA CPU hours = 1000 years! 
    (devoted machine in Stuttgart) 
• corresponds to 750 Huygens cores 
• Upscaling presently limited by ratio  

#cores/ Nz

2012



Grid resolution
Smallest scales must be resolved, i.e. the Kolmogorov (velocity scale) 
and the Batchelor scale (temperature scale) have to be fully resolved.

Stevens, Verzicco, Lohse, JFM 643, 495–507 (2010).



How to verify resolution?
• Check whether the relevant length scales are properly 

resolved by calculating them from the kinetic and thermal 
dissipation rates. 

• Kinetic energy dissipation rate 

• Thermal energy dissipation rate 

• These can be checked from exact analytic relationships



Derivation of exact relations: 
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Derivation of exact relations:



Derivation of exact relations:



Check relations in simulations



Dissipation rates (Ra = 2·109) 



Dissipation rates (Ra = 2·109) 



Dissipation rates (Ra = 2·109) 



Sketch of grid



Movies at Ra = 2·109 (midheight)

Low resolution High resolution



PDF locations



Mid height (Ra = 2·108)

3000 T

M.S. Emran, J. Schumacher, Fine-scale statistics of temperature and its derivatives in 
convective turbulence. J. Fluid Mech. 611, 13-34 (2008)



Mid height (Ra = 2·108)

1600 T

3000 T

M.S. Emran, J. Schumacher, Fine-scale statistics of temperature and its derivatives in 
convective turbulence. J. Fluid Mech. 611, 13-34 (2008)



Mid height (Ra = 2·108)

Low 
resolution

High 
resolution

M.S. Emran, J. Schumacher, Fine-scale statistics of temperature and its derivatives in 
convective turbulence. J. Fluid Mech. 611, 13-34 (2008)



New resolution criteria
Following Grötzbach (1983) we get

But not on the average grid size d=(D1D2D3)1/3 , but 
by each grid dimension D1, D2, D3 simultaneously!
Number of grid points in the boundary layer should be

Stevens, Verzicco, Lohse, J. Fluid Mech. 643, 495-507 (2010). 
Shishkina, Stevens, Grossmann, Lohse, New J. Phys. 12, 075022 (2010).



Boundary layer resolution
Number of grid 
points in the 
boundary layer 
should be

Stevens, Verzicco, Lohse, J. Fluid Mech. 643, 495-507 (2010). 
Shishkina, Stevens, Grossmann, Lohse, New J. Phys. 12, 075022 (2010).

For higher Ra this 
can easily be 20 or 
more, instead of 
the fixed value of 
3-5 recommended 
by Grotzbach



Stevens et al. 
(2010-2011)

Funfschilling 
et al. (2010)E

N

E=Experiments, N=Numerics

RB convection (Γ=0.5)
Niemela 
et al. (2000)

Chavanne 
et al. (2001)E

E

5•106 CPU hours 

Stevens, Verzicco, Lohse, J. Fluid Mech. 643, 495-507 (2010).



Why is there a discrepancy between 
experiments?

• Prandtl number effect, i.e. different fluid properties

Stevens, Lohse, Verzicco, J. Fluid Mech. 688, 31-43 (2011).



Why is there a discrepancy between 
experiments?

• Prandtl number effect, i.e. different fluid properties 
– Simulations confirm theoretical prediction that Nu becomes 

independent of Pr for high Ra

Increasing Ra
Stevens, Lohse, Verzicco, J. Fluid Mech. 688, 31-43 (2011).



Why is there a discrepancy between 
experiments?

• Prandtl number effect, i.e. different fluid properties 
• Constant temperature versus constant heat flux 

boundary condition at the bottom plate 

Constant 
temperature

Constant heat 
flux

Stevens, Lohse, Verzicco, J. Fluid Mech. 688, 31-43 (2011).



R. Ostilla-Monico et al. / Journal of Computational Physics 301 (2015) 308–321 309

Fig. 1. A horizontal plane halfway between the plates for a Rayleigh–Bénard simulation in a Cartesian geometry at Ra = 1010 and Prandtl number Pr = 1. 
(a) Vertical velocity, red indicating rising fluid while blue indicates falling fluid, (b) temperature, red indicating hot fluid and blue indicating cold fluid. 
Even though the Prandtl number is one, much sharper gradients can be seen in the right panel. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 2. (a) Instantaneous θ and uz profiles as a function of the vertical coordinate z/L for Ra = 1010, Pr = 1 RB simulation. (b) PDF of ∂zθ and ∂zuz for the 
same simulation in the bulk.

than the smallest among them: This requirement quickly renders DNS infeasible. Denoting as ηK the smallest (Kolmogorov) 
scale of the momentum field, we can calculate the analogous quantity for a scalar field S as ηB = ηK /Sc1/2, also called 

the Batchelor scale, with Sc = ν/κS the Schmidt number defined as the ratio of the kinematic viscosity ν and the scalar 
diffusivity κS , respectively. In some cases, like sugar in water, the Schmidt number exceeds 103 resulting in a Batchelor 
scale of ηB ≃ ηK /30. With equal grid resolutions for the scalar and the momentum fields, this entails that the momentum 

field is overresolved by a factor of approximately 30 in each spatial direction. The problem is exacerbated by the fact that a 

scalar is described by only a single quantity, while momentum is a vector field satisfying the incompressibility condition or 
other related constraints. This implies that the solution of the momentum alone generally takes an order of 90% of the total 
CPU time of a simulation and therefore resolving it on an unnecessary fine mesh is not desirable.

The above scenario, essentially derived from dimensional analysis, does not give the complete picture since it does not 
account for the structure of the equations. In fact, the naïve comparison between the Kolmogorov and Batchelor scales 
suggests that for Sc ≈ 1, ηK ≃ ηB although in practice the resolution requirements for the momentum and the scalar fields 
are not the same. Visual evidence of the latter statement can be obtained from the instantaneous snapshots of Fig. 1 showing 

horizontal cross-sections of temperature and vertical velocity in a thermally driven turbulent flow, the Rayleigh–Bénard (RB) 
problem, i.e. the flow between two parallel plates heated from above and cooled from below. In RB flow, the fluid hotter than 

the average temperature (0.5 in nondimensional units) generates upward buoyancy and therefore positive vertical velocity 

(and vice versa). Although the two fields are very well correlated on the large scales, the sharp fronts of the scalar field do 

not have an analogous counterpart in the momentum distribution and this results in a different resolution requirement for 
scalar and momentum fields.

For a fully resolved DNS, the momentum gradients must be adequately captured so that the dissipative scale (and thus 
vorticity) is adequately resolved. Analogously, the scalar (temperature) gradients must be correctly captured so that the 

diffusive scale (and thus the scalar variance) is adequately resolved. We quantify the difference in gradients between scalars 
and momentum in Fig. 2(a) by showing instantaneous temperature θ and vertical velocity uz profiles across a vertical line 

from a doubly periodic Rayleigh–Bénard simulation: much steeper gradients can be seen in the temperature (scalar) field. 
These steep gradients are smoother in the vertical velocity and this lowers the resolution requirements of momentum with 

respect to those of scalars. This observation is further corroborated by Fig. 2(b) showing the probability density functions 
of ∂zθ and ∂zuz computed in the bulk of the flow without the boundary layers. Extreme gradients can be seen to be more 

likely for θ thus evidencing a more intermittent behaviour. This behaviour has been extensively studied in experiments 

DNS for scalar turbulence requires care: sharp 
gradients!

R. Ostilla-Monico et al. / Journal of Computational Physics 301 (2015) 308–321 309

Fig. 1. A horizontal plane halfway between the plates for a Rayleigh–Bénard simulation in a Cartesian geometry at Ra = 1010 and Prandtl number Pr = 1. 
(a) Vertical velocity, red indicating rising fluid while blue indicates falling fluid, (b) temperature, red indicating hot fluid and blue indicating cold fluid. 
Even though the Prandtl number is one, much sharper gradients can be seen in the right panel. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 2. (a) Instantaneous θ and uz profiles as a function of the vertical coordinate z/L for Ra = 1010, Pr = 1 RB simulation. (b) PDF of ∂zθ and ∂zuz for the 
same simulation in the bulk.

than the smallest among them: This requirement quickly renders DNS infeasible. Denoting as ηK the smallest (Kolmogorov) 
scale of the momentum field, we can calculate the analogous quantity for a scalar field S as ηB = ηK /Sc1/2, also called 

the Batchelor scale, with Sc = ν/κS the Schmidt number defined as the ratio of the kinematic viscosity ν and the scalar 
diffusivity κS , respectively. In some cases, like sugar in water, the Schmidt number exceeds 103 resulting in a Batchelor 
scale of ηB ≃ ηK /30. With equal grid resolutions for the scalar and the momentum fields, this entails that the momentum 

field is overresolved by a factor of approximately 30 in each spatial direction. The problem is exacerbated by the fact that a 

scalar is described by only a single quantity, while momentum is a vector field satisfying the incompressibility condition or 
other related constraints. This implies that the solution of the momentum alone generally takes an order of 90% of the total 
CPU time of a simulation and therefore resolving it on an unnecessary fine mesh is not desirable.

The above scenario, essentially derived from dimensional analysis, does not give the complete picture since it does not 
account for the structure of the equations. In fact, the naïve comparison between the Kolmogorov and Batchelor scales 
suggests that for Sc ≈ 1, ηK ≃ ηB although in practice the resolution requirements for the momentum and the scalar fields 
are not the same. Visual evidence of the latter statement can be obtained from the instantaneous snapshots of Fig. 1 showing 

horizontal cross-sections of temperature and vertical velocity in a thermally driven turbulent flow, the Rayleigh–Bénard (RB) 
problem, i.e. the flow between two parallel plates heated from above and cooled from below. In RB flow, the fluid hotter than 

the average temperature (0.5 in nondimensional units) generates upward buoyancy and therefore positive vertical velocity 

(and vice versa). Although the two fields are very well correlated on the large scales, the sharp fronts of the scalar field do 

not have an analogous counterpart in the momentum distribution and this results in a different resolution requirement for 
scalar and momentum fields.

For a fully resolved DNS, the momentum gradients must be adequately captured so that the dissipative scale (and thus 
vorticity) is adequately resolved. Analogously, the scalar (temperature) gradients must be correctly captured so that the 

diffusive scale (and thus the scalar variance) is adequately resolved. We quantify the difference in gradients between scalars 
and momentum in Fig. 2(a) by showing instantaneous temperature θ and vertical velocity uz profiles across a vertical line 

from a doubly periodic Rayleigh–Bénard simulation: much steeper gradients can be seen in the temperature (scalar) field. 
These steep gradients are smoother in the vertical velocity and this lowers the resolution requirements of momentum with 

respect to those of scalars. This observation is further corroborated by Fig. 2(b) showing the probability density functions 
of ∂zθ and ∂zuz computed in the bulk of the flow without the boundary layers. Extreme gradients can be seen to be more 

likely for θ thus evidencing a more intermittent behaviour. This behaviour has been extensively studied in experiments 

Velocity field Scalar field

Even if the diffusivities are equal (Pr = 1), 
temperature shows much sharper fronts



• Interpolation techniques for velocity in space 

• Needs also sub-time stepping integration due to 
stability constraints

Different grids for scalar and 
momentum



Refined scalar field resolution

Savings from 2x CPU time for Pr~1 to 4x CPU time for high Pr 

Reduces memory use by 3x for medium-size problems

Normal grid Refined grid



Double diffusive convection

RaS = 1 x 1011

salinity

z/L = 0.5

z/L = 0.1

z/L = 0.9

by Yantao Yang



Double diffusive convection

RaS = 1 x 1011

salinity

Schmitt et al., Science 308, 685 (2005)



Rotating convection Bubbly convection



Rotating convection 
Similar approach for other flows

Bubbly or particle-laden flows

Bubbles and particles are convected by the fluid and they back-
react with a force.

Lagrangians are also coupled to the fluid through temperature

Depending on the regime. Lagrangians can enhance or
suppress turbulence.

Bubbly convection

by Rajaram Lakkaraju



Taylor-Couette flow



Taylor-Couette flow



Taylor-Couette flow

by Rodolfo Ostilla and Xiaojue Zhu 



Understanding multi-component/phase flows

van Gils et al., JFM (2013)

Bubbly Taylor-Couette flow

Two-phase Taylor-Couette flow



Two-phase Taylor-Couette simulation

by Vamsi Spandan



Deformability of bodies immersed in a flow

Air bubbles Boat sails
Red blood cells

• Bubble/drop laden turbulent flows - atmosphere, oceans

• Flapping, bending bodies - flags, boat sails

• Biological flows - blood flow, heart-valves

HeartSailsBubbles


