
Chapter 1

Basic Framework

Buoyancy is induced by density variations that may occur due to gravity, as
in planetary and stellar atmosphere, or due to temperature variation, as in
thermal convection. In this chapter, we introduce the framework and equations
for buoyancy-driven flows. In later chapters we will describe complex behaviour
exhibited by such flows.

1.1 Equations in terms of density variation

A fluid flow is described using velocity, density, and energy variables. In this
paper we focus on systems in which the density fluctuations is much smaller
than its average value. We write the local density ρl (subscript l denotes local)
as a sum of the density stratification ρ̄(z) and density fluctuation ρ:

ρl(x, y, z) = ρ̄(z) + ρ(x, y, z). (1.1)

It is customary to assume a linear density profile for ρ̄(z):

ρ̄(z) = ρb +
dρ̄

dz
z = ρb +

ρt − ρb
d

z, (1.2)

where ρb, ρt are respectively the densities at the bottom and top layers that
are separated by distance d (see Fig. 1.1). The top and bottom layer may be
embedded in a larger flow, or they could be plates maintaining the above density.
The latter system has a boundary layer, but former one does not.

We assume that the gravity is downward, along −ẑ. Hence the gravitational
force density on the fluid is

Fg = −gρlẑ = −g(ρ̄+ ρ)ẑ

= −g∇
(∫ z

ρ̄(z′)dz′
)
− ρgẑ. (1.3)

The second term of the above expression, −ρgẑ, occurs due to the density
variation of the fluid with relative to the local surrounding. This force is called
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Figure 1.1: density...

buoyancy. It is along −ẑ for ρ > 0 , but along ẑ for ρ < 0. We remark that the
density variation could be caused by– strong gravity, for example in planetary
and stellar atmospheres; or by temperature variations, as in thermal convection
in which hotter (lighter) fluid ascend, and colder (heavier) fluid descends; or by
infusion of soluble material, such as salt in ocean. We will discuss these systems
in detail in later parts of the book.

A fluid flow is described by Navier Stokes equation

ρl

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ Fg + µ∇2u + fu, (1.4)

where u, p are respectively the velocity and pressure fields, fu is the external
force field in addition to the buoyancy, and µ is the dynamic viscosity of the
fluid. Substitution of Eq. (1.3) in Eq. (1.4) yields

ρl

[
∂u

∂t
+ (u · ∇)u

]
= −∇σ − ρgẑ + µ∇2u + fu, (1.5)

where

σ = p+ g

(∫ z

ρ̄(z′)dz′
)

(1.6)

is the modified pressure. The continuity equation for the density yields

∂ρl
∂t

+∇ · (ρlu) = ∇ · (κ∇ρl), (1.7)

where κ is the diffusivity of the density. We assume that κ is constant in space
and time. Equation (1.7) can be written as

∇ · u = − 1

ρl

dρl
dt

+
1

ρl
κ∇2ρl. (1.8)
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Now we employ Oberbeck-Boussinesq (OB) approximation according to which
the density of the fluid is approximately a constant, i.e., (dρl/dt)/ρl ≈ 0. There-
fore, the relative magnitude of ∇ · u would be

∇ · u
U/L

≈ L

ρlU
κ∇2ρl ≈

κ

UL
=

1

Pe
, (1.9)

where L,U are the large length and velocity scales respectively, and Pe is the
Péclet number. Typical buoyancy-driven flows have large Péclet number, hence
we can assume ∇·u = 0 for such flows, and replace ρl of Eq. (1.5) with the mean
density of the fluid, ρm. Hence the governing equations for the buoyancy-driven
flows are

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ − ρ

ρm
gẑ + ν∇2u + fu, (1.10)

∂ρ

∂t
+ (u · ∇)ρ = −dρ̄

dz
uz + κ∇2ρ, (1.11)

∇ · u = 0 (1.12)

where ν = µ/ρm is the kinematic viscosity. The assumption that ν, κ are con-
stants in space and time is also considered to be a part of the OB approximation.
It is important to note that even though fluid density is assumed to be an ap-
proximate constant in OB approximation, density variation is retained in the
momentum equation for buoyancy-driven flows. We will show later the buoy-
ancy is comparable to other terms of the momentum equation.

We will perform linear stability analysis of the above equations in Chapters 3
and 4 and show that the system is stable when dρ̄/dz < 0, and unstable when
dρ̄/dz > 0. Flows with dρ̄/dz < 0 are called stably-stratified flows, and they
have lighter fluid above the heavier fluid (see Fig. 1.2(a)). Such systems support
waves in the linear limit, and nonlinear waves and turbulence in the nonlinear
regime. In the presence of viscosity, the total energy of stably-stratified flows
decays without fu, hence, fu is employed to maintain a steady state. Examples
of stably-stratified systems are Earth’s atmosphere and ocean, where dense fluid
sits below the lighter fluid. Note however that the density profile of the ambient
atmosphere of a planet need not be linear; for the Earth, the density profile
is exponential. The linear profile however is a good approximation for a small
region of the atmosphere.

The second class of flows have dρ̄/dz > 0 (see Fig. 1.2(b)). Here heavier
fluids sits above lighter ones. Such flows become unstable when dρ̄/dz exceeds
a critical value. For even larger nonlinearity, we obtain structures, chaos, and
turbulence. Examples of such flows are Rayleigh-Bénard convection (RBC) and
Rayleigh-Taylor instability. Note however that the background density of RBC
varies linearly, but that of Rayleigh-Taylor instability exhibits a sharp jump.

As described earlier, temperature induces density variation, which yields
buoyancy. We will discuss the governing equations in terms of velocity and
temperature fields.
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Figure 1.2: density.: stable, unstable.
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1.2 Equations in terms of temperature

In a heated fluid, a hotter element is lighter than its colder counterpart. Lets
us consider the background temperature profile to T̄ (z). A fluid parcel with
T > T̄ (z) will be lighter that its background, and hence it will rise due to
buoyancy. Opposite effect will happen to fluid element with T < T̄ (z). In this
section we will describe equation of motion of fluid in terms of temperature.

Here we consider a layer of fluid confined between two surfaces that are kept
at temperature Tb and Tt, as shown in Fig. 1.3. If the system is inside a larger
system, the top and bottom surfaces would be imaginary, and there would be
no boundary layer. However, when the bounding are plates, then we obtain
boundary layer.
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Figure 1.3: density...

We relate the temperature field T to the density ρl using a linear relationship

ρl = ρb [1− α(T − Tb)] , (1.13)

where α is the thermal expansion constant, which is assumed to be constant in
space and time. In analogy with ρ̄, we assume a linear temperature profile

T̄ = Tb +
dT̄

dz
z = Tb −

Tb − Tt
d

z = Tb − βz. (1.14)
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It is customary to separate the temperature into the ambient temperature T̄
and fluctuation θ over it:

T = T̄ + θ. (1.15)

A comparison of Eqs. (1.1, 1.13, 1.15) yields

ρ = −ρmαθ;
dρ̄

dz
= −αβ, (1.16)

substitution of which in Eqs. (1.10, 1.11) yields

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ + αgθẑ + ν∇2u, (1.17)

∂θ

∂t
+ (u · ∇)θ = −dT̄

dz
uz + κ∇2θ. (1.18)

These equations coupled with
∇ · u = 0 (1.19)

are the governing equations for RBC.
In the above equation, we employ Oberbeck-Boussinesq approximation de-

scribed in the previous section; namely, |ρ|/ρm = α|θ| � 1, and κ is constant
in space and time. The OB approximation is applicable when the temperature
difference between the two surfaces is not too large.

Equation (1.18) is also derived using the energy equation for fluids. The
energy density per unit volume ε = ρCvT , and its evolution is [?]

ρCv

[
∂T

∂t
+ (u · ∇)T

]
= −∇ · q− p∇ · u + ρεu (1.20)

where q is the heat flux, Cv is the specific head at constant volume, and ρεu is
the kinetic energy dissipation rate per unit volume that enhances the internal
energy. Under OB approximation, ρεu is neglected in the energy equation. In
the next section, we will illustrate this approximation for realistic situations.
We also employ Fourier’s law to model the heat flux:

q = −K∇T (1.21)

where K is the thermal conductivity.
For liquids like water, incompressibility condition yields ∇ ·u = 0, substitu-

tion of which in Eq. (1.20) yields Eq. (1.18) with thermal diffusivity

κ =
K

ρCv
. (1.22)

For gases, p∇ · u is comparable to the other terms of the energy equation:

p∇ · u = −p
ρ

Dρ

Dt
= −p

ρ

(
∂ρ

∂T

)
p

DT

Dt
= pα

DT

Dt
(1.23)
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Here ∇ · u 6= 0, contrary to OB approximations. Now we assume the gas to be
ideal, hence p = ρRT , where R is the Rydberg’s constant. Therefore,

α = −1

ρ

(
∂ρ

∂T

)
p

=
1

T
. (1.24)

Hence

p∇ · u = ρR
DT

Dt
= ρ(Cp − Cv)

DT

Dt
(1.25)

where Cp, Cv are respectively the specific heats of the gas for constant pressure
and constant volume. Substitution of the above in Eq. (1.20) yields Eq. (1.18)
with κ = K/(ρCp).

In the linear limit, Eqs. (1.17, 1.18) yield stable solution (e.g., waves) when
dT̄ /dz > 0, and unstable solution when dT̄ /dz < 0. A major application with
dT̄ /dz < 0 profile is Rayleigh-Bénard convection, which is the topic of the next
section.

1.3 Rayleigh-Bénard convection

In general, thermally convective systems are quite complex involving complex
geometries and complex material properties. A simplified model that captures
essential features of thermal convection is called Rayleigh-Bénard convection
(RBC) in which a fluid is confined between two thermally-conducting horizontal
plates kept at constant temperatures Tb, Tt, as shown in Fig. XXX. Note that
dT̄ /dz < 0. We employ Eqs. (1.17-1.19) to describe RBC. RBC is a major topic
of this book.

RBC exhibits host of interesting phenomena depending on the temperature
difference between the plates, which dictates the quantum of nonlinearity. First,
the system is exhibits thermal instability when the temperature difference be-
tween the plates, ∆ = Tb − Tt exceeds a critical value. Below this value, the
heat is transported by conduction with a linear temperature profile

T̄ (z) = Tb − βz. (1.26)

where

β =
Tb − Tt

d
. (1.27)

The nonlinearity saturates the unstable growth, and we obtain convective rolls.
When we increase ∆ or nonlinearity, we obtain patterns, chaos, and turbulence.
We will discuss these topics in the subsequent chapters of this book.

Most of the buoyancy-driven flows in the Earth’s atmosphere and in engi-
neering applications involve water, air, and oil, for which we list the parameters
in Table 1. In the table we also list the parameters for Earth’s mantle and
helium gas. The ratio of ν and κ, called Prandtl number which is denote by
Pr, plays an important role in the dynamics of RBC. Flows with large Pr tends
to be dominated by the viscous term, and hence temperature fluctuations are
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weaker in such flows. On the contrary, nonlinearity is stronger for small-Pr
flows, hence such flows are more turbulent compared to large-Pr flows.

It is mathematically convenient to study limiting cases Pr→∞ and Pr→ 0.
The former corresponds to finite κ and ν →∞, while the latter to finite ν and
κ→∞.

1.4 Justification of Oberbeck-Boussinesq approx-
imation

As argued below, Oberbeck-Boussinesq approximation holds for these applica-
tions.

1. The parameters ν, κ, α are assumed to be constants. For water and air
these constants vary within XXX % at normal temperature and pressure.

2. When the temperature difference between the plates ∆ ≤ 30C, we have
ρ/ρm � 1 for typical fluids. For example, for water that has α ≈ 3 ×
10−4K−1 at 30C, δρ/ρm = α∆ ≈ 10−3 for ∆ = 30C. Similarly for air at
room temperature, α = 1/T = 1/300 [Eq. (1.24)]. Hence, for a gas at
∆ = 30C, δρ/ρm ≈ 0.1, which is relatively small.

3. As a result of item (2), the density of the flow is assumed to be constant,
except for the buoyancy term ρg of the momentum equation. The den-
sity variation in the fluid causes buoyancy, which is comparable to the
viscous term. We will demonstrate these comparisons during calculations
of Rayleigh-Bénard instability (Chapter 4 and turbulent convection ??.

4. The viscous dissipate rate εu is assumed to be small in BO approximation.
For justification of this assumption, we estimate εu/(Cp(DT/Dt)). In the
viscous regime

εu
Cv(DT/Dt)

≈ νU2/L2

ρCvU∆/L
≈ νU

CvL∆
(1.28)

and in the turbulent regime

εu
Cv(DT/Dt)

≈ U3/L

CvU∆/L
≈ U2

CvL∆
. (1.29)

We estimate U ≈
√
αg∆d. For water, with Cv = 4200J/kgK, ∆ = 30,

ν = 10−6m2/s, ρ = 103kg/m3, in the viscous regime

εu
Cv(DT/Dt)

≈ νU

CvL∆
≈ 10−6 × 10−1

4200× 30× 10−1
≈ 10−11 (1.30)

But in the turbulent regime,

εu
Cv(DT/Dt)

≈ U2

CvL∆
≈ 10−2

4200× 30× 10−1
≈ 10−6 (1.31)

8



Thus the viscous dissipation in the system is too small to be able to heat
the fluid significantly. Hence we ignore εν term in Eq. (1.20).

Thus we show that Oberbeck-Boussinesq approximation is valid for fluids
at normal temperature and pressure. The above approximation however breaks
down when ∆ is too large, for example in planetary and stellar interiors. For
such systems, we need to solve the equations of compressible fluids [Eqs. (1.5,
1.7)].

In the next section we will rewrite the equations for stably-stratified flows
by transforming density into velocity variables.

1.5 Equations for stably-stratified flows simpli-
fied

The linearized version of Eqs. (1.10, 1.11) with ν = κ = 0 are

∂uz
∂t

=
ρ

ρm
g, (1.32)

∂ρ

∂t
= −dρ̄

dz
uz, (1.33)

The above set of equations can be rewritten as

∂2uz
∂t2

=
ρ

ρm

dρ̄

dz
uz (1.34)

whose solutions are waves with Brunt-Väisälä frequency:

N =

√
g

ρm

∣∣∣∣dρ̄dz
∣∣∣∣ (1.35)

These waves are called internal gravity waves that will be discussed in more
detail in Chapter 3.

Researchers often write the equation for stably-stratified flow in terms of
variable

b =
g

N

ρ

ρm
, (1.36)

which has dimension of velocity [?]. In terms of b, Eqs. (1.10,1.11) become

∂u

∂t
+ (u · ∇)u = − 1

ρm
∇σ −Nbẑ + ν∇2u, (1.37)

∂b

∂t
+ (u · ∇)b = Nuz + κ∇2b. (1.38)

The nondimensional parameters used for describing stably-stratified flows
are

Reynolds number Re =
|(u · ∇)u|
|ν∇2u|

=
urmsd

ν
, (1.39)
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Prandtl number Pr =
ν

κ
, (1.40)

Froude number Fr =
urms/d

N
=
urms

dN
, (1.41)

Richardson number Ri =
N |b|rms

|(u · ∇)u|
=
N |b|rmsd

u2rms

, (1.42)

where urms is the rms velocity of flow, and brms is the rms value of b. Note that
the Reynolds number is the ratio of the nonlinear term and viscous term, and
the Richardson number is the ratio of the buoyancy and the nonlinear term.
Froude number is the ratio of the frequencies associated with urms and gravity
waves respectively.

Note that

Ri =
N |b|rmsd

u2rms

=
1

Fr2
|b|rms

Nd
=

1

Fr2
ρrms/d

|dρ̄/dz|
≈ 1

Fr2
. (1.43)

This is an important relation which is used in describing nearly isotropic stably-
stratified flows. We will describe later that strong gravity induces strong anisotropy
that requires more parameters; we will describe them in Chapter ??.

In the next section, we will describe Nondimensionalized equations of RBC.

1.6 Nondimensionalized versions of RBC equa-
tions

The equation for Rayleigh-Bénard convection are often presented in several
nondimensionalized forms. These equations capture the relative strengths of
various terms of the equations. Also, they help reduce the number of parameters
of the system, which is quite useful for analysis, as well as for the numerical
simulations and experiments.

RBC has two diffusive parameters ν and κ that yield two diffusive time
scales: τν = d2/ν and τκ = d2/κ. Clearly τν < τκ for Pr > 1, and vice versa for
Pr < 1. It is customary, specially for numerical simulations, to resolve lower of
the two time scales. Hence, we employ τν as the time scale for Pr > 1, and τκ
for Pr < 1. These choices become specially relevant for very large or very small
Pr’s.

Let us discuss the case when we use d2/ν as the time scale. The other scales
are: d for the length, κ/d for the velocity, ∆ = |Tb − Tt| for the temperature,
ρm(κ/d)2 for the pressure. These quantities yield the following nondimensional
variables:

u′ =
u

(κ/d)
, (1.44)

r′ =
r

d
, (1.45)

∇′ = d∇ (1.46)
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t′ =
t

(d2/κ)
(1.47)

σ′ =
σ

ρm(κ/d)2
(1.48)

θ′ =
θ

∆
(1.49)

In terms of the nondimensional variables, Eqs. (1.17,1.18) get converted to

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′σ′ + RaPrθ′ẑ + Pr∇′2u′ (1.50)

∂θ′

∂t′
+ (u′ · ∇′)θ′ = u′z +∇′2θ′, (1.51)

where

Rayleigh number Ra =
αgd3∆

νκ
, (1.52)

and the Prandtl number Pr is defined in Eq. (1.40). Note that the ratio of the
buoyancy and the viscous term is

RaPrθrms

Pr∇2urms
≈ Ra

k2min

θrms

urms
(1.53)

We will show in Chapter 4 that near the onset of Rayleigh-Bénard instability,
Ra = 27π4/(4k2min), and θrms/urms ≈ 1/k2min. Hence, near the instability, the
aforementioned ratio is approximately 3. However, in the turbulent regime, the
ratio of the buoyancy and the viscous term is more complex. However, broadly
speaking, the Rayleigh number is some measure of the strength of the buoyancy
with relative to the viscous term.

Note that we can also define the Rayleigh number in terms of density differ-
ence using the relation |ρb − ρt|/ρm ≈ α∆, which yields

Rayleigh number Ra =
gd3

νκ

|ρb − ρt|
ρm

. (1.54)

For RBC with very small Pr, we take ν/d as the velocity scale, and d2/ν as
the time scale. In this limit, the diffusion term dominates Du/Dt, and hence

∆

d
uz ≈ κ∇2θ =>

ν∆/d2

∼
κ

d2
θ. (1.55)

Therefore
θ ∼ ν

κ
∆→ 0. (1.56)

Consequently, for small Pr, we employ (ν/κ)∆ as the scale for temperature
fluctuations. In summary, for low Pr flows, the nondimensionalized variables
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are

u′ =
u

(ν/d)
, (1.57)

t′ =
t

(d2/ν)
(1.58)

σ′ =
σ

ρm(ν/d)2
(1.59)

θ′ =
θ

Pr∆
, (1.60)

and the nondimensionalized equations in terms of these variables are

∂u′

∂t
+ (u′ · ∇)u′ = −∇σ′ + Raθ′ẑ +∇2u′, (1.61)

Pr

(
∂θ′

∂t
+ (u′ · ∇)θ′

)
= u′z +∇2θ′. (1.62)

For large Ra however the aforementioned nondimensional velocity becomes
very large (∼

√
RaPr), which will be discussed in Chapter ??. As a result,

the time stepping for numerical integration ((δx)/
√

RaPr, where δx is the grid
size) becomes quite small. Hence, in numerical simulations, it is customary to
employ

√
αg∆d as the velocity scale, which yields the following set of equations

for moderate Pr:

∂u′

∂t
+ (u′ · ∇)u′ = −∇σ′ + θ′ẑ +

√
Pr

Ra
∇2u′, (1.63)

∂θ′

∂t
+ (u′ · ∇)θ′ = Su′z +

1√
RaPr

∇2θ.′ (1.64)

As described earlier, for small Pr, temperature fluctuations are scaled using
Pr∆. Therefore, for small Pr, Eqs. (1.63, 1.64) get converted to

∂u′

∂t
+ (u′ · ∇)u′ = −∇σ′ + Prθ′ẑ +

√
Pr

Ra
∇2u′, (1.65)

Pr

(
∂θ′

∂t
+ (u′ · ∇)θ′

)
= u′z +

√
Pr

Ra
∇2θ′. (1.66)

In future discussion, for brevity we will drop the primes from the variables.
Another important nondimensional parameter for RBC is the Nusselt num-

ber Nu, which is the ratio of the total heat flux (convective plus conductive)
and the conductive heat flux, and is computed using the following formula:

Nu =
−κ∇Tc + 〈uzθ〉
−κ∇Tc

=
κ∆/d+ 〈uzθ〉

κ∆/d
. (1.67)
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1.7 Boundary conditions, Box geometry

Boundary conditions play an important role in buoyancy-driven flows. We em-
ploy the following set of boundary conditions for the velocity field:

1. Periodic: Imagine that the systems of Figs. 1.1 and1.3 embedded in a
larger box. For such cases, we can employ periodic bound condition with

u(x + lLxx̂+mLy ŷ + nLz ẑ) = u(x), (1.68)

where l,m, n are integers, and the box is of the size Lx × Ly × Lz.

2. Often, a fluid is confined in box with top, bottom, and side walls. A
generic boundary condition employed is no-slip, which is

u = 0 (1.69)

at all the walls. Sometimes, for convenience of computation, no-slip
boundary conditions are employed at the top and bottom walls but peri-
odic boundary condition at the side walls.

3. When a fluid under consideration is over another fluid, for example air
over water. In such cases, we employ free-slip boundary condition, which
is

u⊥ = 0;
∂u‖

∂n
= 0 (1.70)

where u⊥,u‖ are respectively the velocity components perpendicular and
parallel to the concerned surface, and n is the coordinate perpendicular
to the wall. Note that u = u⊥ + u‖. For example, for an horizontal wall
perpendicular to the z axis,

uz = 0;
∂ux
∂z

=
∂uy
∂z

= 0 (1.71)

We will show later that free-slip boundary condition is easier to implement
in computer simulations.

The boundary conditions for the temperature or density are similar. Here
we describe the boundary conditions for the temperature field.

1. Periodic: The temperature fluctuations are periodic along all the three
directions:

θ(x + lLxx̂+mLy ŷ + nLz ẑ) = θ(x) (1.72)

where l,m, n are integers, and the box is of the size Lx × Ly × Lz.

2. Conducting : A constant temperature field at the walls:

θ = 0 (1.73)
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3. Insulating: The heat flux at the wall, K∇θ, is zero. To illustrate, for a
vertical surface perpendicular to the x axis, the boundary condition on θ
is

∂θ

∂x
= 0 (1.74)

The other important factors that affect the flow properties are the box
geometry and its size. The relative size is quantified using aspect ratio,
which is the ratio of the box width and the box hight. We will show in
this book that turbulent properties of the flow are somewhat independent
of the box geometry. For example, turbulent thermal convection exhibits
Kolmogorov’s spectrum independent of the box geometry. However, large-
scale structures of the flow are affected by the box geometry. For example,
the rolls in a cylinder can freely rotate azimuthally, which is not the case
in a cube.
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Chapter 2

Fourier space description

Fourier decomposition of the flow field helps us quantify structures at different
scales. In this chapter, we will discuss how to decompose the velocity and
temperature fields of buoyancy-drive flows in Fourier space. First, we describe
the RBC equations in Fourier space, and then tale up the equations for stably-
stratified flows.

As described in Sec. 1.7, we impose periodic, free-slip, or no-slip boundary
condition for RBC or stably-stratified flows. Periodic boundary condition is
useful when the system under consideration is embedded inside a larger box.
We employ free-slip and no-slip boundary conditions to describe flows confined
within walls.

2.0.1 Definitions

Fourier basis is suitable to describe flows in a periodic box, say of size Lx×Ly×
Lz. For RBC, the velocity and temperature fields are decomposed in Fourier
basis as follows:

u(r, t) =
∑
n

u(k, t) exp(ik · r), (2.1)

θ(r, t) =
∑
n

θ(k, t) exp(ik · r), (2.2)

where r is the real space coordinate, k = (kx, ky, kz) is the wavenumber with

kx =
2lπ

Lx
; ky =

2mπ

Ly
; kz =

2nπ

Lz
. (2.3)

Here l,m, n are integers. The variables u(k, t) and θ(k, t) represent the Fourier
amplitudes of velocity and temperature fields with wavenumber k.

The inverse transform of the above is

u(k, t) =
1

LxLyLz

∫
dru(r, t) exp(−ik · r), (2.4)
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θ(k, t) =
1

LxLyLz

∫
drθ(r, t) exp(−ik · r), (2.5)

where the aforementioned integral is performed over the whole box. It is easy
to show that the Fourier transform of the product of two real functions f and
g is a convolution:

(fg)(k) =
∑
p

f(k− p)g(p) (2.6)

and the Fourier transform of the derivative of a real function is given by

(df/dxj)(k) = ikjf(k) (2.7)

Using the above identities, we can derive equations for RBC in Fourier space.
For convenience we set ρm = 1. The equations

d

dt
u(k) + Nu(k) = −ikσ(k) + αgθ(k)ẑ − νk2u(k) (2.8)

d

dt
θ(k) +Nθ(k) = −dT̄

dz
uz(k)− κk2θ(k) (2.9)

k · u(k) = 0, (2.10)

where the nonlinear terms are given by

Nu(k) = i
∑
p

[k · u(k− p)]u(p) (2.11)

Nθ(k) = i
∑
p

[k · u(k− p)]θ(p) (2.12)

The equation for the pressure σ(k) is derived by taking dot product of Eq. (2.8)
with k, and employing k · u(k) = 0 that yields

σ(k) =
1

k2
[ik ·N(k)− iαgkzθ(k)] (2.13)

The above equations can be written in tensorial form as

d

dt
ui(k) = −ikiσ(k)− ikj

∑
p

uj(k− p)ui(p)

+αgθ(k)δi,3 − νk2ui(k), (2.14)

d

dt
θ(k) = −dT̄

dz
uz(k)− ikj

∑
p

uj(k− p)θ(p)− κk2θ(k), (2.15)

kiui(k) = 0. (2.16)

In Eq. (2.14), i represents two things:
√
−1 in front of the kiσ(k) term and

i = 1, 2, 3 in ui. Note that i = 1, 2, 3 represents x, y, z components respectively.
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One of the nondimensionalized version of RBC equations is

d

dt
u(k) + Nu(k) = −ikσ(k) + RaPrθ(k)ẑ − Prk2u(k) (2.17)

d

dt
θ(k) +Nθ(k) = uz(k)− κk2θ(k) (2.18)

k · u(k) = 0, (2.19)

The corresponding equations for the stably-stratified flows are

d

dt
u(k) + Nu(k) = −ikσ(k)−Nb(k)ẑ − νk2u(k) (2.20)

d

dt
b(k) +Nb(k) = Nuz(k)− κk2θ(k) (2.21)

k · u(k) = 0, (2.22)

where N is the Brunt-Väisälä frequency, and the nonlinear terms are given by

Nu(k) = i
∑
p

[k · u(k− p)]u(p), (2.23)

Nb(k) = i
∑
p

[k · u(k− p)]b(p). (2.24)

Pressure σ(k) is computed using

σ(k) =
1

k2
[ik ·N(k) + iNkzθ(k)]. (2.25)

2.0.2 Energy and entropy

The energy of a velocity Fourier mode, called modal energy energy, is given by

Eu(k) =
1

2
|u(k)|2. (2.26)

Using Eq. (2.2) and the orthogonality relation, we can show that the average
kinetic energy in the box is

1

LxLyLz

∫
dr

1

2
|u(r)|2 =

∑
k

1

2
|u(k)|2. (2.27)

This is Parseval’s theorem. Similarly modal entropy spectrum, Eθ(k), is defined
as

Eθ(k) =
1

2
|θ(k′)|2. (2.28)

Note that the above definition of entropy differs from the thermodynamic en-
tropy.
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To derive a dynamical equation for |u(k)|2/2, we multiply Eq. (2.14) with
u∗i (k) and sum over i that yields

u∗i (k)
d

dt
ui(k) = −ikiu∗i (k)σ(k)− ikj

∑
p

uj(k− p)ui(p)u∗i (k)

+αgθ(k)u∗z(k)− νk2|u(k)|2 (2.29)

Note that −ikiu∗i (k)σ(k) = 0 due to the incompressibility condition, k · u(k) =
0. Hence, the pressure does not contribute to the energy transfers. Now we add
the above equation with its complex conjugate that yields

d

dt
Eu(k) = =

[∑
p

[k · u(q)] [u(p) · u∗(k)]

]
+ αg<[θ(k)u∗z(k)]

−2νk2Eu(k), (2.30)

where q = k− p, and <,= stand respectively for the real and imaginary parts
of the argument. In the above equation, the rate of change of Eu(k) occurs due
to (a) the nonlinear energy transfers from modes, quantified by the first term
of right hand side, (b) buoyancy αg<[θ(k)u∗z(k)], and (c) the dissipation term
−2νk2Eu(k). Following a similar procedure, we can derive an equation for the
entropy spectrum:

d

dt
Eθ(k) = =

[∑
p

[k · u(q)] [θ(p)θ∗(k)]

]
− dT̄

dz
<[θ(k)u∗z(k)]

−2κk2Eθ(k), (2.31)

For stably-stratified flows, we define modal spectra for the density field and
potential energy b2/2 as

Eρ(k) =
1

2
|ρ(k′)|2, (2.32)

Eb(k) =
1

2
|b(k′)|2. (2.33)

The dynamical equations for Eρ(k) and Eb(k) are

d

dt
Eu(k) = =

[∑
p

[k · u(q)] [u(p) · u∗(k)]

]
+N<[b(k)u∗z(k)]

−2νk2Eu(k), (2.34)

d

dt
Eb(k) = =

[∑
p

[k · u(q)] [b(p)b∗(k)]

]
−N<[b(k)u∗z(k)]

−2κk2Eb(k) (2.35)
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For homogenous and isotropic turbulence, the energy and entropy of all the
modes in a shell are statistically same. Hence, it is customary to define one-
dimensional spectrum, Eu(k), Eθ(k), Eρ(k) and Eb(k), which are sums of all the
modes of a shell of unit radius 1

Eu(k) =
∑

k−1<k′≤k

1

2
|u(k)|2, (2.37)

Eθ(k) =
∑

k−1<k′≤k

1

2
|θ(k)|2, (2.38)

Eρ(k) =
∑

k−1<k′≤k

1

2
|ρ(k)|2, (2.39)

Eb(k) =
∑

k−1<k′≤k

1

2
|b(k)|2. (2.40)

The dynamical equations for the above quantities can be obtained by summing
equations over all the k modes. For example, equations for Eu(k) is

d

dt
Eu(k) =

∑
k−1<k′≤k

=

[∑
p

[k · u(q)] [u(p) · u∗(k)]

]
+

∑
k−1<k′≤k

αg<[θ(k)u∗z(k)]

−
∑

k−1<k′≤k

2νk2Eu(k) (2.41)

2.1 Reality condition

The velocity, density, and temperature fields are real. Hence

u∗(−k, t) =
1

LxLyLz

∫
dru(r, t) exp(−ik · r) (2.42)

= u∗(k, t). (2.43)

We illustrate this in Fig. 2.44. Similarly for the temperature field

θ(−k, t) = θ∗(k, t). (2.44)

Due to the above relation, we need to store only half the modes that helps us
in numerical simulations.

1For continuum k, EX(k), where X = u, θ or b, is defined as∫ k+dk

k

EX(k′)dk′ ≈ EX(k′)dk′, (2.36)

where the sum is performed over all the modes in a the shell whose inner and outer radii are
k and k + dk respectively. Note that

∫
EX(k′)dk′ = EX .
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Figure 2.1: reality condition

2.2 Free-slip basis functions for RBC

Thermal convection typically involves walls or boundaries, hence exp(ik · r) are
not appropriate basis functions for the same. Typical boundary condition for
RBC are either free-slip or no-slip. We describe appropriate basis functions for
such boundary conditions.

The free-slip boundary condition is

u⊥ = 0;
∂u‖

∂n
= 0, (2.45)

where u⊥ and u‖ are respectively the velocity components normal and parallel
to the surface, and n is the coordinate parallel to the wall. Let us assume
that the fluid is confined in a cube of size (π × π × π) with free-slip boundary
condition applicable on all the walls. For such flows, the basis functions for the
three components of the velocities are

ux = ûx(kx, ky, kz)(2 sin kxx)(δky,0 + 2 cos kyy)(δkz,0 + 2 cos kzz) (2.46)

uy = ûy(kx, ky, kz)(δkx,0 + 2 cos kxx)(2 sin kyy)(δkz,0 + 2 cos kzz) (2.47)

uz = ûz(kx, ky, kz)(δkx,0 + 2 cos kxx)(δky,0 + 2 cos kyy)(2 sin kzz).(2.48)

We term the above as free-slip basis functions, with the hat representing the
amplitudes of free-slip basis function. Note that kx, ky, kz are positive integers
(including zero), unlike Fourier wavenumbers that range from −∞ to ∞.

For the temperature field, either conducting or insulating boundary condi-
tions are used. The conducting boundary condition is

T = const; or θ = 0, (2.49)

while the insulating boundary condition is

∂T

∂n
=
∂θ

∂n
= 0. (2.50)
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The following function

θ = θ̂(kx, ky, kz)(δkx,0 + 2 cos kxx)(δky,0 + 2 cos kyy)(2 sin kzz). (2.51)

is suitable for conducting walls at z = 0, π, and insulating walls at the side walls
at x = 0, π, and y = 0, π.

The Fourier basis function, which is suitable for a periodic box, is exp[i(kxx+
kyy + kzz)], where kx, ky, kz take both positive and negative values. We can
convert the coefficient of a free-slip basis function to the corresponding Fourier
basis function using 2 cosx = [exp(ix) + exp(−ix)] and 2 sinx = [exp(ix) −
exp(−ix)]/i. In Table ??, we list the Fourier amplitudes corresponding to the
amplitude û(kx, ky, kz) for the free-slip basis. As an example,

ux = ûx(1, 0, 1)(2 sinx)(2 cos z)

= ûx(1, 0, 1)
1

i
(exp(x)− exp(−x))(exp(z) + exp(−z))

= ûx(1, 0, 1)[
1

i
exp(x+ z)

1

i
exp(x− z)

−1

i
exp(−x+ z)− 1

i
exp(−x− z)] (2.52)

Therefore,

ux(1, 0, 1) = ux(1, 0,−1) =
1

i
ûx(1, 0, 1) (2.53)

ux(−1, 0, 1) = ux(−1, 0,−1) = −1

i
ûx(1, 0, 1) (2.54)

as shown in Table 2.1.

Table 2.1: Transformation rules from the free-slip amplitudes ûx(kx, ky, kz) to
the Fourier amplitudes.

mode ux uy uz

(kx, ky, kz)
1
i ûx(kx, ky, kz)

1
i ûy(kx, ky, kz)

1
i ûz(kx, ky, kz)

(kx, ky,−kz) 1
i ûx(kx, ky, kz)

1
i ûy(kx, ky, kz) − 1

i ûz(kx, ky, kz)

(kx,−ky, kz) 1
i ûx(kx, ky, kz) − 1

i ûy(kx, ky, kz)
1
i ûz(kx, ky, kz)

(kx,−ky,−kz) 1
i ûx(kx, ky, kz) − 1

i ûy(kx, ky, kz) − 1
i ûz(kx, ky, kz)

(−kx, ky, kz) − 1
i ûx(kx, ky, kz)

1
i ûy(kx, ky, kz)

1
i ûz(kx, ky, kz)

(−kx, ky,−kz) − 1
i ûx(kx, ky, kz)

1
i ûy(kx, ky, kz) − 1

i ûz(kx, ky, kz)

(−kx,−ky, kz) − 1
i ûx(kx, ky, kz) − 1

i ûy(kx, ky, kz)
1
i ûz(kx, ky, kz)

(−kx,−ky,−kz) − 1
i ûx(kx, ky, kz) − 1

i ûy(kx, ky, kz) − 1
i ûz(kx, ky, kz)

Example: Construct 2D incompressible velocity field in xz plane whose
ux = 4A sin kxz cos kzz.
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Solution: When we compare the expression ux = 4A sin kxz cos kzz with
Eq. (2.46), we obtain ûx(kx, 0, kz) = A. The incompressible condition k · û(k) =
0 yields

ûz(kx, 0, kz) = −kx
kz
ûx(kx, 0, kz) = −kx

kz
A. (2.55)

Therefore, the velocity field is

u = x̂4A sin kxx cos kzz − ẑ
kx
kz

4A cos kxx sin kzz. (2.56)

The above form of velocity is however valid when both kx and ky are nonzero.
For modes with kz = 0,

u = ẑ2A cos kxx, (2.57)

while for kx = 0,
u = x̂2B cos kzz. (2.58)

u

z

x

u

u

Figure 2.2: Example 1

2.3 no-slip boundary condition for RBC

A realistic boundary condition for fluid flows is the no-slip boundary condition,
which is u = 0 at the surface. Unfortunately, Fourier expansion is not suitable
for this boundary condition, and more complex expansion called Chebyshev
polynomials are employed for this purpose. The discussion on Chebyshev is
beyond the scope of this book; the reader is referred to Canuto et al. [?] XXX.

Typically, flows with no-slip boundary conditions are simulated using finite-
difference, finite-volume, finite-element, or spectral-element methods in real
space. The mesh is refined appropriately to take care of the steep variations of
the velocity and temperature fields.

The no-slip boundary condition picks the viscous boundary layer. For turbu-
lent flows with moderate Prandtl numbers, the viscous boundary layer is quite
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thin. Hence, the structures within the boundary layers are of very small size
compared to the box size. Hence, the modal spectra of such modes would con-
tribute to large-wavenumber regime of E(k), and it is expected not to affect the
inertial range properties. Therefore, free-slip basis could be employed to study
energy spectrum and related quantities.

The energy transfers among the interacting Fourier modes provide valu-
able diagnostics for understanding patterns, chaos, and turbulence in buoyancy-
driven flows. We will show later that the energy flux provides valuable infor-
mation on the dynamics. These computations are conveniently performed using
the Fourier basis functions [?]. Note however that Fourier transformation is
typically performed on data sampled at uniform mesh. Typical output of finite-
difference, finite-volume, finite-element, or spectral-element computations are
on nonuniform mesh, which are interpolated to uniform mesh for spectral anal-
ysis. Chandra and Verma [?, ?] performed such computations for computation
of dominant Fourier modes in 2D RBC.

23



Chapter 3

Waves in stably stratified
flows

Stably stratified flows are linearly stable hence they support waves under linear
perturbation. In this chapter we derive wave solution for Stably stratified flows.
These waves are called internal gravity waves because they occur inside the bulk.

We start with Eqs. (2.20-2.22). Under linear limit, and for ν = κ = 0, the
above equations reduce to

d

dt
u(k) = −ikσ(k)

ρm
−Nb(k)ẑ, (3.1)

d

dt
b(k) = Nûz(k), (3.2)

k · u(k) = 0, (3.3)

where N is the Brunt-Väisälä frequency

N =

√
g

ρm

∣∣∣∣dρ̄dz
∣∣∣∣, (3.4)

and b is the following form of normalised density in the units of velocity:

b =
g

N

ρ

ρm
, (3.5)

We compute the pressure σ(k) by taking dot product with k to Eq. (3.1), and
employing k · u(k) = 0. As a result we obtain

σ(k) = iNρm
kz
k2
b(k) (3.6)

that yields
d

dt
uz(k) = −k

2
⊥
k2
Nb(k), (3.7)
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In matrix form, Eqs. (3.3-3.7) appear as

d

dt
(u z(k)b(k)) =

(
0 − k2⊥

k2
NN0

)
(u z(k)b(k)) = A (u z(k)b(k)) (3.8)

k⊥

k

θ

x

z

Figure 3.1: density...

The eigenvalues of the matrix A are λ± = ±ω with

ω = N
k⊥
k

= N sin ζ, (3.9)

where ζ is the angle between k and ẑ (see Fig. 3.1 for an illustration). The
corresponding eigenvectors are(

1− ik

k⊥

)
;

(
1
ik

k⊥

)
. (3.10)

The solution for λ+ is

uz(k, t) = A+ exp(iωt) (3.11)

b(k, t) = −ikA+

k⊥
exp(iωt) (3.12)

where A+ = |A+| exp(iφ+), a complex number, is the amplitude. By transform-
ing the above to real space, we obtain

uz(r, t) = A+ exp(ik · r + iωt) + c.c.

= |A+| cos(k · r + ωt+ φ+), (3.13)

b(r, t) = − ikA+

k⊥
exp(ik · r + iωt) + c.c.

= |A+|
k

k⊥
sin(k · r + ωt+ φ+). (3.14)
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The above solution corresponds to internal gravity waves moving in the direction
of −k. By following a similar procedure we obtain the solution corresponding
to λ− as

uz(r, t) = A− exp(ik · r− iωt) + c.c.

= |A−| cos(k · r− ωt+ φ−), (3.15)

b(r, t) =
ikA−
k⊥

exp(ik · r− iωt) + c.c.

= −|A−|
k

k⊥
sin(k · r− ωt+ φ−). (3.16)

Here A− = |A−| exp(iφ−). The above solution represents internal gravity waves
moving along k. For 2D waves with k = kxx̂+ kz ẑ, incompressiblity condition
yields

ux = −kz
kx
uz (3.17)

We illustrate the internal gravity waves moving along k using three limiting
cases:

1. For k = kxx̂, Fig. 3.1(a) illustrates a wave moving along x̂:

u(r, t) = A− cos(kxx− ωt)ẑ (3.18)

For this wave, k⊥ = kx = k or ζ = π/2. Therefore, ω = N and ux = 0
(see Eq. (3.17)). We illustrate the above wave propagation in Fig. 3.2(a).
Note that the fluid parcels are oscillating up and down vertically due to
gravity.

2. For k = kz ẑ,
u(r, t) = A cos(kzz)x̂. (3.19)

Here ω = 0, uz = 0, and there is no gravity wave. See Fig. 3.2(b) for an
illustration. Note that uz = 0. See Fig. 3.1(b) for an illustration. The
velocity vectors of Fig. 3.2(b) provide shear to the flow, and they are not
connected to gravitational oscillations.

3. For k = kxx̂+ kz ẑ,

u(r, t) = A− cos(kxx+ kzz − ωt)n̂. (3.20)

where ω = Nkx/k = N sin b with k =
√
k2x + k2y, and u is perpendicular

to k as shown in the figure. See Fig. 3.2(c) for an illustration. Note
that both ux and uz have the same frequency ω. As described in items
(1,2), for k = kxx̂, uz oscillates with the frequency of ω. But ω = 0 for
k = kz ẑ. For a combination, k = kxx̂+kz ẑ, the oscillation frequency takes
an intermediate value due to the inertia of ux, which is made to oscillate
with the same frequency as uz.
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A general solution is combination of the above solutions, i.e.,

uz(r, t) = |A+| cos(k · r + ωt+ φ+) + |A−| cos(k · r− ωt+ φ−) (3.21)

b(r, t) =
k

k⊥
[|A+| sin(k · r + ωt+ φ+)− |A−| cos(k · r− ωt+ φ−)](3.22)

which is a superposition of waves travelling parallel and antiparallel to k.
Another important wave driven by buoyancy is surface gravity wave, which

will be discussed in the next chapter.
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Chapter 4

Instability in thermal
convection

When a fluid confined between two plates is subjected to an adverse temperature
gradient, as shown in Fig. 1.3(c), the flow exhibits instability for temperature
profiles beyond a critical temperature gradient. In this chapter we derive insta-
bility criteria for RBC. We will also discuss the properties of the solution.

In this chapter, we solve the linearised version of RBC equations. For the
same we drop the nonlinear terms of Eqs. (1.17-1.19) that yields the following
linearised equations for uz and θ

∂

∂t
u = −∇σ + RaPrθẑ + Pr∇2u, (4.1)

∂θ

∂t
= uz +∇2θ. (4.2)

∇ · u = 0. (4.3)

It is quite convenient to use work out the instability condition using the equation
for uz:

∂uz
∂t

= −∂zσ + RaPrθ + Pr∇2uz, (4.4)

The ux component is determined using the incompressibility condition, Eq. (4.3).
First we solve the above equations for the free-slip boundary condition.

4.1 RBC instability for Free-slip boundary con-
dition

We consider two infinite horizontal plates at z = 0 and z = 1. On the plates,
we employ free-slip boundary condition for the velocity field and conducting
boundary condition for the temperature. We apply periodic boundary condition
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along the horizontal direction. The following basis functions satisfy the above
boundary conditions:

uz(x, z) = uz(k)2 sin(nπz) exp(ik⊥ · r⊥) + c.c., (4.5)

θ(x, z) = θz(k)2 sin(nπz) exp(ik⊥ · r⊥) + c.c., (4.6)

where n is integer, k⊥ = kxx̂ + ky ŷ, and r⊥ = xx̂ + yŷ. Substitution of the
above in Eqs. (4.4, 4.2) yields

d

dt
uz(k) = −ikσ(k) + RaPrθ(k)− Prk2uz(k) (4.7)

d

dt
θ(k) = uz(k)− k2θ(k) (4.8)

We compute the pressure σ(k) by taking dot product with k to Eq. (3.1), and
employing k · u(k) = 0. As a result we obtain

σ(k) = −ikz
k2

RaPrθ(k) (4.9)

substitution of which in Eq. (4.10) yields

d

dt
uz(k) = RaPr

k2⊥
k2
θ(k)− Prk2uz(k) (4.10)

Equations (4.10, 4.8) in matrix form are

d

dt
(u z(k)θ(k)) =

(
−Prk2RaPrk2⊥/k

21− k2
)

(u z(k)θ(k)) = A (u z(k)θ(k))

(4.11)
We solve the above equations using matrix method. The eigenvalues of the
stability matrix A is

λ± =
1

2

(
Tr±

√
Tr2 − 4Det

)
(4.12)

where Tr = −(Pr + 1)k2 is the trace of A, while Det = Prk4 − RaPrk2⊥/k
2 is

the determinant of A. The solution of the above equations is

θ(k, t) = a1 exp(λ+t) + a2 exp(λ−t), (4.13)

uz(k, t) = a1(λ+ + k2) exp(λ+t) + a2(λ− + k2) exp(λ−t), (4.14)

where k2 = (nπ)2 + k2⊥, and a1, a2 are constants that are determined using
initial condition [θ(k, 0), uz(k, 0)].

We can determine the properties of λ± using the properties of the matrix A.
The eigenvalues λ± are always real since the argument of the square-root

Tr2 − 4Det = (Pr− 1)2k4 + 4RaPr
k2⊥
k2

(4.15)

is real and positive-definite.
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Note that Tr < 0. Therefore, when Det > 0,
√

Tr2 − 4Det < |Tr| that leads
to λ± < 0 and dying solution

uz(k, t), θ(k, t)→ 0 (4.16)

This is the stable solution for which the heat is transported by conduction.
However, for Det < 0,

√
Tr2 − 4Det > |Tr|. Therefore, λ+ > 0 and λ− < 0,

hence
uz(k, t), θ(k, t)→ exp(λ+t). (4.17)

grows with time asymptotically. The component with exp(λ−t) goes to zero.
This is the unstable solution of the linear equation.

The transition from decaying to growing solution occurs at λ+ = 0 that
happens when Det = 0 [see Eq. (4.12], or at

Rac =
k6

k2⊥
=

(k2⊥ + n2π2)3

k2⊥
(4.18)

This condition is called neutral stability.
The critical number Rac depends on n and k⊥, as shown in Fig. XXX for

different n and k⊥. For a given n, the minimum value of Rac occurs for k⊥ = kc,
where kc is determined using

∂k⊥Rac|kc = 0 (4.19)

that yields

kc =
nπ√

2
, (4.20)

k2 = k2c + (nπ)2 = 3n2π2/2 (4.21)

substitution of which in Eq. (4.18) yields

Rac,min =

(
π2 + π2/2

)3
π2/2

=
27n2π4

4
. ≈ 657.511n2 (4.22)

The values of kc and Rac are exhibited in Fig. 4.1. When we increase Ra (in
experiment ∆), the first mode to become unstable is n = 1 with wavenumber
k = (π/

√
2)x̂+πẑ. Higher modes get excited at larger Ra. Of course, nonlinear

interactions, to be discussed in Chapter XXX, excite more modes.
Without loss of generality, we can choose k⊥ along x̂. The incompressibility

condition yields

ux = −ikz
kc
uz, (4.23)

The growing solution for n = 1 is

uz(x, y, z) = |uz(k)|2 sin(πz) cos(kcx+ φ), (4.24)

ux(x, y, z) =
π

kc
|uz(k)|2 sin(πz) sin(kcx+ φ), (4.25)
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where uz(k) = |uz(k)| exp(iφ). The stream function ψ for the flow is defined as
u = −∇× ψŷ that yields uz = ∂ψ/∂x using which we derive

ψ = − 1

kc
sin(πz) sin(kxx+ φ) (4.26)

We illustrate the above in Fig. 4.2. Note that the roll can be shifted along the
x axis by an arbitrary distance due to symmetry of space translation along x.
Another important feature of the above solution is that Rac is independent of
Pr.

Let us study the eigenvectors of A. At neutral equilibrium (λ+ = 0), the
eigenvalues are 0 and −(Pr + 1)k2, and the corresponding eigenvectors are(

k 21
)

;
(
−Prk21

)
(4.27)

respectively, and they are depicted in Fig. 4.3. Interestingly, the eigenvector
corresponding to λ+ is independent of Pr. Since exp(−λ−t)→ 0, the asymptotic
solution is

θ(k, t) = a1 (4.28)

uz(k, t) = a1k
2. (4.29)

For Ra just above Rac, λ+ becomes positive, and the eigenvectors would
be approximately in the same direction as shown in Fig. 4.3. The solution
uz(k, t), θ(k, t) ∼ exp(λ+t) grows with time.

The solution for the special case of Pr = 0 is quite interesting. The equations
for this case are

d

dt
uz(k) = 0 (4.30)

d

dt
θ(k) = uz(k)− k2θ(k) (4.31)

whose solution is

uz(k, t) = c1, (4.32)

θ(k, t) =
c1
k2

+ c2 exp(−k2t)→ c1
k2
. (4.33)

Thus, the system admits constant solution for Pr = 0. The solution does not
grow with time.

Note that the growing solution saturates due to nonlinearity.
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