Holographic Tensor Models

P N Bala Subramanian, CHEP, IISc

02/08/2017

Based on JHEP 1703 (2017) 056: C. Krishnan, S. Sanyal and PNBS and JHEP 1706 (2017) 036: C. Krishnan, K. V. Pavan Kumar and S. Sanyal

Overview

- Introduction
- Qurau-Witten Model
- 3 Klebanov-Tarnopolosky Model
- 4 Andreev-Altland-Zirnbauer Classification
- Results for GW and KT Models

SYK Model

• The Hamiltonian is given by

$$H = i^{\frac{q}{2}} \sum_{1 \le i_1 < i_2 < \dots < i_q \le N} J_{i_1 i_2 \dots i_q} \psi_{i_1} \psi_{i_2} \dots \psi_{i_q}$$
 (1)

$$\langle J_{i_1 i_2 \dots i_q} \rangle = 0, \quad \langle J_{i_1 i_2 \dots i_q}^2 \rangle = \frac{2^{q-1}}{q} \frac{\mathcal{J}^2(q-1)!}{N^{q-1}}.$$
 (2)

- The SYK Model has three striking features:
 - Solvable in Large-N
 - Maximally Chaotic
 - Emergent Conformal Symmetry

Gurau-Witten Model

- Bosonic Tensor Models have been discussed in great length in the literature.[Gurau]
- Witten proposed a coloured fermionic tensor model. [Witten '16]
- The Hamiltonian is given by

$$H = \frac{i^{(D+1)/2} J}{n^{D(D-1)/4}} \psi_0 \psi_1 \dots \psi_D$$
 (3)

- J is a real coupling constant.
- ullet ψ_a 's are real fermionic fields, where $a=\{0,1,\ldots,D\}$ indicate the colours.
- Each of the ψ_a transforms under a real irrep of G.
- For any unoredered pair (a,b), $a \neq b$, we can associate a symmetry group $G_{ab} = O(n)$, which gives the full symmetry group (upto an overall discrete group) to be

$$G = \prod_{a < b} \sim O(n)^{D(D+1)/2} \tag{4}$$

Gurau-Witten Model

• Each fermionic field can be thus written as

$$\psi_a^{i_{a0}i_{a1}\dots i_{al}} \qquad (5)$$

where i_{a} is an omitted index.

- Each index i_{ab} transforms as a vector under G_{ab} , for $a \neq b$.
- Since each a has D groups G_{ab} , $a \neq b$, ψ_a has n^D components.
- The total number of real fermions in the theory is $N = (D+1)n^D$.
- This is the *N* that is relevant for large *N*.
- The simplest case is D=1, where ψ_0 and ψ_1 transforms as a vector under G_{01} and $G_{10}=G_{01}$. The Hamiltonian is

$$H = iJ \,\psi_0^i \psi_1^i. \tag{6}$$

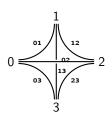
• This is a free theory for any value of n.

Gurau-Witten Model

Next case to consider is D=3, for which the Hamiltonian is

$$H = -\frac{J}{n^{3/2}} \psi_0^{ijk} \psi_1^{ilm} \psi_2^{pjm} \psi_3^{plk}. \tag{7}$$

The Feynman vertex is



• The canonical anti-commutation rules are given by

$$\{\psi_{a}^{ijk}, \psi_{b}^{plm}\} = \delta_{ab}\delta^{ip}\delta^{jl}\delta^{km}.$$
 (8)

• The fermion operators can be realized as Euclidean Gamma matrices of $SO(N) = SO((D+1)n^D)$.

Klebanov-Tarnopolosky Model

- This Model is constructed of a smaller symmetry group with same salient features of GW Model.[Klebanov-Tarnopolosky '16]
- The theory is constructed of uncoloured fermionic tensors

$$\psi^{i_1i_2...i_D}$$

- Each index $i_m = 1, 2, ..., n$, giving the total degrees of freedom n^D .
- The symmetry group of the theory is $O(n)^D$.
- The interaction term needs at least D+1 fermions.
- The Hamiltonian is given by

$$H = \frac{J}{\sqrt{8}} \psi^{ijk} \psi^{ilm} \psi^{pjm} \psi^{plk}. \tag{9}$$

Why Tensor Models

- Tensor Models are truly Unitary quantum mechanical system.
- The disorder averaging is avoided, while maintaining the large-N behaviour of SYK.
- SYK and tensor models are all dominated by melonic diagrams at large-N.
- All these models saturate the Maldacena-Shenker-Stanford chaos bound.

Andreev-Altland-Zirnbauer Classification

- SYK Model for different values of *N* belongs to one of the Wigner-Dyson ensembles, namely GUE,GSE,GOE.[cotler, et. al. '16]
- Andreev-Altland-Zirnbauer ten-fold classification is an extension of the Wigner-Dyson classification.
- The classification is based on the discrete symmetries possessed by the Hamiltonian:
 - S: Spectral Mirror Symmetry operator S implies that if the Hamiltonian has an eigenvalue $E_0 + E$, then $E_0 E$ is also an eigenvalue, E_0 being the mid-level energy value. This means it anti-commutes with the Hamiltonian,

$$\{H,S\}=0.$$

 $m \mathcal{T}$: Time Reversal operator \mathcal{T} is an anti-unitary operator, which commutes with the Hamiltonian.

Andreev-Altland-Zirnbauer Classification

- For Hamiltonians that have only spectral mirror symmetry, and no time reversal symmetry:
 - S: Unitary; $S^2 = +1$: AIII
 - S: Anti-Unitary; $S^2 = +1$: BD
 - S: Anti-Unitary; $S^2 = -1$: C
- For Hamiltonians that are symmetric under both S and T, with [T, S] = 0, we have four possibilities
 - $S^2 = +1$, $T^2 = +1$: BDI
 - $S^2 = +1$, $T^2 = -1$: CII
 - $S^2 = -1$, $T^2 = +1$: CI
 - $S^2 = -1$, $T^2 = -1$: DII
- For Hamiltonians that have only time reversal symmetry
 - $\mathcal{T}^2 = +1$: AI (or GOE)
 - $\mathcal{T}^2 = -1$: All (or GSE)
- When the Hamiltonian is not symmetric under S or \mathcal{T} , it belongs to class A (or GUE).

Holographic Tensor Models

Gamma Matrix assignments

- To recap: The fermions can be realized as Euclidean Gamma matrices of $SO(N) = SO((D+1)n^D)$.
- We will be explicitly diagonalizing the D=3, n=2 case: which means we need the SO(32) Gamma matrices.
- For N = 32, we can find representation that is real and symmetric.
- The mapping is done using the relation

$$\psi_{a}^{ijk} = \gamma_{8a+4i+2j+k-6}. \tag{10}$$

• Using this, we write down the Hamiltonian, and explicitly diagonalize for the eigenvalues.

- The Gamma matrices of SO(32) are 65536×65536 dimensional matrices.
- This already max-es out our computational powers.
- The Hamiltonian is a rather sparse matrix, which helps in GW case (as compared to KT Model).

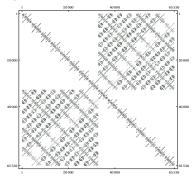
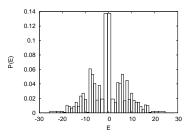


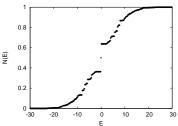
Figure: The MatrixPlot of GW-Hamiltonian

Density of States and the Integrated Density of States:

- The eigenvalue spectrum is symmetric about E=0: Spectral Mirror Symmetry.
- The ground state is unique with no degeneracy.
- There is a huge degeneracy around E = 0.



(a) The density of states. The d.o.s is symmetric: the slight asymmetry is an artifact of the binning of the eigenvalues.



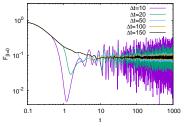
(b) The integrated density of states. The jump around zero is a result of the degeneracy at E=0.

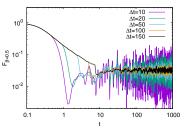
Spectral Form Factor:

Spectral Form Factor is defined as

$$F_{\beta}(t) = \frac{|Z(\beta, t)|^2}{|Z(\beta, 0)|^2}, \quad \text{where} \quad Z(\beta, t) = \text{Tr}(e^{-(\beta + it)H}) \tag{11}$$

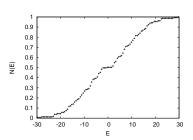
- This was used as a diagnostic of random-matrix behaviour of SYK Model.[cotler,et. al. '16]
- We compute the same quantity in GW case and plot it after a running time average.



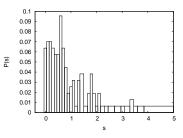


Level Repulsion

- After removing the degeneracies, the spectrum is unfolded.
- Integrable systems typically show a Poisson distribution.
- A turnaround in the distibution close to zero spacing is called level repulsion: indicator of chaotic behaviour.



(a) The integrated d.o.s plot after degeneracies have been removed.



(b) Unfolded level spacing distribution showing level repulsion near $s \to 0$.

Choice of Ensembele and Further comments

- The eigenvalue spectrum clearly indicates spectral mirror symmetry, which means we have an operator S such that $\{H, S\} = 0$.
- ullet The operator can be explicitly constructed in terms of γ_i 's as

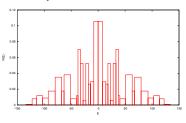
$$S = \gamma_1 \gamma_2 \dots \gamma_8$$

- The operator *S* is unitary and squares to 1.
- ullet We can also find a Time-Reversal operator ${\mathcal T}$ that squares to 1, thus identifying the ensemble to be **BDI** in the AAZ classification.
- The next simplest GW case is at D=3, n=3 and D=5, n=2, which correspond to N=108 and N=192, respectively: computationally inaccessible.

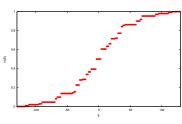
Results for the KT Model

- For the KT model, there are three tractable cases: (i) D = 3, n = 2, (ii) D = 5, n = 2, (iii) D = 3, n = 3.
- D = 3, $n = 2 \Rightarrow N = 8$: does not have enough eigenvalues to indicate chaos.
- D = 5, $n = 2 \Rightarrow N = 32$: matrix too dense to diagonalize.
- $D = 3, n = 3 \Rightarrow N = 27$:

Eigenvalue spectrum



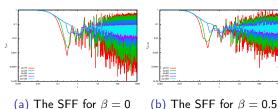
(a) DOS for D = 3, n = 3. The spectrum is shifted to look symmetric about E = 0.



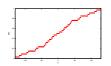
(b) Integrated DOS vs. Energy Levels

Results for the KT Model

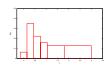
Spectral Form Factor



Level Repulsion



(a) The integrated d.o.s plot after degeneracies have been removed



(b) Unfolded level spacing distribution showing level repulsion near $s \to 0$.

Comments

- The (un)coloured tensor models have similar features as that of SYK at finite N.
- The Hamiltonians of the tensor models belong to one of the ensembles of AAZ classification.
- Within the numerically tractable cases of the tensor models, one can see indications of chaotic behaviour similar to SYK.