Smooth Causal Patches for AdS Black Holes

Suvrat Raju

International Centre for Theoretical Sciences

27 July 2016

Bangalore Area Strings Meeting

References and Collaborators

This talk is based on

S.R, "Smooth Causal Patches for AdS Black Holes", arXiv:1604.03095.

Also based on previous work with Kyriakos Papadodimas (CERN & Groningen), Souvik Banerjee (Groningen) and Jan-Willem Bryan (Groningen) and work in progress with Sudip Ghosh (ICTS-TIFR).

Context

 The context for this talk is the Information Paradox. In its modern avatar, this turns into the question:

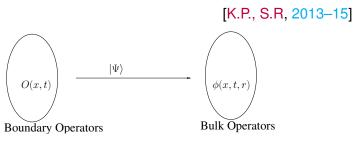
"Can Holography describe the BH Interior?"

[Mathur, Almheiri, Marolf, Polchinski, Sully, Stanford, 2009-2015]

 This version is not restricted to evaporating BHs, but also applies to thermodynamically stable large black holes in AdS.

Context

 Resolution: Paradox can be completely resolved using a state-dependent map between interior bulk observables and boundary observables.



Is this consistent? Or does it violate the linearity of QM?

Summary

 Marolf and Polchinski suggested that state-dependent constructions of the BH interior violate a general rule of statistical mechanics

"Low energy excitations in a large thermal system have small effects on observables"

 I will show that if these violations are unobservable due to causality as manifested in properties of AdS position-space correlators.

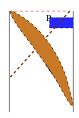
Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- 4 Resolution
- 5 Summary and Open Questions

Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- Resolution
- Summary and Open Questions

The Old Information Paradox



In the shaded patch, physics is independent of details of collapse.

$$\langle a_{\omega}^{\dagger} a_{\omega'} \rangle = \frac{e^{-\beta \omega}}{1 - e^{-\beta \omega}} \delta(\omega - \omega')$$

Suggests that for different inputs, we get the same output.

Resolution to the Old Information Paradox

- ullet Very small corrections of the order of e^{-S} can restore unitarity. [Maldacena, 2001]
- Pure density matrix in a very large system can mimic a thermal density matrix to extreme accuracy

$$\operatorname{Tr}\left(
ho_{\mathsf{pure}} \mathcal{A}_{lpha}
ight) = rac{1}{\mathcal{Z}} \operatorname{Tr}\left(\mathbf{e}^{-eta H} \mathcal{A}_{lpha}
ight) + \operatorname{O}\left(\mathbf{e}^{-rac{S}{2}}
ight),$$

for a large class of observables A_{α} .

Another way to state this is

$$ho_{
m pure} = rac{1}{\mathcal{Z}} e^{-eta H} + e^{-S}
ho_{
m corr}; \quad
ho_{
m pure}^2 =
ho_{
m pure}$$

Path Integral Perspective

- Effective field theory insufficient to control such corrections.
- A semi-classical spacetime is a saddle point of the QG path-integral.

$$\mathcal{Z}=\int \mathbf{e}^{-\mathcal{S}}\mathcal{D}g_{\mu
u}$$

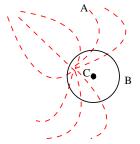
- Perturbative effective field theory (used to derive the Hawking answer) is an asymptotic series expansion of this path-integral.
- Non-perturbatively, the notion of local spacetime breaks down.

Complementarity

For example, in a very high-point correlator

$$\langle \phi(\mathbf{x}_1) \dots [\phi(\mathbf{x}_{\mathsf{out}}), \phi(\mathbf{x}_{\mathsf{in}})] \dots \phi(\mathbf{x}_{\mathcal{S}}) \rangle \neq 0.$$

 Hilbert space does not factorize into far-away region and near-horizon region.



Concrete example in empty AdS.

[S. Banerjee, J.W. Bryan, K. Papadodimas, S. R. ,2016]

Old Information Paradox: Slogan

Hawking's calculation is not precise enough to lead to a paradox.

Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- 4 Resolution
- Summary and Open Questions

Modern Information Paradox

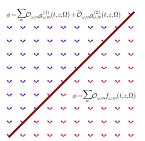
Can the black hole interior be described holographically?

This may look different from the information paradox. But it is still

Unitarity vs Effective Field Theory

Inside a Black Hole

 To describe a local field inside the black hole, we need both left and right movers.



- Can think of $\widetilde{\mathcal{O}}_{\omega,m}$ as modes that have bounced off the origin (Hawking)
- Can also think of them as modes coming from left asymptotic region of the eternal black hole.

Smoothness of the Horizon and Two-Point correlators

Smoothness of the horizon \leftrightarrow KMS condition for $\mathcal{O}_{\omega,m}$ and $\widetilde{\mathcal{O}}_{\omega,m}$

$$\begin{split} \langle \Psi | \widetilde{\mathcal{O}}_{\omega,m} \widetilde{\mathcal{O}}_{\omega',m'}^{\dagger} | \Psi \rangle &= \langle \Psi | \mathcal{O}_{\omega,m} \mathcal{O}_{\omega',m'}^{\dagger} | \Psi \rangle = \frac{1}{1 - e^{-\beta \omega}} \delta(\omega - \omega') \delta_{mm'} C_{\omega,m} \\ \langle \Psi | \widetilde{\mathcal{O}}_{\omega,m} \mathcal{O}_{\omega',m'} | \Psi \rangle &= C_{\omega,m} \frac{e^{\frac{-\beta \omega}{2}}}{1 - e^{-\beta \omega}} \delta(\omega - \omega') \delta_{mm'} \\ \langle [\mathcal{O}_{\omega,m}, \mathcal{O}_{\omega',m'}^{\dagger}] \rangle &= C_{\omega,m} \delta(\omega - \omega') \delta_{mm'} \end{split}$$

These must hold in typical states if typical states correspond to smooth-horizons.

How does one describe the $\widetilde{\mathcal{O}}_{\omega,m}$ in the CFT?

Unusual Properties of Mirror Modes

From analysis of large diffeomorphisms, we find

$$[H,\widetilde{\mathcal{O}}_{\omega}] = \omega \widetilde{\mathcal{O}}_{\omega}$$

Effective field theory requires the KMS condition

$$\langle \Psi | \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger} | \Psi \rangle = \textbf{\textit{e}}^{\beta \omega} \langle \Psi | \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega} | \Psi \rangle$$

If the black hole state is approximately thermal

$$\begin{split} \langle \Psi | \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger} | \Psi \rangle &\approx \frac{1}{Z(\beta)} \mathrm{Tr}(e^{-\beta H} \widetilde{\mathcal{O}}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger}) = \frac{1}{Z(\beta)} e^{-\beta \omega} \mathrm{Tr}(e^{-\beta H} \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega}) \\ &\approx e^{-\beta \omega} \langle \Psi | \widetilde{\mathcal{O}}_{\omega}^{\dagger} \widetilde{\mathcal{O}}_{\omega} | \Psi \rangle ? \end{split}$$

using equivalence of microcanonical and canonical ensembles, cyclicity of trace and commutator with Hamiltonian.

The Little Hilbert Space

- $|\Psi\rangle \equiv$ Black Hole Microstate
- Little Hilbert Space: all possible effective field theory excitations of $|\Psi\rangle$

$$\begin{split} \mathcal{H}_{\Psi} &= \mathcal{A} |\Psi\rangle, \\ \mathcal{A} &= \text{span}\{\mathcal{O}_{\omega_1}, \ \mathcal{O}_{\omega_1}\mathcal{O}_{\omega_2}, \dots, \mathcal{O}_{\omega_1}\mathcal{O}_{\omega_2} \dots \mathcal{O}_{\omega_K}\}. \end{split}$$

with

$$\omega_{m}\ll\mathcal{N},\quad K\ll\mathcal{N}$$

• $H_{\Psi} = H_{\text{code}}$ in QEC discussions.

Definition of $\widetilde{\mathcal{O}}_{\omega}$

• Define $\widetilde{\mathcal{O}}_{\omega}$ precisely within H_{Ψ}

$$SA_lpha|\Psi
angle=A_lpha^\dagger|\Psi
angle$$

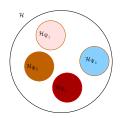
and

$$\widetilde{\mathcal{O}}_{\omega} = \mathcal{S} e^{rac{eta H}{2}} \mathcal{O}_{\omega} e^{-rac{eta H}{2}} \mathcal{S}$$

[KP, SR, 2013]

- This is closely related to the isomorphism used in Tomita-Takesaki theory.
- $\phi(t,\Omega,\lambda)$ constructed using this $\widetilde{\mathcal{O}}_{\omega}$ is a linear operator on H_{Ψ} and has the correct effective field theory correlators

State-dependence



- no single linear operator $\widetilde{\mathcal{O}}_{\omega}$ behaves correctly in all H_{ψ} .
- State-dependence means that we must use different operators $\widetilde{\mathcal{O}}_{\omega}$ in different H_{ψ} .

Consistency of State-Dependence

- State-dependence resolves all paradoxes that suggested black-hole firewalls.
- Also leads to a precise description of ER=EPR.
- "Does interior exist in holography?" ≡ "Is state-dependence consistent?"
- Rest of the talk: A paradox invented by Marolf and Polchinski (2015) to test consistency of state-dependence and its resolution.

Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- 4 Resolution
- Summary and Open Questions

A Theorem in Statistical Mechanics

 A typical state in a system with many degrees of freedom is thermal for coarse-grained probes:

$$\langle \Psi | \emph{A}_{lpha} | \Psi
angle = rac{1}{\emph{Z}(eta)} \mathrm{Tr}(\emph{e}^{-eta \emph{H}} \emph{A}_{lpha}) + O\left(rac{1}{\sqrt{\mathcal{S}}}
ight),$$

Consider a low energy excitation

$$\langle \Psi | U^{\dagger} H U | \Psi \rangle - \langle \Psi | H | \Psi \rangle = \delta E.$$

Theorem:

$$\langle \Psi | U^\dagger A_lpha U | \Psi
angle - \langle \Psi | A_lpha | \Psi
angle \leq 2 \sqrt{eta \delta E} \sigma_lpha$$
 $(\sigma_lpha^2 = \langle A_lpha^2
angle - \langle A_lpha
angle^2)$

Sketch of Proof

$$\begin{split} U: \mathcal{H}_E &\to \mathcal{H}_{E+\delta E},\\ \text{dim}(\mathcal{H}_E) &= e^{S(E)}, \quad \text{dim}(\mathcal{H}_{E+\delta E}) = e^{S(E)+\beta E} \end{split}$$

So, decompose a typical state $|\Psi_{E+\delta E}\rangle \in \mathcal{H}_{E+\delta E}$,

$$|\Psi_{E+\delta E}\rangle = (1 - \frac{\beta \delta E}{2})U|\Psi_{E}\rangle + (\beta \delta E)^{\frac{1}{2}}|\Psi_{\text{orth}}\rangle + O\left((\beta \delta E)^{\frac{3}{2}}\right).$$

Ensemble at higher energy has same temperature

$$\langle \Psi_{E+\delta E} | A_{\alpha} | \Psi_{E+\delta E} \rangle = \langle \Psi_{E} | A_{\alpha} | \Psi_{E} \rangle + O\left(\frac{1}{\sqrt{S}}\right).$$

Therefore,

$$\begin{split} &\langle \Psi_{E+\delta E} | A_\alpha | \Psi_{E+\delta E} \rangle - \langle \Psi_E | U^\dagger A_\alpha U | \Psi_E \rangle \\ &= \delta \langle A_\alpha \rangle = \sqrt{\beta \delta E} \left(\langle \Psi_E | U^\dagger A_\alpha | \Psi_{\text{orth}} \rangle + \langle \Psi_{\text{orth}} | A_\alpha U | \Psi_E \rangle \right) + \mathsf{O} \left(\beta \delta E \right). \end{split}$$

Low Energy Excitations

$$\delta \langle \mathbf{A}_{\alpha} \rangle \leq 2 \sqrt{\beta \delta \mathbf{E}} \sigma_{\alpha}$$

Low energy excitations have small effects: it is impossible to definitively excite a thermal system with energy less than kT.

Marolf-Polchinski Paradox

With

$$\mathcal{O}_{\omega} = \int_{-T}^{T} \mathcal{O}(t) e^{i\omega t} dt, \quad A_{lpha} = \mathcal{O}_{\omega} \widetilde{\mathcal{O}}_{\omega}.$$

we need, for a smooth horizon,

$$\langle \Psi | \mathcal{O}_{\omega} \widetilde{\mathcal{O}}_{\omega} | \Psi
angle = C_{\omega} \frac{e^{-\frac{eta \omega}{2}}}{1 - e^{-eta \omega}}$$

• Take $U_{\rm MP}=e^{i heta rac{\mathcal{O}_{\omega}\mathcal{O}_{\omega}^{\dagger}}{\mathcal{C}_{\omega}}}$

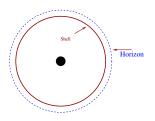
 $(C_{\alpha}) = \langle [\mathcal{O}_{\alpha}, \mathcal{O}_{\alpha}^{\dagger}] \rangle$

$$\langle \Psi | \mathit{U}_{\mathsf{MP}}^{\dagger} \mathcal{O}_{\omega} \widetilde{\mathcal{O}}_{\omega}^{\dagger} \mathit{U}_{\mathsf{MP}} | \Psi
angle = e^{i heta} \mathit{C}_{\omega} rac{e^{-rac{eta \omega}{2}}}{1 - e^{-eta \omega}}$$

• But $\delta E \propto \beta \theta^2 (\delta \omega)^2 \propto \beta \theta^2 / T^2$.

Appears to violate $\delta \langle A_{\alpha} \rangle \leq 2\sqrt{\beta \delta E} \sigma_{\alpha}$

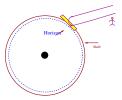
Intuition: Firewalls near the Horizon



- For every black hole with an empty interior, consider a configuration with a ultra-relativistic shell close to the horizon.
- Binding energy with BH cancels rest+kinetic energy of shell ⇒ increase in AdM energy is small.
- Paradox suggests that $\delta \langle A_{\alpha} \rangle \leq 2\sqrt{\beta \delta E} \sigma_{\alpha}$ is violated unless typical states are firewalls.

Significance of the Infalling Observer

 Paradox only inside the horizon: outside observer cannot distinguish shell from the Unruh effect.



- Technical version: operators outside the horizon given by HKLL construction; automatically obey $\delta \langle A_{\alpha} \rangle \leq 2 \sqrt{\beta \delta E} \sigma_{\alpha}$.
- Interior ops state-dependent; inequality not guaranteed.

M-P paradox is a test of whether state-dependence leads to observable violations of standard rules of statistical mechanics.

Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- 4 Resolution
- Summary and Open Questions

Resolution

- Start with an equilibrium state $|\Psi\rangle$.
- Create the excitation actively by modifying the boundary Hamiltonian

$$H_{\text{CFT}} = H_{\text{CFT}} + J(t)\mathcal{O}^{J}(t)$$

 Then, as a result of a remarkable property of position space AdS correlators

$$\delta \langle A_{\alpha} \rangle \leq 2\sqrt{\beta \delta E} \sigma_{\alpha}$$

No observer can start with an equilibrium state; excite it and jump into the horion to observe the violation.

Resolution: Alternate language

We can prove a stronger result

If the unitary U and the observable A_{α} fit in the same causal patch, we can prove $\delta \langle A_{\alpha} \rangle \leq 2\sqrt{\beta \delta E} \sigma_{\alpha}$. Therefore violations are unobservable!

Sources and Causal Patches

Deform

$$H_{\text{CFT}} = H_{\text{CFT}} + J(t)\mathcal{O}^J(t)$$

Then, bulk observables modified to

$$\phi^{J}(t, r_*, \Omega) = \overline{\mathcal{T}}\{e^{i\int_{\vartheta}^{t+r_*} J(x)\mathcal{O}(x)dx}\}\phi(t, r_*, \Omega)\mathcal{T}\{e^{-i\int_{\vartheta}^{t+r_*} J(x)\mathcal{O}(x)dx}\}.$$

Only the part of the source in the causal past of the bulk point affects the field there.

Therefore the differences

$$\langle \phi^{J}(t_1, r_{*1}, \Omega_1) \dots \phi^{J}(t_n, r_{*n}, \Omega_n) \rangle - \langle \phi(t_1, r_{*1}, \Omega_1) \dots \phi(t_n, r_{*n}, \Omega_n) \rangle$$

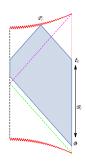
with pts in same causal patch obey constraints of statistical mechanics.

Causal Patches

$$U=e^{i\int_{\vartheta}^{t_{\mathcal{C}}}A(t)dt}.$$

A(t) is a simple boundary operator. With x_i in causal patch of t_c

$$\delta = \langle \Psi | U^{\dagger} \phi(x_1) \dots \phi(x_n) U | \Psi \rangle - \langle \Psi | \phi(x_1) \dots \phi(x_n) | \Psi \rangle$$



Most general test of inequality possible within constraints of causality.

Summary of Resolution

For this observable

$$\delta \leq 2\sqrt{\beta\delta E}\sigma.$$

as a result of a very non-trivial property of position-space AdS correlators.

So, no observer or army of observers can detect a violation of the inequality by doing experiments that obey the constraints imposed by bulk causality.

Sketch of Proof

From the definition of mirror operators

$$\widetilde{\phi}_r(t,r_*,\Omega)A_{\alpha}U|\Psi
angle=A_{\alpha}Ue^{rac{-eta H}{2}}\widehat{\phi}(t,r_*,\Omega)e^{rac{eta H}{2}}|\Psi
angle.$$

where $\widehat{\phi}(t, r_*, \Omega)$ is an ordinary operator.

Main technical step is

$$[\widehat{\phi}(t_1, r_{*1}, \Omega_1), \mathcal{O}(t_2, \Omega_2)] = 0.$$

where $\mathcal{O}(t_2,\Omega_2)$ is a boundary operator and point 1 is behind the horizon but in the same causal patch as point 2.

Sketch of Proof

So

$$\langle \Psi | U A_{\alpha} \widetilde{\phi}_{r}(t, r_{*}, \Omega) U^{\dagger} | \Psi \rangle = \langle \Psi | U A_{\alpha} e^{-\frac{\beta H}{2}} \widehat{\phi}(t, r_{*}, \Omega) e^{\frac{\beta H}{2}} U^{\dagger} | \Psi \rangle + O(\beta \delta E).$$

But then

$$\begin{split} &\langle \Psi | \textit{UA}_{\alpha} \widetilde{\phi}_{\textit{r}}(t,\textit{r}_{*},\Omega) \textit{U}^{\dagger} | \Psi \rangle - \langle \Psi | \textit{A}_{\alpha} \widetilde{\phi}_{\textit{r}}(t,\textit{r}_{*},\Omega) | \Psi \rangle \\ &= \langle \Psi | \textit{UA}_{\alpha} \textit{e}^{-\frac{\beta H}{2}} \widehat{\phi}(t,\textit{r}_{*},\Omega) \textit{e}^{\frac{\beta H}{2}} \textit{U}^{\dagger} | \Psi \rangle - \langle \Psi | \textit{A}_{\alpha} \textit{e}^{-\frac{\beta H}{2}} \widehat{\phi}(t,\textit{r}_{*},\Omega) \textit{e}^{\frac{\beta H}{2}} | \Psi \rangle \\ &+ O\left(\beta \delta \textit{E}\right). \end{split}$$

Correlator on right is just an ordinary correlator; automatically obeys $\delta \leq 2\sqrt{\beta\delta E}\sigma$.

Therefore, the correlator of mirror operators in the same causal patch as \boldsymbol{U} also obeys the constraints of statistical mechanics.

Resolution of the Marolf-Polchinski Paradox: Summary

- In frequency space, the state-dependence of mirror operators is manifested as an anomalously large change in correlators under low-energy excitations.
- When we consider position space observables in the same causal patch as the excitation, these anomalous transformations cancel.
- So, the anomalous properties of the interior state-dependent operators are not visible in any physical experiment.

Outline

- The Old Information Paradox
- 2 Holography and the BH Interior
- The Paradox of Low Energy Excitations
- 4 Resolution
- 5 Summary and Open Questions

Summary

- The modern information paradox can be rephrased as a question about the existence of CFT operators dual to bulk fields.
- Can be resolved using a state-dependent map between boundary and bulk fields.
- Question is whether state-dependence is consistent.

Summary

 Marolf-Polchinski suggested that state-dependence contradicts a general rule of statistical mechanics.

$$\langle \Psi | U^{\dagger} A_{\alpha} U | \Psi \rangle - \langle \Psi | A_{\alpha} | \Psi \rangle \leq 2 \sqrt{\beta \delta E} \sigma_{\alpha}$$

"low-energy excitations have small effects."

- Here, we argued that this paradox is unobservable.
- If we consider boundary excitations U and local bulk observables A_{α} in the same causal patch as U then the inequality is obeyed.
- Non-trivial property of position-space AdS correlators.

Open Question

- This shows that it is possible to describe the BH interior holographically and consistently.
- But, why is this the "correct description"?
- Requires a dynamical understanding of why the bulk-observer measures the fields he does.
- Analogous to the Unruh-de Witt answer for why a particular observer uses a particular definition of "particle number"; here we want to explain why a specific CFT operator is the correct local bulk field ϕ .

Appendix

Autonomously Excited States

Consider

$$|\Psi^{\mathsf{ne}}\rangle = U(\tau)|\Psi\rangle,$$

as an autonomously excited state.

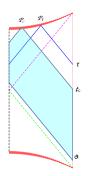
- On the boundary, think of $|\Psi^{ne}\rangle$ as a fluid about to undergo a spontaneous excitation around τ .
- What does an infalling observer in $|\Psi^{ne}\rangle$ experience?

Paradox in Spontaneously Excited States

If an observer can prepare $U(\tau)|\Psi\rangle$ and compare with $|\Psi\rangle$

$$\delta = \langle \Psi | U(\tau)^{\dagger} \phi(x_1) \dots \phi(x_n) U(\tau) | \Psi \rangle - \langle \Psi | \phi(x_1) \dots \phi(x_n) | \Psi \rangle$$

where x_i are in a causal patch but τ is beyond the causal patch, then he would observe a violation of $\delta \leq 2\sqrt{\beta\delta E}\sigma$.



(Would also observe a violation of the second law of thermodynamics!).

Proposal of Causal Patch Complementarity

Write

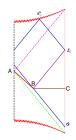
$$U(\tau) = U^{\mathcal{C}} \widehat{V}^{\mathcal{C}},$$

where

$$U^{\mathcal{C}} = e^{i\int_{\vartheta}^{t_{\mathcal{C}}} A_{\gamma}(t)dt}$$

and, $\forall A_{\alpha}(t)$ with $t < t_{\mathcal{C}}$,

$$\langle \Psi | U(\tau)^{\dagger} A_{\alpha}(t) U(\tau) | \Psi \rangle = \langle \Psi | U^{\mathcal{C}} A_{\alpha}(t) U^{\mathcal{C}} | \Psi \rangle$$



Proposal of Causal Patch Complementarity

Fields appropriate for causal patch corresponding to t_C satisfy

$$\langle \Psi | U^{\dagger} \phi_{\mathcal{C}}(x_1) \dots \phi_{\mathcal{C}}(x_n) U | \Psi \rangle = \langle \Psi | U^{\mathcal{C}^{\dagger}} \phi(x_1) \dots \phi(x_n) U^{\mathcal{C}} | \Psi \rangle,$$

Infalling observer is only sensitive to "part of the boundary excitation in the same patch as the observer"

Consequences: Causal Patch Complementarity

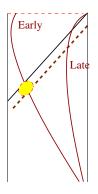
Ensures that

$$\delta = \langle \Psi | U^{\dagger} \phi_{\mathcal{C}}(x_1) \dots \phi_{\mathcal{C}}(x_n) U | \Psi \rangle - \langle \Psi | \phi_{\mathcal{C}}(x_1) \dots \phi_{\mathcal{C}}(x_n) | \Psi \rangle$$

satisfies $\delta \leq 2\sqrt{\beta\delta E}\sigma$ for all *U* provided $x_1, \dots x_n$ are in a single causal patch.

- Correlators of $\phi_{\mathcal{C}}$ and the HKLL ϕ agree in all equilibrium states and in all equilibrium states excited with a source.
- For spontaneously excited states, this modifies HKLL outside the horizon.

Example: Stanford-Shenker State



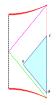
Observer outside infers that the early observer had a trans-Planckian collision. But early observer perceives a smooth geometry.

['t Hooft, Susskind, Thorlacius, Uglum, Kiem, Verlinde², 85–95]

Teleological Property of HKLL Construction

 In empty AdS, HKLL construction is causal. But, in the presence of a black hole, HKLL construction is teleological

$$\phi_{\mathsf{HKLL}}(x) = \int O(t)K(t,x)dt$$



- Fields ϕ_{HKLL} and $\phi_{\mathcal{C}}$ differ in their response to future excitations in spontaneously excited states.
- How does observer at x "know" whether he should use ϕ_{HKLL} or ϕ_{caus} ?