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Abstract
In this paper, we describe the recent developments in the field of buoyancy-driven turbulencewith a
focus on energy spectrum andflux. Scaling and numerical arguments show that the stably-stratified
turbulencewithmoderate stratification has kinetic energy spectrum ~ -E k ku

11 5( ) and the kinetic
energyfluxP ~ -k ku

4 5( ) , which is called Bolgiano-Obukhov scaling. However, for Prandtl number
near unity, the energy flux for the three-dimensional Rayleigh–Bénard convection (RBC) is
approximately constant in the inertial range that results inKolmorogorv’s spectrum ( ~ -E k ku

5 3( ) )
for the kinetic energy. The phenomenology of RBC should apply to otherflowswhere the buoyancy
feeds the kinetic energy, e.g. bubbly turbulence and fully-developedRayleigh Taylor instability. This
paper also covers severalmodels that predict the Reynolds andNusselt numbers of RBC. Recent works
show that the viscous dissipation rate of RBC scales as~Ra1.3, where Ra is the Rayleigh number.

1. Introduction

Gravity pervades thewhole universe, and it plays a dominant role in the flowdynamics of the interiors and
atmospheres of planets and stars. The gravitational force also affects the engineering flow, e.g., in large turbines.
Therefore, understanding the physics of buoyancy-driven turbulence is quite crucial.

Hydrodynamic turbulence is described quite well by Kolmogorov’s theory [50] according towhich the
energy spectrum (E(k)) in the inertial range is described by

= P -E k K k , 1Ko
2 3 5 3( ) ( )

whereKKo is the Kolmogorov’s constant, andΠ is the energy flux or energy cascade rate, which is assumed to be
constant in the inertial range. InKolmogorov’s phenomenology for hydrodynamic turbulence, the flow is forced
at large length scales. However in buoyancy-driven flows, the buoyancy provides forcing at all length scales,
hence the kinetic energy fluxPu is expected to be a function of wavenumber k. Bolgiano [11] andObukhov [81]
exploited this idea to derive energy spectrum for stably-stratified turbulence (SST); their scaling arguments yield
P ~ -k ku

4 5( ) , and the kinetic energy spectrum ~ -E k ku
11 5( ) . Here the kinetic energy is converted to

potential energy that leads to decrease of P k( )with k. Procaccia andZeitak [89], L’vov [65], L’vov and Falkovich
[66], andRubinstein [91] argued that the scaling of Bolgiano [11] andObukhov [81]would extend to the
thermally-driven turbulence aswell. Kumar et al [53] however showed that in turbulent convection, the
buoyancy feeds the kinetic energy, hence P ku( ) cannot decrease with k, and Bolgiano-Obukhov’s arguments are
not valid for thermally-driven turbulence. Using a detailed analysis, Kumar et al [53] showed that turbulent
thermal convection showsKolmogorov’s -k 5 3 energy spectrum.

Strong gravitymakes the flow anisotropic. Surprisingly the turbulent flow inRayleigh–Bénard convection
(RBC) is nearly isotropic [75], while the SST is nearly isotropic whenRichardson number is less than unity [53].
The stably-stratifiedflows become quasi two-dimensional for larger Richardson numbers. For RBC the large-
scale quantities like Reynolds andNusselt numbers exhibit interesting scaling relations.

In this paperwe describe the recent results of the field, with focus on spectral properties of buoyancy-driven
turbulence. Refer to the review articles [2, 8, 29, 63, 98] formore comprehensive discussion on various topics of
RBC.We introduce the governing equation and systemdescription in section 2.We cover recent development
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on energy spectrum andflux in section 3, and scaling of large-scale quantities in section 4. Section 5 contains a
brief description of the dynamics offlow reversal.We conclude in section 6.

2. Systemdescription

In this sectionwe describe the the buoyancy-driven systems and their associated equations.

2.1. Equations underOberbeck–Boussinesq approximation
Consider fluid between two layers separated by distance dwith the bottomdensity at rb and the top density at rt

(see figure 1). Clearly thefluid is under the influence of an external density stratification. Under equilibrium
condition, the density profile is

r r
r

r
r r

= + = +
-

z
z

z
d

z
d

d
. 2b b

t b¯ ( ) ¯ ( )

Wedenote r z¯ ( ) as themean density profile.Withfluctuations, the local density rl (subscript l stands for local) is

r r r= +x y z x y z, , , , . 3l ( ) ¯ ( ) ( )

The gravitational force on a unit volume is r- gzl ˆ, where-gẑ is the acceleration due to gravity. Hence the
gravitational force density on thefluid is

òr r r r r= - = - + = -  ¢ ¢ -g z g z g z z gzF d . 4g l

z( )ˆ ( ¯ ) ˆ ¯ ( ) ˆ ( )

The force rgẑ occurring due to the change in density from the local value is the buoyancy. It is along-ẑ
(downward) for r > 0, but along ẑ (upward) for r < 0 (see figure 1).

Thefluid flow is described by theNavier–Stokes equation

⎡
⎣⎢

⎤
⎦⎥r m

¶
¶

+  = - + +  +
t

p
u

u u F u f , 5l g u
2( · ) ( )

where pu, are the velocity and pressure fields respectively,μ is the dynamic viscosity of the fluid, and fu is the
external force in addition to the buoyancy. Substitution of equation (4) in equation (5) yields

⎡
⎣⎢

⎤
⎦⎥r s r m

¶
¶

+  = - - + 
t

gz
u

u u u, 6l
2( · ) ˆ ( )

where

òs r= + ¢ ¢p g z zd 7
z

¯ ( ) ( )

is themodified pressure.
The continuity equation for the density is

r
r k r

¶
¶

+  =  
t

u , 8l
l l· ( ) · ( ) ( )

whereκ is the diffusivity of the density.We assume thatκ is constant in space and time.We can rewrite
equation (8) as

Figure 1. Schematic diagrams for the idealized setup of stably stratified system andRayleigh–Bénard convection (RBC): (a) In stably
stratified setup, a lighterfluid sits on top of a heavierfluid ( r <zd d 0¯ ). (b) In RBC, heavier (colder)fluid is on top of lighter (hotter)
fluid, thus r >zd d 0¯ .
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r
r

r
k r = - + 

t
u

1 d

d

1
. 9

l

l

l
l

2· ( )

Nowwe employOberbeck–Boussinesq approximation according towhich r r »td d 0l l( ) . Hence the relative
magnitude of  u· is

r
k r

k
»  » =

U L

L

U UL

u 1

Pe
, 10

l
l

2· ( )

where L U, are the large length and velocity scales respectively, and Pe is the Péclet number.Hence for large Pe,
which is often the case for buoyancy-driven flows, we can assume that  =u 0· . Therefore, under the
Oberbeck–Boussinesq approximation, equation (8) gets simplified. In addition, we replace rl of equation (6)
with themean density of the fluid, rm. Hence the governing equations for the buoyancy-driven flows are

r
s

r
r

n
¶
¶

+  = -  - +  +
t

gz
u

u u u f
1

, 11
m m

u
2( · ) ˆ ( )

r
r

r
k r

¶
¶

+  = - + 
t z

uu
d

d
, 12z

2( · ) ¯ ( )

where n m r= m is the kinematic viscosity. The assumption that n k, are constants in space and time is also
considered to be a part of theOberbeck–Boussinesq approximation. Also note that the buoyancy term,which is
a function of variable density, is retained in theNavier–Stokes equation since it is comparable to the other terms
of themomentum equation (see section 2.9). In the SST, the total energy decays without fu, hence fu is employed
tomaintain a steady state.

Note that the system is stable when heavyfluid is below the lighter fluid, or r <zd d 0¯ (see figure 1(a)). Such
systems yield wave solution in the linear limit. On the contrary, when heavyfluid is above the lighterfluid,
r >zd d 0¯ and theflowbecomes unstable and convective (see figure 1(b)).

Temperature fieldT induces density variation in the followingmanner:

r r a= - -T T1 , 13l b b[ ( )] ( )

whereα is the thermal expansion coefficient, which is assumed to be constant in space and time.Hencewe can
rewrite equations (11), (12) in terms of the temperature field. Let us consider a fluid confined between two
thermally-conducting horizontal plates kept at constant temperatures, as shown infigure 1(b).We denote the
temperatures of the bottom and top plates to beTb andTt respectively, andD = -T Tb t .

Thermal convection is absent for smallΔ. Under this condition, the temperature profile is linear as

= + = -
-

T z T
T

z
z T

T T

d
z

d

d
, 14b b

b t¯ ( )
¯

( )

and the heat is transported by conduction. This configuration has nofluctuation, i.e., =u 0 and r = 0. The
flowhowever becomes unstable and convective whenΔ exceeds a certain critical value. For suchflows it is
customary towrite the temperature as

q= +T x y z T z x y z, , , , , 15( ) ¯ ( ) ( ) ( )

where θ is the temperature fluctuation over the background conduction profile T̄ . The equations (3), (13), (15)
yield

r r aq
r

a= - = -
z

T

z
;

d

d

d

d
, 16m

¯ ¯
( )

substitution of which in equations (11), (12) yields the following set of governing equations:

r
s a q n

¶
¶

+  = -  + + 
t

g z
u

u u u
1

, 17
m

2( · ) ˆ ( )

q
q k q

¶
¶

+  = - + 
t

T

z
uu

d

d
, 18z

2( · )
¯

( )

 =u 0. 19· ( )

The abovefluid configuration underOberbeck–Boussinesq approximation is called RBC. Theflowdynamics of
RBC is described by equations (17)–(19).

2.2. Nondimensionalized equations
Fluidflows are conveniently described by nondimensional equations since they capture relative strengths of
various terms of the equations. Also, they help reduce the number of parameters of the system,which is quite
useful for analysis, as well as for the numerical simulations and experiments. Equations (11), (12) have been
nondimensionalized in variousways.Here, we present two such schemes.Whenwe use d as the length scale,
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k d as the velocity scale, kd2 as the time scale, and r r rD = -b t∣ ∣as the density scale, we obtain the following
nondimensional equations:

s r
¶
¶

+  = - - + 
t

z
u

u u uRa Pr Pr , 202( · ) ˆ ( )

r
r r

¶
¶

+  = - + 
t

Suu , 21z
2( · ) ( )

where r r r D( ), and
n
k

=Prandtl number Pr , 22( )

r
nkr

=
Dgd

Rayleigh number Ra , 23
m

3

( )

r
r

=
D

S
d

z
Normalized density gradient

d

d
. 24

¯ ( )

For the stably-stratifiedflows, = -S 1, but S=1 for RBC.Using equation (16)we canwrite the above equation
in terms of temperature field as follows:

s q
¶
¶

+  = - + + 
t

z
u

u u uRa Pr Pr 252( · ) ˆ ( )

q
q q

¶
¶

+  = + 
t

Suu , 26z
2( · ) ( )

for which

a
nk

=
Dg d

Ra , 27
3

( )

whereΔ is the temperature difference between the bottom and top plates, as defined earlier. Note however that
for large Ra, the aforementioned nondimensional velocity becomes very large (~ Ra Pr ) [38, 116] that
becomes an obstacle for numerical simulations due to very small time-steps. Hence, in numerical simulations, it
is customary to employ a Dg d as the velocity scale, which yields the following set of equations:

s q
¶
¶

+  = - + + 
t

z
u

u u u
Pr

Ra
, 282( · ) ˆ ( )

q
q q

¶
¶

+  = + 
t

Suu
1

Ra Pr
. 29z

2( · ) ( )

For stably-stratifiedflows, researchers often employ dimensional equations, butwith density converted to
units of velocity by a transformation [61]

r
r

=b
g

N
, 30

m

( )

where

r
r

=N
g

z

d

d
31

m

¯ ( )

is the Brunt-Väisälä frequency. In terms of the above variables, the equations become

s n
¶
¶

+  = - - + 
t

Nbz
u

u u u, 322( · ) ˆ ( )

k
¶
¶

+  = + 
b

t
b Nu bu . 33z

2( · ) ( )

The other important nondimensional parameters used for describing the buoyancy-driven flows are

n
=

u d
Reynolds number Re , 34rms ( )

=
u

dN
Froude number Fr , 35rms ( )

= =
Nb

u d
Richardson number Ri

1

Fr
, 36rms

rms
2 2

( )

where u b,rms rms are respectively the rms velocity and the rms value of b. Note that the Richardson number is the
ratio of the buoyancy and the nonlinearity u u( · ) . Another important nondimensional parameter for RBC is

4
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theNusselt number Nu, which is the ratio of the total heatflux (convective plus conductive) and the conductive
heatflux, and is computed using the following formula:

k q
k

=
D + á ñ

D
d u

d
Nu . 37z ( )

2.3. Boundary conditions
For the velocity fieldwe employ the following set of boundary conditions:

(i) No-slip: All the components of the velocity field vanish at thewalls, i.e., =u 0.

(ii) Free-slip: At a wall, the normal component of the velocity field vanishes, i.e., =nu 0· ˆ , and the gradient of
the parallel components of the velocity vanishes, i.e., ¶ ¶ =u n 0.

(iii) Periodic: The velocity is periodic, i.e., + + + =lL x mL y nL zu x u xx y z( ˆ ˆ ˆ) ( ), where l m n, , are integers,
and the box is of the size ´ ´L L Lx y z .

For the temperaturefield, the typical boundary condition used are

(i) Conducting : Uniform temperature field at thewalls, i.e., q = 0.

(ii) Insulating: The temperature flux at thewall is zero, i.e., q¶ ¶ =n 0.

(iii) Periodic: The temperature fluctuation is periodic, i.e., q q+ + + =lL x mL y nL zx xx y z( ˆ ˆ ˆ) ( ).

2.4. Exact relations
Equations (11), (12) are nonlinear, and hence researchers have not been able towrite down general analytic
solutions for them.However, Shraiman and Siggia [97]derived the following exact relations of the viscous
dissipation rate (u) and the thermal dissipation rate (T) for RBCflows:

 n w
n

= á ñ =
-

d

Nu 1 Ra

Pr
, 38u

2
3

4 2

( ) ( )

 k k= á  ñ =
D

T
d

Nu, 39T
2

2

2
( ) ( )

where w =  ´ u. Also, in the idealized limit of n k= = 0, using equations (32), (33), we deduce that the
total energy

ò= E u b r
1

2
d 402 2( ) ( )

is conserved for periodic and vanishing boundary conditions. In the above, the positive sign is for the stably-
stratifiedflow,while the negative sign for the RBC. A stably-stratifiedflow is stable, for which the u 22 and b 22

terms are the the kinetic and potential energies respectively, analogous to a harmonic oscillator. In RBC, the
conserved quantity is alsowritten as ò a q-u g T z drd d 22 2[ ( ¯ )] , where q 22 is called entropy. Note that q 22

is not the thermodynamic entropy that quantifies the degree of disorder at themicroscopic scales.
It is convenient to describe behaviour of turbulent flows in spectral or Fourier space since it captures the

scale-by-scale energy and interactions quite well. In the next subsection, we describe the definitions used for
such descriptions.

2.5. Equations in Fourier space
We rewrite equations (17)–(19) in the Fourier space as

⎜ ⎟⎛
⎝

⎞
⎠ ån

s
r

a q

+ =- -

+
= +t

k u t k
t

k u t u t

g t z

k
k

q p

k

d

d
, i

,
i , ,

, , 41

i i
m

j j i
k p q

2 ( ) ( ) ( ) ( )

( ) ˆ ( )

⎜ ⎟⎛
⎝

⎞
⎠ åk q q+ = - -

= +t
k t

T

z
u t k u t tk k q p

d

d
,

d

d
, i , , , 42z j j

k p q

2 ( )
¯

ˆ ( ) ( ) ( ) ( )

=k u tk, 0. 43i i ( ) ( )

In the above equations, i represents two things: -1 in front of the s rk tk,i m( ) term, and =i x y z, , in ui.
Note that ku( ), s k( ), and q k( ) are the Fourier transforms of su, , and θ, respectively. The above equations are
in terms of θ, but we can easily convert them as a function of ρ.
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In the Fourier space,Eu(k) denotes the kinetic energy spectrum, which is the sumof the kinetic energies of all
themodes in a given shell -k k1,( ]. Similarly we define the spectra for the entropy and potential energy, which
are denoted by qE k( ) andEb(k) respectively. They are computed using the following formulas:


å= ¢

- < ¢
E k u k

1

2
, 44u

k k k1

2( ) ∣ ( )∣ ( )


å q= ¢q

- < ¢
E k k

1

2
, 45

k k k1

2( ) ∣ ( )∣ ( )


å= ¢

- < ¢
E k b k

1

2
. 46b

k k k1

2( ) ∣ ( )∣ ( )

2.6. Linear and nonlinear regimes
The behavior of buoyancy driven flows depends on the parameters and dimensionality. Herewe present a bird’s-
eye view of the observed states of RBC and stably-stratifiedflows.

2.6.1. RBC
It can be easily shown that equations (25), (26) yield a unstable solution at =Ra Rac, with p=Ra 27 4c

4 for the
free-slip boundary condition, and »Ra 1708c for the no-slip boundary condition [23]. The unstable solutions
are the convective rolls. For Ra just above the onset, the instability saturates due to nonlinearity leading to the
roll solutions. At larger Ra, the nonlinearity yields patterns and chaos [5, 17, 23, 67, 73, 83]. For even larger
nonlinearity, spatio-temporal chaos, weak turbulence, and strong turbulence emerge [67]. In this paperwewill
focus on only the strong turbulence regime.

2.6.2. Stably-stratified flow
For = -S 1, the linearised version of equations (20), (21) yields internal gravity waveswhose dispersion relation
is

w =
k̂

k
N , 47( )

where = +k̂ k kx y
2 2 is thewavenumber component perpendicular to the buoyancy direction. Clearly w = N

for =k 0. These internal gravity waves persist for weak nonlinearity and inviscid case (n k= = 0). Strong
nonlinearity has two kinds of generic behaviour: Strong stratification ( Fr 1) suppresses the flow along the
buoyancy direction and yields a quasi two-dimensional (2D) stratifiedflow; on the other hand,moderate and
weak stratification (Fr 1⪆ ) yields near isotropic turbulent flows. For »Fr 1, Kumar et al [53] obtained
Bolgiano-Obukhov [11, 81] scaling as predicted (to be described in section 3.3.1). In this paperwe focus on the
Fr 1⪆ regime.

2.7. Temperature profile and related equations
In this subsectionwe derive the properties of temperature fluctuations of RBC. For convenience weworkwith
nondimensional variables.

Experiments and numerical simulations of RBC reveal that the horizontally averaged temperatureTm(z)
remains approximately a constant (»1 2) in the bulk, and its value drops sharply in the thermal boundary layers
[34, 95], as shown in figure 2. The quantitative expression for = á ñT z Tm xy( ) can be approximated as

⎧

⎨
⎪⎪

⎩
⎪⎪

d
d

d d

d
d

=

- < <

< < -
-

- < <

T z

z
z

z
z

z

1
2

for 0 ,

1 2 for 1 ,
1

2
for 1 1,

48m

T
T

T T

T
T

( ) ( )

where dT is the thickness of the thermal boundary layer, and áñxy represents averaging over the xy planes. A
horizontal averaging of equation (15) yields q = + -z T z z 1m m( ) ( ) , and hence q zm ( ) is
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⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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q
d

d

d d

d
d

=

- < <

- < < -

- - - < <

z

z z

z z

z z

1
1

2
for 0

1 2 for 1

1 1
1

2
for 1 1

49m

T
T

T T

T
T

( )

( )

( )

as exhibited infigure 2. For thin thermal boundary layers, q k0, 0,m z( ), which is the Fourier transformof q zm ( ),
is dominated by the contributions from the bulk.Hence

⎧
⎨⎪
⎩⎪

ò

ò

q q p

p

p

=

» -

»
-

k z k z z

z k z z

k
k

0, 0, sin d

1 2 sin d

1
for even

0 otherwise.

50

m z m z

z

z
z

0

1

0

1

( ) ( ) ( )

( ) ( )

( )

The corresponding velocitymode, =u k0, 0, 0z z( ) because of the incompressibility condition
= =k k u kk u 0, 0, 0, 0, 0z z z z· ( ) ( ) . Also, = =u k u k0, 0, 0, 0, 0x z y z( ) ( ) in the absence of ameanflow

along the horizontal direction.Hence for the = kk 0, 0, z( )modes, themomentum equation yields

s
r

a q= - + g
k k

k z0
i

51
0

( ) ( ) ˆ ( )

or s r a q=z z gd dm m0( ) , and the dynamics of the remaining set of Fouriermodes is governed by the
momentum equation as

å s
r

a q n
¶
¶

+ = - + -
+ =t

u g k
u k

k q u p
k k

k z u ki
i

, 52
p q k

res

0
res

2( ) [ · ( )] ( ) ( ) ( ) ˆ ( ) ( )

where

q q q s s s= + = +; . 53m mres res ( )

Hence, themodes q k0, 0,m z( ) and s k0, 0,m z( ) do not couple with the velocitymodes in themomentum
equation, but qres and sres do.

Equation (52) has strong implications on the scaling of the Reynolds andNusselt numbers, whichwill be
discussed in section 4. In addition, the set of Fouriermodes q k0, 0, z( ) of equation (50) yields ~q

-E k k 2( ) . This
issuewill be discussed in section 3.

2.8.Other related systems
Several buoyancy-driven systems can be related to RBC.Here we list some of these systems.

Figure 2.A schematic diagramof the planar-averaged temperature as a function of the vertical coordinate. The temperature drops
sharply to 1/2 in the boundary layers. FromPandey andVerma [85]. Reprintedwith permission fromAIP.
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2.8.1. Rayleigh–Taylor instability (RTI)
Afluid configurationwith a denser fluid above a lighter fluid is unstable. The heavierfluid falls and the lighter
fluid rises. After an initial stage of RTI, the flowdevelops significant nonlinearity and becomes turbulent [24].
Wewill discuss later that the turbulence phenomenology of RTI is similar to that of RBC.

2.8.2. Taylor–Couette flow
Two coaxial rotating cylinders create randomflow at large Taylor number. Thisflowhas been related to RBC
with significant similarities in their phenomenology. SeeGrossmann et al [43] for a review of such flows.

2.8.3. Turbulent exchange flow in a vertical pipe
Arakeri and coworkers [3] performed experiments inwhich aflow in a vertical tube is driven by an unstable
density difference across the tube. They placed a brine solution at the top and distilledwater at the bottom. This
systemhas significant similarities with RBC [3]. Note however that the above systemdoes not havewalls or
boundary layers at the top and bottom; this feature helps us study the ultimate regime quite conveniently.
Exchanging the top and bottom containers will lead to behaviour similar to stably-stratifiedflows.

2.8.4. Bubbly flow
Bubbles are introduced in a tank inwhich turbulence is generated by an active grid [88]. Naturally this system
has certain similarities with RBC.

2.9. Non-Boussinesq flows
TheOberbeck–Boussinesq approximation provides a useful simplification for the analysis offluidflowswith
small temperature difference between the two plates. For example, for water at normal temperature and
pressure, the thermal expansion coefficient a » ´ -2 10 4. Therefore, for a temperature differenceD » 30K,
dr r a» D » -10 2( ) , which is small, thus justifying the imcompressible equation  =u 0· . Also, the
variation of ν andκ for temperature interval of∼10 K is quite negligible. Note however that in equation (25), the
buoyancy term qRa Pr is comparable to the viscous term  uPr 2 . To illustrate, we estimate the ratio of the two
terms near the onset of Rayleigh–Bénard instability for free-slip boundary condition as

q q p


» » »
u k u k k

Ra Pr

Pr

Ra 27

4

1
3. 54rms

2
rms

2
rms

rms

4

2 2
( )

Here p p p= + = +k k 2c
2 2 2 2( ) is themagnitude of thewavenumber associatedwith the convective role

[23], and q »u krms rms
2 along the unstable eigenvector of the stabilitymatrix.We expect the above trend to

continue for large Ra as well, but this issue needs to be investigated in detail. These arguments show that the
Oberbeck–Boussinesq approximation holds good forfluid likewater at normal pressure and temperature for a
temperature difference of order 10°.

WithoutOberbeck–Boussinesq approximation, wewould need to solve the equations for the velocity,
density, and temperaturefields. For further discussion, refer to Ahlers et al [1], Horn et al [46], and Sameen et al
[92]. The above description, called non-Boussinesq convection, is useful in stellar convectionwhere the
temperature difference is too large for theOberbeck–Boussinesq approximation to be valid. This topic, however,
is beyond the scope of this paper.

In the next section, wewill relate the turbulence behaviour of the above systems.

3. Spectra andfluxes of buoyancy-driven turbulence

3.1.Definitions
Wecan derive the time-evolution equation for Eu(k) using equation (11) as [58, 112]

¶
¶

= + + -
E k

t
T k F k F k D k , 55u

u B ext
( ) ( ) ( ) ( ) ( ) ( )

whereTu(k) is the energy transfer rate to the shell k due to nonlinear interaction, and FB(k) and F kext ( ) are the
energy supply rates to the shell from the buoyancy and external forcing fu respectively, i.e.,

R *å r= - á ñ
=

F k g u k k , 56B
k

z
k

( ) ( ) ( ) ( )
∣ ∣

R *å= á ñ
=

F k u k f k . 57
k

u
k

ext ( ) ( ) · ( ) ( )
∣ ∣
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For brevity we set r = 1m . In equation (55),D(k) is the viscous dissipation rate defined by

å n=
=

D k k E k2 . 58
k

u
k

2( ) ( ) ( )
∣ ∣

The kinetic energy (KE)flux P ku 0( ), which is defined as the kinetic energy leaving awavenumber sphere of
radius k0 due to nonlinear interactions, is related to the nonlinear interaction termTu(k) as

òP = -k T k kd . 59u

k

u
0

( ) ( ) ( )

Under a steady state (¶ ¶ =E k t 0u ( ) ), using equations (55) and (59), we deduce that

P = + -
k

k F k F k D k
d

d
60u B ext( ) ( ) ( ) ( ) ( )

or

P + D = P + + - Dk k k F k F k D k k. 61u u B ext( ) ( ) [ ( ) ( ) ( )] ( )

In computer simulations, the KEflux,P ku 0( ), is computed using the following formula [32, 111],

I *


å å dP =
>

+k k u q u k u p . 62u
k k p k

k p q0 ,

0 0

( ) ([ · ( )][ ( ) · ( )]) ( )

Similarly, the potential energy (PE)fluxPr k0( ) is the potential energy leaving awavenumber sphere of radius k0,
which is computed using

I *


å å dP =r
>

+k b bk u q k p , 63
k k p k

k p q0 ,

0 0

( ) ([ · ( )][ ( ) ( )]) ( )

where b is defined in equation (30). For RBC,we replace u and b by nondimensional u and θ respectively.
For amore detailed description of the energy transfers, we divide thewavenumber space into a set of

wavenumber shells. The energy contents of a wavenumber shell of radius k and of unit width is denoted byE(k).
The shell-to-shell energy transfer rate from the velocityfield of themth shell to the velocityfield of the nth shell is
defined as

I *å å d=
Î Î

+T k u q u k u p . 64n
m

n mk p
k p q, ([ · ( )][ ( ) · ( )]) ( )

One of themost interesting problems in the field of buoyancy driven turbulence is the scaling of energy
spectrum andflux [63, 90]. In the next section, wewill review some of the theoretical results obtained for the
aforementioned topic.

3.2. Turbulence phenomenology
3.2.1. Classical Bolgiano-Obukhov scaling for SST
For the inertial range of isotropic hydrodynamic turbulence, Kolmogorov [50]first proposed a phenomenology
according towhich the energy spectrum in the inertial range is independent of the fluid properties and nature of
large-scale forcing.He showed that the one-dimensional energy spectrum = P -E k K kuKo

2 3 5 3( ) in the inertial
range of wavenumbers, whereP ku( ) is the constant energy flux, andKKo is the Kolmogorov’s constant.

Buoyancy (forcing) act at all scales, henceKolmogorov’s theorymay notwork for the buoyancy-driven
turbulence. In this sectionwewill describe how the buoyancy affects the energy spectra andfluxes of the
buoyancy-driven flows. For stable stratification, Bolgiano [11] andObukhov [81] argued that theKE fluxP ku( )
is depleted at different length scales due to the conversion of KE to PE via buoyancy ( ru gz ). Subsequently, P ku( )
decreases with k, andEu(k) is steeper than that predicted byKolmogorov’s theory; we refer to the above asBO
phenomenology or scaling. According to this phenomenology, for  L l LB , buoyancy is important and the
buoyancy term is balanced by the nonlinear term r » g u u[ ( · ) ]. Here LB is the Bolgiano scale [11] and L is the
large length scale or the box size. The force balance at wavenumber =k l1 yields

r »g ku . 65k k
2 ( )

According to BOphenomenology, PE has a constantflux, i.e., rP » »r rkuk k
2 . Hence,

» r
-u g k , 66k

1 5 2 5 3 5 ( )

r » r
- -g k . 67k

2 5 1 5 1 5 ( )

Therefore, the KE spectrum »E k u ku k
2( ) , PE spectrum r»rE k kk

2( ) , andP »k u ku k
3( ) are

= r
-E k c g k , 68u 1

2 5 4 5 11 5( ) ( )

=r r
- -E k c g k , 692

4 5 2 5 7 5( ) ( )
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P = r
-k c g k , 70u 3

3 5 6 5 4 5( ) ( )

P =r rk , 71( ) ( )

where ciʼs are constants. At smaller length scales ( >k kB), where p=k L2B B is the Bolgianowavenumber,
Bolgiano [11] andObukhov [81] argued that the buoyancy is relatively weak, hence Kolmogorov-Obukhov (KO)
scaling is valid in this regime, i.e.,

= -E k K k , 72u uKo
2 3 5 3( ) ( )

 =r r
- -E k K k , 73uBa

1 3 5 3( ) ( )

P =k , 74u u( ) ( )
P =r rk , 75( ) ( )

whereKBa is the Batchelor’s constant. A comparison of P ku( ) of equation (70)with that of equation (74) yields
the crossover wavenumber kB as

 » r
-k g . 76B u

3 2 5 4 3 4 ( )

The associated length, the Bolgiano length, is p=L k2B B( ) .
The scaling relations are also presented using the variables d u l( ) and dq l( ), which are defined as

d = + -u l
l

u x l u x
l

, 77( ) [ ( ) ( )] · ( )

dq q q= + -l x l x , 78( ) ( ) ( ) ( )

and the structure function for the velocity and temperature fluctuations, which are defined as

d= á ñS l u l , 79q
u q( ) [ ( )] ( )

dq= á ñqS l l , 80q
q( ) [ ( )] ( )

where á ñ. represent the ensemble average. Using scaling analysis similar to that given above, it can be derived that
[29]

= á ñrS l g l , 81q
u q q q5 2 5 3 5( ) ( )

= á ñq
r

-S l g l 82q
q q q2 5 5 5( ) ( )

for >l LB, and

= á ñS l l , 83q
u

u
q q3 3( ) ( )

 = á ñ á ñq
r

-S l l 84q u
q q q6 2 3( ) ( )

for <l LB. Note that l correspond to k1 , and d u l uk( ) .
The BOphenomenology implicitly assumes isotropy in Fourier space, which is a tricky assumption. For BO

scaling, the gravitymust be strong enough to compete with the nonlinear term u u· , but not too strong to
make the flowquasi two-dimensional (quasi-2D). This corresponds to »Fr 1 regime. A large number of earlier
explorations in SST have been for Fr 1 regime, see for example, Lindborg [60], Brethouwer et al [14], and
Bartello andTobias [4]. SST can be broadly classified in three regimes. Note that nonlinearity is strong (Re?1)
for turbulent flows.

(i) Weak gravity ( Ri 1): Strong nonlinearity yields behaviour similar to hydrodynamic turbu-
lence ( ~ -E k ku

5 3( ) ).

(ii) Moderate gravity ( »Ri 1): Comparable strengths of gravity and nonlinearity yields nearly isotropic
turbulencewith BO scaling, as described earlier.

(iii) Strong gravity ( Ri 1): Strong gravity makes the flow quasi-2D. Hence the behaviour has similarities with
2Dhydrodynamic turbulence (e.g., inverse cascade of energy). Refer to Lindborg [60], Brethouwer et al [14],
and Bartello andTobias [4] for further details.

3.2.2. Generalization of Bolgiano-Obukhov scaling to RBC
Usingmeanfield theory approximation, Procaccia andZeitak [89] argued that the Bolgiano-Obukhov scaling is
applicable to convective turbulence. Later, L’vov [65] assumed that in convective turbulence, the kinetic energy
is converted to the potential energy and therefore, favored BO scaling. L’vov and Falkovich [66] employed a
differentialmodel for energy and entropyfluxes in k-space and found that the BO scaling is valid for convective
turbulence. Rubinstein [91] employed renormalization group analysis to RBC and observed that the
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renormalized viscosity n ~ -k k 8 5( ) , ~ -E k ku
11 5( ) , and ~r

-E k k 7 5( ) . Based on these observations
Rubinstein claimed BO scaling for RBC. Ching [27, 29] andChing et al [28] studied the structure functions for
the velocity and temperature fluctuations of turbulent convection, and claimed consistencywith Bolgiano-
Obukhov scaling. Ching et al [28] computed the anomalous scaling for the turbulent RBC.

The aforementioned theories had a profound influence in thefield, and a large number of analytical,
experimental, and numerical works have been attempted to verify these ideas. Lohse andXia [63] reviewed
critically if BO scaling is indeed present in RBC; they studied the experimental, theoretical, and numerical results
and argued that it is difficult to conclude the applicability of BO scaling in RBC. Recently Kumar et al [53]
showed that the BO scaling does not describe RBC turbulence since the energy supply by buoyancy in RBC is
very different from that in stably stratifiedflow.Wewill provide these arguments below.

3.2.3. A phenomenological argument based on kinetic energy flux
Kumar et al [53] andVerma et al [114, 115] presented a phenomenological argument based on theKEflux to
derive a spectral theory of buoyancy-driven turbulence. Equation (61) provides important clues on the energy
spectrum andflux of the buoyancy-driven flows.Herewe list three possibilities for the inertial range
( < <k k kf d), where kf is the forcingwavenumber, and kd is the dissipationwavenumber:

(i) For the inertial range of hydrodynamic turbulence, =F k 0B ( ) and D k 0( ) , therefore
P + D » Pk k ku u( ) ( ) and ~ -E k ku

5 3( ) , which is a prediction of theKolmogorov’s theory [50]. Note
that =F k 0ext ( ) in the inertial range.

(ii) For the stably stratified flows, as argued by Bolgiano [11] and Obukhov [81], in the < <k k kf B

wavenumber band, buoyancy converts the kinetic energy of the flow to the potential energy, i.e., <F k 0B ( ) .
Hence, equation (61) predicts thatP ku( )will decrease with k in this wavenumber range, as shown in
figure 3(a). In thewavenumber range, < <k k kB d, buoyancy becomesweaker, hence P »k constantu( ) .

(iii) For RBC in three dimensions, buoyancy feeds the kinetic energy, hence >F k 0B ( ) . Therefore we expect the
KE fluxP ku( ) to increase. Numerical simulation of Kumar et al [53] for =Pr 1and large Ra show that the
energy supplied by buoyancy is dissipated by the viscous force, i.e., »F k D kB ( ) ( ). HenceΠu(k)≈constant
in the inertial range, and they recoveredKolmogorov’s spectrum for RBC for =Pr 1 in 3D.Note that L’vov
[65] argued that <F k 0B ( ) , which is not the case in 3DRBCwith »Pr 1. Note that the nature of energy
flux depends on the space dimensionality and Prandtl number, some ofwhichwill be discussed in
subsequent section.

Figure 3. Schematic diagrams of the kinetic energyflux P ku( ) for the stably stratified system and convective system. (a) In stably
stratified flows, P ku( ) decreases with k due to the negative energy supply rate FB(k). (b) In convective system, >F k 0B ( ) , hence P ku( )
first increases for <k kt where >F k D kB ( ) ( ), then P »k constantu( ) for < <k k kt d where »F k D k ;B ( ) ( ) P ku( ) decreases for
>k kd where <F k D kB ( ) ( ). FromKumar et al [53]. Reprintedwith permission fromAPS.
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The above arguments indicate that the structure functions for the fluctuations of RBC in 3D for »Pr 1may
follow the following scaling relations:

= á ñS l l , 85q
u

u
q q3 3( ) ( )

 = á ñ á ñq
r

-S l l . 86q u
q q q6 2 3( ) ( )

The above relations need to be tested using numerical simulation and experiments.

3.2.4.Modeling and field theory
Researchers [33, 51, 59, 68, 69, 121] employed field-theoretic techniques to understand the physics of turbulent
fluid. Infield theory, the nonlinear terms of the equations are expanded perturbatively. Some of the popular
field-theoretic techniques are direct interaction approximation (DIA) [51, 59], renormalization group analysis
[33, 51, 68, 69, 121], meanfield approximation [89], etc. Field theory has been applied to buoyancy-driven flows
aswell.

As described in section 3.2.2, Procaccia andZeitak [89] employedmeanfield approximation to convective
turbulence and obtained BO scaling. Rubinstein [91] usedYakhot-Orszag’s [121] renormalization group
procedure and proposed an isotropicmodel for convective turbulence. His results are consistent with that of
Procaccia andZeitak [89]. Recently, using self-consistent field theory, Bhattacharjee [7] obtained

~ -E k ku
13 3( ) for RBC in the infinite Prandtl number limit. Bhattacharjee [6] used the global energy balance

for the stratifiedfluid and argued that the BO scaling could be observed in stably stratifiedflow at high
Richardson number. In addition, he also added the possibility of BO scaling for RBC in some range of Prandtl
numbers.

In the next section, wewill present numerical results for the stably stratified turbulence andRBC.

3.3. Numerical analysis of buoyancy-driven turbulence
3.3.1. Stably stratified turbulence
Researchers simulated the SST for the three regimes described in section 3.2.1. First we discuss the results for
strong gravity that corresponds to Ri 1or Fr 1. Such configurations are observed in some regimes of
planetary and stellar atmospheres. Strong gravitymakes suchflows quasi-2Dwith dual scaling, -k 3 and -k 5 3. In
this regime, Lindborg [60], Brethouwer et al [14], and Bartello andTobias [4] showed that the spectra of the
horizontal KE andPE follow ^

-k 5 3 scaling, while the energy spectrumof the vertical velocity follows -
k 3.

Vallgren et al [109] included rotation in their simulation and obtainedKE spectrum as -k 3 and -k 5 3 for two
different wavenumber bands.

Forweak stratification ( Ri 1), Kumar et al [53] performed a 3D SST simulation and reported
Kolmogorov’s spectrum for the kinetic energy as expected. Kumar et al also studied themoderate stratification
regime and reported BO scaling, whichwill be described below. In this paper we focus on the results for »Fr 1
since they have been observed recently.

Kumar et al [53] simulated stably stratifiedflows in a cubical box of size p2 3( ) with periodic boundary
conditions at all thewalls. They forced the small wavenumbermodes randomly to achieve a steady state. The
parameters of their simulations are = ´Ra 5 103 and =Pr 1 that yields =Ri 0.01and =Fr 10. Figure 4(a)
exhibits the normalized KE spectra—E k ku

11 5( ) for the BO scaling, and E k ku
5 3( ) for theKO scaling. The

numerical datafits better with the BO scaling than theKO scaling, thus confirming the BOphenomenology for
the SSTwhen »Fr 1. This is also verified by the PE spectrum as shown infigure 4(b) inwhich rE k k7 5( )
provides a betterfit to the data than rE k k5 3( ) .

Further, Kumar et al [53] computed theKE and PEfluxeswhich are exhibited infigure 5. They observed that
P >k 0u( ) and it decreases with k (equation (70)), while the PEfluxPr is a constant in the inertial range
(equation (71)); thus theflux results are consistent with the BOpredictions. Kumar et al [53] also computed the
energy supply rate by buoyancy, FB(k), and the viscous dissipation spectrum,D(k), which are illustrated in
figure 6.Note that <F k 0B ( ) , as argued in BOphenomenology. The Bolgianowavenumber kB of equation (76)
is approximately 8.5, which is only 3–4 times smaller than kd, thewavenumberwhere the dissipation range
starts. Therefore Kumar et al [53] did not observe a definitive crossover from -k 11 5 to -k 5 3 in their
simulations.

The aforementioned observations demonstrate applicability of the BO scaling for SSTwith amoderate
stratification.

3.3.2. Rayleigh–Bénard convection
A large number of numerical simulations have been performedwith an aim to identify which among the two,
BOorKO, scaling is applicable to RBC [63]. Grossmann and Lohse [37] simulated RBC for =Pr 1under
Fourier–Weierstrass approximation and reportedKolmogorov’s scaling. For on periodic boundary condition,
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Borue andOrszag [12] and Škandera et al [100] reportedKO scaling for the velocity and temperature fields. Kerr
[49] reported the horizontal spectrum as a function of horizontal wavenumber and observedKolmogorov’s
spectrum.Verzicco andCamussi [117], andCamussi andVerzicco [20] showedBO scaling using the frequency
spectrumof real space probe data. Kaczorowski andXia [48] reported KO scaling for the longitudinal velocity
structure functions, but BO scaling for the temperature structure functions in the centre of a cubical cell. Kumar
et al [53] computed Eu(k) and P ku( ), and showedKolmogorov-like behaviour for RBC, i.e., ~ -E k ku

5 3( ) and
P ~k constu( ) . In this paperwe present the above quantities for 40963 resolution and very high Ra that
unambiguously demonstrates KO scaling for RBC.We also report the shell-to-shell energy transfers and the ring
spectrum for RBC that show close resemblance with the hydrodynamic turbulence.

Figure 4. For the stably-stratified turbulencewith =Pr 1, = ´Ra 5 103, and =Fr 10, plots of (a)normalizedKE and (b)PE spectra
for Bolgiano-Obukhov (BO) andKolmogorov-Obukhov (KO) scaling. BO scaling fits better with the data thanKO scaling. From
Kumar et al [53]. Reprintedwith permission fromAPS.

Figure 5. For the stably-stratified turbulencewith =Pr 1, = ´Ra 5 103 and =Fr 10 on 10243 grid, plots of KEflux P ku( ),
normalized KEflux P k ku

4 5( ) , and potential energyflux Pr k( ). The energyfluxes are also consistent with the BOphenomenology.
FromKumar et al [53]. Reprintedwith permission fromAPS.

Figure 6. For the stably-stratified turbulencewith =Pr 1, = ´Ra 5 103, and =Fr 10 on 10243 grid, plots of the energy supply rate
by buoyancy, FB(k), and the dissipation spectrum,D(k).
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Weperformed RBC simulations in a unit boxwith 40963 grid for =Pr 1and = ´Ra 1.1 1011. For the
velocityfield, we employed the free-slip boundary condition at the top and bottomplates, and periodic
boundary condition at the sidewalls. The temperaturefield satisfies conducting boundary condition at the top
and bottomplates, and the periodic boundary condition at the sidewalls.We computed the spectra and fluxes of
the KE and the entropy (q 22 ) using the steady state data. Figure 7(a) exhibits the KE spectra normalizedwith
k11 5 and k5 3. The plots indicate that in thewavenumber band < <k15 600 (inertial range), the shaded region
of the figure, the KO scalingfits better than the BO scaling.

We exhibit the KE and entropy fluxes infigure 7(b).We observe that the kinetic energy fluxP ku( ) remains
constant in the inertial range, a bandwhere ~ -E k ku

5 3( ) . Thuswe claim that the convective turbulence
exhibits Kolmogorov’s power law in the inertial range.We also computed FB(k),P ku( ), and P k kd du( ) as
further tests. According tofigure 8(a) >F k 0B ( ) in the inertial range, consistent with the discussion of
section 3.2.3 andfigure 3(b), and it approximately balancesD(k). Therefore, P »k kd d 0u( ) or
P »k constantu( ) (see equation (60)). The constancy ofP ku( ) yields ~ -E k ku

5 3( ) , consistent with the energy
spectrumplots offigure 7(a). Figure 8(b) shows that P P k k kd d 1u u[ ( ) ] ( ) in the inertial range consistent
with the constantP ku( ). Interestingly, n= ~D k k E k k2 u

2 1 3( ) ( ) , consistent with ~ -E k ku
5 3( ) . Also,

~ -F k kB
5 3( ) . In addition, the entropy flux Pq k( ) is constant, andP » Pqk ku( ) ( ) in dimensionless units.

We also compute the shell-to-shell energy transfers (equation (64)) using the steady-state data of our
simulation.We divide the Fourier space into 40 concentric shells; the inner and outer radii of the nth shell are

-kn 1 and kn respectively with = ´ ¼-k 0, 2, 4, 8, 8 2 , , 6432n
s n 3{ }( ) , where =s 1 35 log 8042( ) ( ). The radii of

the inertial-range shells are binned logarithmically due to the power law physics of RBC in the inertial range. In
figure 9(a)we exhibit the shell-to-shell energy transfers with the indices of the x y, axes representing the receiver
and giver shells respectively. The plot indicates thatmth shell gives energy to +m 1( )th shell, and it receives
energy from the -m 1( ) th shell [111]. Thus the energy transfer in RBC is local and forward, very similar to
hydrodynamic turbulence. This result is consistent with the energy spectrum and flux studies described earlier.

Convective flows are expected to be anisotropic due to buoyancy; hence it is important to quantify
anisotropy using the quantities that are dependent on the polar angle, the angle between ẑ and k . For the same,

Figure 7. For the RBC simulationwith =Pr 1 and = ´Ra 1.1 1011 on 40963 grid: (a)plots of normalizedKE spectra for Bolgiano-
Obukhov (BO) andKolmogorov-Obukhov (KO) scaling; KO scaling fits better with the data than BO scaling. (b)KE flux P ku( ) and
entropy flux Pq k( ). The shaded region exhibits the inertial range.

Figure 8. For the RBC simulationwith =Pr 1 and = ´Ra 1.1 1011: (a) plots of FB(k) andD(k). (b) plots of P Pk k kd du u[ ( ) ] ( ) in
the inertial range < <k15 600.
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wedivide awavenumber shell into rings [75]. The energy contents of the rings are called ring spectrum bE k,( ),
whereβ represents the sector index for the polar angles (for details seeNath et al [75]). The ring spectrum

bE k,( ), depicted infigure 9(b), shows that the flow is nearly isotropic, again similar to hydrodynamic
turbulence. These results clearly demonstrate that the turbulent convection for =Pr 1has a very similar
behavior as hydrodynamic turbulence.

The temperature fluctuation however exhibit a unique behaviour. As illustrated infigure 10, we observe dual
branches for the entropy spectrum ( qE k( )). The upper branch varies as -k 2 because q p» -k k0, 0, 1z( ) ( ), as
discussed in section 2.7. The lower branch shows neither KO ( -k 5 3)nor BO ( -k 7 5) spectrum.Note that both
the branches of entropy spectrum generate a constant entropy fluxPq k( ) (see figure 7(b)), and themodes
q k0, 0, z( ) also participate in energy transfers.

3.4. Experimental results
For stably-stratifiedflows, there are notmany laboratory experiments to verify BOphenomenology. However,
scientists havemeasured theKE spectrumof the Earth’s atmosphere and relate it to the theoretical predictions.
Most notably Gage andNastrom [35] observed a combination of -k 3 and -k 5 3 energy spectra. Some researchers
attribute the -k 3 spectrum at lowerwavenumbers to the two-dimensionalization of the flow,while -k 5 3

spectrum at larger wavenumbers to the forward cascade of kinetic energy; yet these issues are still unresolved.
These features are expected to arise for Fr 1.

There are a significant number of laboratory experiments onRBC,with some favouring the BO scaling
[25, 124], while some others in support of the KO scaling [30]. These results are reviewed in detail in Lohse and
Xia [63]. Inmost convective experiments, the velocityfield, u tr,z ( ), and/or the temperaturefield,T tr,( ), are

Figure 9. For the RBC simulation for =Pr 1 and = ´Ra 1.1 1011: (a)Plot of the shell-to-shell energy transfersTm
n of equation (64),

where m n, represent the giver and receiver shell indices respectively. (b)Plot of the ring spectrum bE k,( ) demonstrates near
isotropy in the Fourier space.

Figure 10. For RBC simulationwith =Pr 1 and = ´Ra 1.1 1011, plot of the entropy spectrum that exhibits dual branches. The
upper branchmatcheswith -k 2 quitewell, while the lower part isfluctuating.
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probed near the lateral walls of the container. For such experiments, the Taylor’s hypothesis [56, 94, 105] is
invoked to relate the frequency power spectrum E( f ) of the time series to the one-dimensional wavenumber
spectrum E k ;( ) this connection is under debate due to the absence of any constantmean velocity field [56, 63].
Researchers [57, 104, 122, 123] employ 2Dparticle image velocimetry for high-resolution visualization and
computation of an approximate energy spectrumunder the assumption of homogeneity and isotropy, which is
not strictly valid in convection [75]. In summary, on the experimental front, there is no convergence onwhich of
the two scaling, BOofKO, is valid. For details refer to the review papers [2, 63].

3.5. Turbulence in thermal boundary layer and in two dimensions
Aburning question is whether KO scaling or BO scaling is applicable to the boundary layers of RBC. The flux
arguments of section 3.2.3 provide some insights into the dynamics of boundary layers.Here, typically ^u uz ,
hence theflow is quasi-2D, andwe expect an inverse cascade of KE.Using P <k 0u( ) , >F k 0B ( ) , and
P »k k F kd du B( ) ( ), wemay argue thatP ku( )may increase with k as shown infigure 11. An application of
scaling arguments of section 3.2.1may yieldEu(k) and P ku∣ ( )∣according to equations (68)–(71), i.e., Bolgiano-
Obukhov scaling for <k kB. For >k kB, the KE spectrummay exhibit amixture of -k 5 3 (regime of inverse
cascade of energy) and -k 3 (regime of forward cascade of enstrophy)depending onwhere the effective forcing
band lies in relation to kB. Thus, in the boundary layer, RBCmay exhibit BO scaling, and it needs to be
investigated carefully using numerical simulations and experiments.

The aforementioned scaling argumentsmay alsowork for 2DRBC (xz plane inwhich the buoyancy is along
the zdirection), as well as in quasi 2DRBC (when L Lx y). Toh and Suzuki [106] simulated 2DRBC and

reported ~ -E k ku
11 5( ) andP ~ - -k ku

4 5( ) in linewith the above arguments. Calzavarini et al [19] also
reported similar results in their structure function computations.

3.6. Turbulence in RTI
RTI has a strong similarity with RBC in the sense that the heavierfluid sits on top of lighterfluid.Hencewe
expect the RBC turbulence phenomenology to be applicable to RTI as well, at least approximately. Chertkov [24]
proposed that a fully-developed 3DRTIwill exhibit Kolmogorov’s spectrumdue to the Rayleigh–Taylor
pumping at large scales. Boffetta et al [10] observed this behaviour in their numerical simulations. Chertkov [24]
however does not take into account the buoyancy at all scales (see section 3.2.3). In a quasi-2D box ( L Ly x),
Boffetta et al [9] show coexistence of BO andKO scaling ( -k 11 5 and -k 5 3), consistent with the arguments of
section 3.5.

3.7. Turbulence inmiscellaneous systems
Scientists have studied spectra of the velocityfield and the scalar field in other buoyancy-driven systems. Pawar
andArakeri [87] performed experiment on the vertical tube described in section 2.8.3. They observed that the
velocityfield exhibits -k 5 3 spectrum, while the scalar spectrum is closer to -k 7 5.

Prakash et al [88] studied the energy spectrumof the bubbly turbulence using an experiment. For the velocity
field, they reported -k 5 3 energy spectrum for <k b1 , and -k 3 for >k b1 where b is the bubble size. They
argued that the large and intermediate scales exhibit -k 5 3 spectrumdue to the standardKolmgorov’s argument.
For >k b1 , Prakash et al [88] explained the -k 3 energy spectrumby invoking equipartition between the energy
dissipation and energy feed by the buoyancy.We believe that theKolmogorov’s spectrum for bubbly turbulence
arises due to the dynamical similarities with RBC. For this system itmay be interesting to investigate the energy
spectrumusing theflux arguments.

The turbulent Taylor–Couetteflow [43]may exhibit spectral behaviour similar to RBC since both the
systems are unstable with similar energetics (see sections 3.2.3 and 3.3.2).We believe that theNon-Boussinesq

Figure 11.Apossible schematic diagramof the kinetic energyflux P ku( ) for two-dimensional RBC.
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convective flowsmay also exhibit Kolmogorov-like spectrum forweak compressibility since here too the
thermal plumes feed the kinetic energy, as in RBC.

3.8. Turbulence in small and large Prandtl numberRBC
In section 3.2.3we derived the spectra and fluxes of the velocity and temperaturefields for RBCwith ~Pr 1.
These arguments are not applicable to RBC at extreme Prandtl numbers. However, we can easily deduce the
spectrum for very small and very large Prʼs as follows. These computations have beenfirst reported in [72] and
[86] respectively.

In RBCwith zero or small Prandtl numbers, thermal diffusivity k  ¥ that leads to q k~u kk kz
2( ) ( )( )

[72]. Hence, the buoyancy, which is proportional to q k( ), is dominant at small wavenumbers. Therefore, the
assumption of theKolmogorov’s phenomenology that the forcing acts at large length scales is valid, andwe
expect the Kolmogorov’s phenomenology for the hydrodynamic turbulence to be applicable to RBCwith

Pr 0.Mishra andVerma [72] verified the above phenomenology using numerical simulations.
In the limit of infinite Prandtl number (n  ¥), themomentum equation is linear [86]. However if the

Péclet number is large, the temperature equation is nonlinear and it yields an approximate constant entropy
flux.Using scaling arguments, Pandey et al [86] derived that for infinite and large Pr, ~ -E k ku

13 3( ) . They also
verified the above scaling using numerical simulations.

3.9. Simulation of turbulent convection in a periodic box and shellmodel
Borue andOrszag [12], Škandera et al [100], Lohse andToschi [62], andCalzavarani et al [18] simulated
turbulent thermal convection in a periodic box. They simulated equations (17), (18) under a gradient T zd d¯ . In
the absence of boundary layers, the velocity and temperature fields exhibit -k 5 3 spectra [12, 100]. In addition,
theNusselt number ~Nu Ra1 2 [18, 62], which is expected in the ultimate regimewhen the effects of boundary
layers are negligible. Note that the temperature spectrum for the periodic box is very different from that with
conductingwalls that exhibit dual spectra. It is important to note that turbulent thermal convection in a periodic
box is numerically unstable; the system exhibits steady behaviour for carefully chosen set of initial conditions.

Direct numerical simulation of turbulent systems is quite demanding due a large number of interacting
Fouriermodes. Therefore, scientists often use shellmodels, which are based onmuch fewer number ofmodes.
Brandenburg[13], Lozhkin and Frick [64],Mingshun and Shida [70], Ching andCheng [28], andKumar and
Verma [54, 55] constructed shellmodels for buoyancy-driven turbulence. Ching [27, 29] andChing et al [28]
computed the structure functions of turbulent convection using a shellmodel, and claimed consistencywith
Bolgiano-Obukhov scaling. The advantage of the shellmodel of Kumar andVerma [54] is that it describes both
turbulent stably-stratified and convective flows using a single set of equations. It also enables flux computation
of the kinetic energy and r 22 , where ρ is the density of thefluid. Kumar andVerma [54] showed that the results
of the shellmodel are consistent with theDNS results described earlier.

3.10. Concluding remarks on the energy spectrum
We summarise the important results of this section as follows:

(i) A large body of works on RBC assume Bolgiano-Obuknov scaling. The flux-based arguments described in
sections 3.2.3 and 3.3.2 demonstrate that in three dimensions for Pr near unity, RBC exhibits Kolmogorov-
like energy spectrum and flux. For example, theKE flux is nearly constant in the inertial range; the shell-to-
shell energy transfer is local and forward; the ring spectrum exhibits a near isotropy in Fourier space. The
constant KEflux is due to the near cancellation between theKE supply by buoyancy and the viscous
dissipation rate.

(ii) The nature of energy spectrum and flux of RBC depends on the space dimensionality and Prandtl number,
as described earlier in this section. For small Prandtl number, convective turbulence is similar to
hydrodynamic turbulence, but ~ -E k ku

13 3( ) for very large and infinite Prandtl number.

(iii) The small-scale fluctuations in the boundary layer contributes to Eu(k) at large k. Hence the aforementioned
Eu(k) in the inertial range is dominated by the fluctuations of the bulk.

(iv) The temperature fluctuations for RBC exhibits dual spectra, with the upper branch scaling as -k 2. In
section 2.7we discussed the origin of -k 2 spectrum in terms of temperature profile in the boundary layers
and in the bulk.

(v) The SST under nearly isotropic conditions (when Froude number is of the order of unity) exhibits
Bolgiano-Obukhov scaling.

In the next section, we briefly describe scaling of Reynolds andNusselt numbers.
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4.Modelling of large-scale quantities of RBC

In this sectionwe quantify the large-scale quantities of RBC, namely theNusselt andReynolds numbers.Many
researchers haveworked on this problem; for details and references, refer to the review articles [2, 8, 26, 63, 98].
Despite complexities of the flow, RBC exhibits certain universal behaviour; in the turbulent limit,

~Pe Ra Pr , but in the viscous regime, ~Pe Ra3 5 [38, 84].
Turbulent thermalflux is somewhatmore complex; it is quantified using the nondimensional variable called

Nusselt number, Nu, which is defined as [2, 26, 119]

k q
k k

q
q=

D + á ñ
D

= +
D

= + á ¢ ñ á ¢ ñq
d u

d

u d
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where áñV stands for a volume average, k¢ =u u dz z , q q¢ = Dres res , and qCu res
is the normalized correlation

function between the vertical velocity and the residual temperaturefluctuation [116]:
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Kraichnan [52] argued that in turbulent convection ¢ ~u Raz
1 2, q¢ ~ 1res , and ~qC constu res

, hence
~Nu Ra1 2, which is called the scaling of ultimate regime. Experiments and numerical simulations however

reveal that ~ bNu Ra withβ ranging from0.25 to 0.33. Grossmann and Lohse [38–42]derived a
phenomenological formula that fits with the experimental and numerical results quite well. The deviation from
Kraichnan’s predictions of 1/2 to≈0.3 is attributed to the boundary layer [38, 39]. There are intense research
activities to test whether the ultimate regime exists or not. He et al [44] and others performed experiments on
turbulent convection up to »Ra 1015 and observed an increase in theNusselt-number exponentβ from0.31 to
0.38, as well as logarithmicmean temperature profile [108]. Thus they claimed existence of the ultimate regime.
However, Niemela et al [79] andUrban et al [107] do not observe deviation ofβ from»0.3, hence they argue
against the existence of ultimate regime. In this paper, we do not discuss this issue any further, andwe refer the
reader toworks described above.

In the next subsectionwe describe theGrossmann–Lohsemodel that predicts the scaling of Reynolds and
Nusselt number quite successfully.

4.1. Grossmann–Lohsemodel
Grossmann and Lohse (GL) [38–42, 102] derived the formulas for Nu Ra, Pr( ) and Re Ra, Pr( ) by exploiting the
fact that the global viscous dissipation rate, u, and thermal dissipation rate, T , get contributions from the bulk
and boundary layers, i.e.,

  = + , 89u u u,BL ,bulk ( )

  = + , 90T T T,BL ,bulk ( )

where BL and bulk denote the boundary layer and the bulk respectively. They invoked the exact relations of
Shraiman and Siggia [97] for the global viscous and thermal dissipation rates (see equations (38), (39)), and
estimated the aforementioned contributions of the boundary layers and the bulk to u and T in various Ra–Pr
regimes. For »Pr 1and very large Ra they used  = U du,bulk

3 and  = DU dT ,bulk
2 , but for extreme Prandtl

numbers, these estimates get altered by the boundary layer widths.
Using the above ideas, GL [38–42, 102] derived the following coupled equations
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where ciʼs and ReL are constants, and the functions f and gmodel the thermal BL [102]. Using the above
formulae, GL computed theNusselt andReynold numbers as a function of Ra and Pr that agree with presently
available experimental and numerical simulation results quite well [2].

In the next subsectionwe describe a newmodel developed recently by Pandey et al [84] and Pandey and
Verma [85].
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4.2. An alternate derivation of Péclet number
Recently Pandey et al [84] and Pandey andVerma [85]provided an alternate derivation of Péclet number. Note
that =Pe RePr. Pandey et al [84] analysed the rms values of various terms of themomentum equation, which
are exhibited in the schematic diagramoffigure 12.Under statistical steady state (á¶ ¶ ñ »tu 0), Pandey et al
observed that in the turbulent regime, the acceleration u u· is primarily provided by the pressure gradient

s- , and the buoyancy and viscous terms are relatively small. The above features are consistent with
similarities between the turbulence in RBC and hydrodynamics (see section 3.3.2). However, in the viscous
regime (Re�1),−∇σ is small, and the buoyancy and viscous terms cancel each other resulting in a very small
acceleration of thefluid.

Dimensional analysis of themomentum equation yields

a n= + D -c
U

d
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U

d
c g c

U

d
, 931
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2

2

3 4 2
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where ciʼs are dimensionless coefficients defined as
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Pandey et al [84] observed ciʼs to be functions of Ra and Pr that yields interesting and nontrivial scaling relations.
It is important to contrast this behaviourwith free turbulence (without walls)where ciʼs are constants.
Multiplication of equation (93)with kd3 2 yields

= + -c c c cPe Pe RaPr PePr, 951
2

2
2

3 4 ( )
where k= UdPe is the Péclet number. The solution of the above equation is

=
- + + -

-

c c c c c
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Pr Pr 4 RaPr

2
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4 4
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( )
( )
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usingwhich Pe can be computed as a function of Ra and Pr.
In the turbulent regime, the viscous termof equation (95) can be ignored, hence

»
-
c

c c
Pe RaPr . 973

1 2∣ ∣
( )

This limit is applicable when

-c c c cPr 4 RaPr. 984
2 2

1 2 3∣ ∣ ( )

The scaling for the viscous regime is obtained by equating the buoyancy and viscous terms of themomentum
equation that yields

»
c

c
Pe Ra. 993

4

( )

Figure 12.The relative strengths of the forces acting on a fluid parcel. In the turbulent regime, the acceleration u u· is provided
primarily by the pressure gradient. In the viscous regime, the buoyancy and the viscous force dominate the pressure gradient, and they
balance each other. FromPandey andVerma [85]. Reprintedwith permission fromAIP.
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Pandey et al [84] computed ciʼs using the RBC simulation data for =Pr 1, 6.8, 10 , 102 3 and Ra from106 to
´5 108. These simulationswere performed for no-slip boundary condition at all thewalls using afinite volume

solverOPENFOAM [82]. They reported the following functional form for ciʼs

= -c 1.5Ra Pr , 1001
0.10 0.06 ( )

= -c 1.6Ra Pr , 1012
0.09 0.08 ( )

= - -c 0.75Ra Pr , 1023
0.15 0.05 ( )

= -c 20Ra Pr . 1034
0.24 0.08 ( )

The errors in the above exponents are�0.01, except for the Ra exponent of c4 that has error of the order of 0.10.
Infigure 13, we plot the normalized Péclet number, -PeRa 1 2 for =Pr 1, 6.8, 102 and compare themwith the
predictions using equation (96). Thefigure also exhibits Pe fromother simulations and experiments. The plots
reveal that the predictions of Pandey et al [84] (equation (96))matchwith the numerical and experimental results
quite well.

Using the above ciʼs and equation (98), wefind that Ra?106Pr belongs to the turbulent regime, whereas
Ra=106Pr belongs to the viscous regime. In the viscous regime

= »
c

c
Pe Ra 0.038Ra , 1043

4

0.60 ( )

which is independent of Pr, consistent with the results of Silano et al [99], Horn et al [46], and Pandey et al [86].
For the turbulent regime, equation (97) yields

=
-

»
c

c c
Pe RaPr 7.5 Pr Ra . 1053

1 2

0.38

∣ ∣
( )

Formercury ( »Pr 0.025) as an experimental fluid, Cioni et al [31] observed that ~Re Ra0.424, which is close to
the predicted exponent of 0.38 discussed above. The range of Rayleigh numbers in the experiment of Cioni et al
[31] is  ´ ´5 10 Ra 5 106 9 that is consistent with the turbulent regime estimated above (Ra?106Pr).
The aforementioned results are in general agreementwith those ofGrossmann and Lohse [38–42].

4.3. Scaling ofNusselt number and dissipation rates
We revisit theNusselt number scaling that has been studiedwidely using theoreticalmodels, experiments, and
numerical simulations. The predictions ofGrossman and Lohse [38–42], equations (91), (92), fits with the
experimental and numerical data quite well. As described earlier, amajor debate is whether ultimate regime
(exponent= 1/2) exists or not. See reviews for details [2, 8, 29, 63, 98].

Here we report recent results on the correlation function of equation (88) and the viscous dissipation rate
that yield interesting insights. Verma et al [116], Pandey et al [84], and Pandey andVerma [85] computed qCu res

of
equation (88) for a range of Ra in the turbulent regime and observed nontrivial scaling. They observed that qCu res

,
and the rms values of ¢uz and q¢res scale with Ra in such away that ~Nu Ra ;0.30 without these corrections,

~Nu Ra1 2 in the turbulent regime. Thus, oneway to explain the deviation of the exponent from1/2 in the
ultimate regime [52] is due to the nontrivial scaling of qCu res

, ¢uz , and q¢res.

Figure 13.The normalized Péclet number ( -PeRa 1 2) versus Ra for numerical data of Pandey et al [84] for =Pr 1 (red squares),
=Pr 6.8 (blue triangles), and =Pr 102 (black diamonds); numerical data of Silano et al [99] (magenta pentagons, =Pr 103),

Reeuwijk et al [110] (red circles, =Pr 1), Scheel and Schumacher [93] (green crosses, =Pr 0.7); and the experimental data of Xin and
Xia [120] (orange pluses, »Pr 6.8), Cioni et al [31] (brown right triangles, »Pr 0.022), andNiemela et al [80] ( »Pr 0.7, green
down-triangles). The continuous curves represent Pe computed using equation (96). The predictions of equation (96) for =Pr 0.022
and 6.8 have beenmultipliedwith 2.5 and 1.2, respectively, tofit the experimental results fromCioni et al [31] andXin andXia [120].
FromPandey andVerma [85]. Reprintedwith permission fromAIP.
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In hydrodynamic turbulence, the viscous dissipation rate  » U du
3 . However this is not the case in RBC,

primarily due towalls or boundary layers. Using numerical data, Verma et al [116] and Pandey et al [84] have
shown that  ~ Rau

1.32 or

 ~ -U d Ra . 106u
3 0.21( ) ( )

See figure 14 for illustration for =Pr 1. One of the exact relations of Shraiman and Siggia [97] yields

 =
-U

d

Nu 1 RaPr

Pe
. 107u

3

3

( ) ( )

Substitution of ~Pe Ra0.51 and  ~ -U d Rau
3 0.21( ) yields ~Nu Ra0.32. These arguments show that the

reduction of the viscous dissipation rate could be a reason for the deviation of the observed scaling ~Nu Ra0.32

from ~Nu Ra1 2 corresponding to the ultimate regime.
Ni et al [77, 78] computed the local (bulk) energy dissipation rate in RBC cell using experimental

measurements. They showed that

 ~ ~
U

d
Ra , 108u,bulk

3
3 2 ( )

which is consistent with the predictions ofGrossmann and Lohse [38–42]. Thus the variation of the exponent
from the aforementioned 3/2 to 1.32 offigure 14 is possibly due to the effects of the boundary layers near the
walls (also see Pandey andVerma [85]).We require detailed experimental and numerical analysis to resolve this
issue.

5. Large-scaleflow structures andflow reversals inRBC

Theflowproperties in the last two sections are related to the randomnature of the flow. It has been observed that
coherent structures too play important role in the convective flow, and they have certain universal properties. An
interesting phenomena of RBC related to large-scale structures is flow reversals. Sreenivasan et al [101], Brown
andAhlers [16], Xi andXia [118], and Sugiyama et al [103] observed that the vertical velocity near the lateral wall
switches sign randomly. Deciphering how the reversals take place is an interesting puzzle, and it is not yet fully
solved. In this sectionwe briefly describe the present status of the field.

It is believed that the flow reversals are caused by the nonlinear interaction among the large-scale structures
of theflow. For a closed cartesian box, these structures can be conveniently described by the small-wavenumber
Fouriermodes [21, 22]. This description is useful even for no-slip boundary conditions since the flow structures
inside the boundary layers contribute to the largewavenumbermodes. For a cylindrical geometry, partial
information about theflow structures can be obtained by computing the azimuthal Fouriermodes
corresponding to the velocityfieldmeasured at various angles near the later walls [16, 71, 118]. Herewe
summarise themain results on the properties offlow reversals.

(i) During a reversal, the amplitude of the most dominant large-scale mode vanishes, while that of the
secondarymode rises sharply. Chandra andVerma [21, 22] reported that during a reversal in a unit two-
dimensional cartesian box, the Fouriermode 1, 1( ) vanishes, while themode 2, 2( ), corresponding to the
corner rolls, become themost dominantmode [21, 22]. See figure 1 of Chandra andVerma [21]. This
numerical result is consistent with the experimental results of Sugiyama et al [103].

Figure 14.Aplot of the viscous dissipation rate u versusRa . The bestfit curve is  ~ Rau
1.32, indicating that  ~ -U d Rau

3 0.21( )
since ~U Ra0.51.
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(ii) The nature of dominant structures depends on the box geometry and boundary conditions. For example,
for a box of size 2×1, under the no-slip boundary condition, 2, 1( ) and 2, 2( ) are the primary and
secondarymodes respectively. However, under the free-slip boundary condition, the correspondingmodes
are 1, 1( ) and 2, 1( ) respectively [15, 113]; here 3, 1( ) too plays amajor role.

(iii) Sugiyama et al [103], Chandra and Verma [21, 22] and Vermaet al [113] reported that the flow reversals in
two-dimensional turbulent convection are suppressed at large Rayleigh numbers. This is primarily due to
relative strengthening of the primarymode 1, 1( ) compared to the secondarymodes. At large Ra, the
secondarymodes become tooweak to be able to causeflow reversals.

(iv) Huang et al [47] studied the flow reversals for two different boundary conditions: (a) constant temperatures
at both the boundaries (CTCT), and (b) constant heatflux at the bottomplate and constant temperature at
the top plate (CFCT). They showed that the flow reversals aremore frequent in theCTCT case compared to
theCFCT case despite the former beingmore stable than the latter. Thus, the flow reversals are not directly
related to the flow instability [47].

(v) Verma et al [113] have constructed a group-theoretic argument to decipher the reversing and non-reversing
modes during a reversals. The structure of the groups is related to theKlein group.

(vi) Thermal convection in a cylinder exhibit reversals that have similar behaviour as above. Brown and Ahlers
[16] termed such reversals as cessation-led reversals. Note however that during a cessation-led reversal, the
secondarymodes become significant, hence the kinetic energy does not vanish.

(vii) Cylindrical convection exhibits another kind of flow reversals, called rotation-led reversals, in which the
large-scale structure rotates azimuthally [16, 71, 118]. This rotation is due to the azimuthal rotation
symmetry of the system. Such phenomena is also observed in a cylindrical annulus [76].

These observations reinforce the viewpoint that the nonlinear interactions among the large-scale structure
are very relevant forflow reversals.Themagnetic field reversals in dynamo [36], and the velocity field reversals in
Kolmogorov-flow [74] also involve nonlinear interactions among the large-scale structures of the flow. Thus,
these reversals share certain similarities with theflow reversals of RBC.

6. Summary

In this paper we describe the recent results on the spectral and large-scale properties of buoyancy-driven
turbulence—stably-stratifiedflows andRBC. A summary of the results covered in this review is as follows:

(i) The SST is nearly isotropic for Froude number Fr 1⪆ . Bolgiano [11] and Obukhov [81] showed that for

gravity-dominated flows ( »Fr 1), the kinetic-energy spectrum ~ -E k ku
11 5( ) . Kumar et al [53]

demonstrated this scaling using numerical simulations.

(ii) For Fr 1, SST exhibits Kolmogorov scaling, i.e. ~ -E k ku
5 3( ) , due to the dominance of the nonlinear

termover the buoyancy.

(iii) For Fr 1, SST is quasi two-dimensional, and the kinetic-energy spectrum exhibits a combination of
-k 5 3 and -k 3.We do not discuss this case in detail.We refer the reader to Lindborg [60], Brethouwer et al
[14], and Bartello andTobias [4].

(iv) In three dimensions and for Prandtl number 1⪅ , turbulence in RBC has strong similarities with the

hydrodynamic turbulence, e.g, it exhibits constant energy flux and -k 5 3 energy spectrum in the inertial
range. For very large and infinite Prandtl numbers, convective turbulence has ~ -E k ku

13 3( ) . The energy
spectrum is expected to be different in two dimensions and in the boundary layer.

(v) In RBC turbulence, the pressure gradient accelerates the flow, while the buoyancy is balanced by the viscous
dissipation. This observation is consistent with theKolmogorov-like phenomenology observed for RBC.

(vi) The aforementioned phenomenology of RBC turbulence is expected to work for other buoyancy-driven
flows inwhich buoyancy feeds the kinetic energy. Some of the examples of suchflows are bubbly turbulence,
non-Boussinesq thermally-driven flows in stars, turbulent buoyancy-driven exchange flows in a vertical
pipe [3], etc.
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(vii) The scaling of the Reynolds and Nusselt numbers of RBC are well described by the models of Grossmann
and Lohse [38–42]. Recently Pandey et al [84] and Pandey andVerma [85] derived a formula for the Péclet
number thatfits with the experimental and numerical data quite well.

In a short review it is impossible to cover the vast number of results of buoyancy-driven turbulence. Herewe
could not describe recent results on the ultimate regime of turbulent convection [44, 107], logarithmic profile of
the boundary layer [96, 108], new scaling of temperature [45], rotating convection [23], etc. Alsowe could not
discuss SST for Fr 1, which is very important for atmospheric turbulence.We hope that amore
comprehensive reviewwill bewritten. For relatively olderworks, we refer the reader to the review articles
[2, 8, 29, 63, 98].

In this article we covered the present status of the energy spectrum andflux of turbulent convection that
shows certain resolution. The issue ofNusselt number exponent being 1/2 or»0.3, and the existence of the
ultimate regime is being intensely investigated. The structure and dynamics of boundary layer (e.g. existence of
log layer or not),flow reversals, and intermittency in RBC are also ofmajor interest. High-resolution
simulations, advanced experiments, and carefulmodellingmay resolve these outstanding questions in future.
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