Yang-Mills Matrix Model Coupled to Fermions Superselection Sectors and Quantum Phases

Sachindeo Vaidya

Centre for High Energy Physics, Indian Institute of Science, Bangalore

Bangalore Area String Meeting ICTS, Bangalore 26 July 2016

- Joint work with Mahul Pandey arXiv:1606.05466

Introduction

(1) Pure Yang-Mills Theory

(2) Matrix Model for Yang-Mills

(3) Adding Fermions

4 Born-Oppenheimer Approximation
(5) Fermion Energies

6 Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Matrix Model for Yang-Mills
(3) Adding Fermions

Born-Oppenheimer Approximation

(5) Fermion Energies
6) Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Matrix Model for Yang-Mills
(3) Adding Fermions

Born-Oppenheimer Approximation
5 Fermion Energies

- Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Matrix Model for Yang-Mills
(3) Adding Fermions
4. Born-Oppenheimer Approximation
(5) Fermion Energies

6 Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Matrix Model for Yang-Mills
(3) Adding Fermions
4. Born-Oppenheimer Approximation
(5) Fermion Energies
6) Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Introduction

(1) Pure Yang-Mills Theory
(2) Matrix Model for Yang-Mills
(3) Adding Fermions
4. Born-Oppenheimer Approximation
(5) Fermion Energies

6 Quantum Phases of $S U(2)$ Yang-Mills-Dirac Theory

Review of YM Theory

- What are the physical states of Yang-Mills-Dirac theory?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Even at zero temperature, QCD displays diverse phases: vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor locking,

Review of YM Theory

- What are the physical states of Yang-Mills-Dirac theory?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Even at zero temperature, QCD displays diverse phases: vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor locking,

Review of YM Theory

- What are the physical states of Yang-Mills-Dirac theory?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Even at zero temperature, QCD displays diverse phases: vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor locking,....

Review of YM Theory

- What are the physical states of Yang-Mills-Dirac theory?
- Wide implications: confinement, chiral symmetry breaking, color superconductivity,
- Even at zero temperature, QCD displays diverse phases: vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor locking,....

YM Matrix Model

- Many of these phases have uniform chromo-magnetic (or electric) fields, and fermions with uniform density (condensates).
- We will try to describe this phase structure by quantizing these spatially homogeneous degrees of freedom.
- More precisely, we study YM theory on $S^{3} \times \mathbb{R}$ and restrict to the zero mode sector.
- This is simply the Yang-Mills-Dirac matrix model.

YM Matrix Model

- Many of these phases have uniform chromo-magnetic (or electric) fields, and fermions with uniform density (condensates).
- We will try to describe this phase structure by quantizing these spatially homogeneous degrees of freedom.
- More precisely, we study YM theory on $S^{3} \times \mathbb{R}$ and restrict to the zero mode sector.
- This is simply the Yang-Mills-Dirac matrix model.

YM Matrix Model

- Many of these phases have uniform chromo-magnetic (or electric) fields, and fermions with uniform density (condensates).
- We will try to describe this phase structure by quantizing these spatially homogeneous degrees of freedom.
- More precisely, we study YM theory on $S^{3} \times \mathbb{R}$ and restrict to the zero mode sector.
- This is simply the Yang-Mills-Dirac matrix model.

YM Matrix Model

- Many of these phases have uniform chromo-magnetic (or electric) fields, and fermions with uniform density (condensates).
- We will try to describe this phase structure by quantizing these spatially homogeneous degrees of freedom.
- More precisely, we study YM theory on $S^{3} \times \mathbb{R}$ and restrict to the zero mode sector.
- This is simply the Yang-Mills-Dirac matrix model.

Case of $S U(2)$

- An intrinsic derivation of the matrix model comes from the work of Narasimhan and Ramadas (1979).
- The key idea for $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$:
- They consider a special subset of left-invariant connections

$$
\omega=\left(\operatorname{Tr} \tau_{i} U^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv M_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- An intrinsic derivation of the matrix model comes from the work of Narasimhan and Ramadas (1979).
- The key idea for $S U(2) \mathrm{YM}$ theory on $S^{3} \times \mathbb{R}$:
- They consider a special subset of left-invariant connections $\omega=\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv \mathcal{M}_{0}$. - This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- An intrinsic derivation of the matrix model comes from the work of Narasimhan and Ramadas (1979).
- The key idea for $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$:
- They consider a special subset of left-invariant connections

$$
\omega=\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv \mathcal{M}_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- An intrinsic derivation of the matrix model comes from the work of Narasimhan and Ramadas (1979).
- The key idea for $S U(2)$ YM theory on $S^{3} \times \mathbb{R}$:
- They consider a special subset of left-invariant connections

$$
\omega=\left(\operatorname{Tr} \tau_{i} u^{-1} d u\right) M_{i j} \tau_{j}, \quad u \in S U(2), M \in M_{3}(\mathbb{R}) \equiv \mathcal{M}_{0}
$$

- This connection is pulled back to spatial S^{3} using $S^{3} \rightarrow S U(2)$.

Case of $S U(2)$

- The set of such ω 's is preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or equivalently, $M \rightarrow M R(v)^{T}$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3.
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- The matrix model for $S U(2)$ comes from this matrix $M_{i j}$.

Case of $S U(2)$

- The set of such ω 's is preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or equivalently, $M \rightarrow M R(v)^{T}$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- The matrix model for $S U(2)$ comes from this matrix $M_{i j}$.

Case of $S U(2)$

- The set of such ω 's is preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or equivalently, $M \rightarrow M R(v)^{T}$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- The matrix model for $\operatorname{SU}(2)$ comes from this matrix $M_{i j}$.

Case of $S U(2)$

- The set of such ω 's is preserved under global $\operatorname{SU(2)}$ adjoint action $\omega \rightarrow v \omega v^{-1}$, or equivalently, $M \rightarrow M R(v)^{T}$.
- The action of $S O(3)$ on \mathcal{M}_{0} is free for all matrices with rank 2 or 3 .
- This gives a fibre bundle $S O(3) \rightarrow \mathcal{M}_{0} \rightarrow \mathcal{M}_{0} / S O(3)$.
- The matrix model for $S U(2)$ comes from this matrix $M_{i j}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in \operatorname{SU}(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $\operatorname{SU}(3)$ representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i_{\epsilon j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in \operatorname{SU}(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $\operatorname{SU}(3)$ representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

Case of $S U(3)$

- Start with the left-invariant one-form on $\operatorname{SU(3)}$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on SU(3) representing λ $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

Case of $S U(3)$

- Start with the left-invariant one-form on $\operatorname{SU(3)}$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i} $(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.

Case of $S U(3)$

- Start with the left-invariant one-form on $S U(3)$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i}
$(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

Case of $S U(3)$

- Start with the left-invariant one-form on $\operatorname{SU(3)}$:

$$
\Omega=\operatorname{Tr}\left(\frac{\lambda}{2} u^{-1} d u\right) M_{a b} \lambda_{b}, \quad u \in S U(3) .
$$

- Here M is a 8×8 real matrix.
- Map the spatial S^{3} diffeomorphically to $S U(2) \subset S U(3)$.
- $X_{i} \equiv$ vector fields for right action on $S U(3)$ representing λ_{i}
$(i=1,2,3)$, then $\left[X_{i}, X_{j}\right]=i \epsilon_{i j k} X_{k}$.
- $\Omega\left(X_{i}\right)=-M_{i b} \frac{\lambda_{b}}{2}$.
- This gives us the gauge potential $A_{j}=-i M_{i b} \frac{\lambda_{b}}{2}$

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

- For $S U(3)$, the M 's are 3×8 matrices.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

- For $S U(3)$, the M 's are 3×8 matrices.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } \quad M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.

SU(3) Yang-Mills

- The M's parametrize a submanifold of connections \mathcal{A}.
- They have no spatial dependence: we have completely gauge-fixed the "small" gauge transformations.
- Only the global transformations are left - the ones responsible for the Gribov problem.
- Global color SU(3) acts on the vector potential:

$$
A_{j} \rightarrow h A_{j} h^{-1}, \quad \text { or } \quad M \rightarrow M(A d h)^{T}, \quad h \in S U(3)
$$

- For $S U(3)$, the M 's are 3×8 matrices.

Configuration space of $S U(N)$ YM Matrix Model

- More generally, The configuration space \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} S U(N)$.
- This space has dimension $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (but not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\mathrm{Ad} \operatorname{SU}(\mathrm{N})$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.
- The M's are constant gauge fields on S^{3}, so perhaps this approximation can capture the condensate dynamics of YM theory.

Configuration space of $S U(N)$ YM Matrix Model

- More generally, The configuration space \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} S U(N)$.
- This space has dimension $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (but not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.
- The M's are constant gauge fields on S^{3}, so perhaps this approximation can capture the condensate dynamics of YM theory.

Configuration space of $S U(N)$ YM Matrix Model

- More generally, The configuration space \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} \operatorname{SU}(N)$.
- This space has dimension $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (but not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} S U(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.
- The M's are constant qauqe fields on S^{3}, so perhaps this approximation can capture the condensate dynamics of YM theory.

Configuration space of $S U(N)$ YM Matrix Model

- More generally, The configuration space \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} \operatorname{SU}(N)$.
- This space has dimension $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (but not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.

Configuration space of $S U(N)$ YM Matrix Model

- More generally, The configuration space \mathcal{C} for pure $\operatorname{SU}(N)$ is $M_{3, N^{2}-1}(\mathbb{R}) / \operatorname{Ad} S U(N)$.
- This space has dimension $3\left(N^{2}-1\right)-\left(N^{2}-1\right)=2\left(N^{2}-1\right)$ (but not so at fixed points).
- Wavefunctions are sections of vector bundles on \mathcal{C} that transform according to representations of $\operatorname{Ad} \operatorname{SU}(N)$.
- Those transforming according to the trivial representation are colorless, which those transforming nontrivially are coloured.
- The M's are constant gauge fields on S^{3}, so perhaps this approximation can capture the condensate dynamics of YM theory.

YM Matrix Model

- Recall that the YM Hamiltonian is

$$
H_{Y M}=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantization: $\left[M_{i a}, \Pi_{j b}\right]=i_{i j} \delta_{a b} . \quad\left(\Pi_{j b}=E_{j b}\right)$
- The above can easily be generalised to $S U(N) Y M$ theory.

YM Matrix Model

- Recall that the YM Hamiltonian is

$$
H_{Y M}=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M M_{i a}}{d t}$ the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantization: $\left[M_{i a}, \Pi_{i b}\right]=i \delta_{i j} \delta_{a b} . \quad\left(\Pi_{j b}=E_{j b}\right)$
- The above can easily be generalised to $S U(N) Y M$ theory.

YM Matrix Model

- Recall that the YM Hamiltonian is

$$
H_{Y M}=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right) .
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantization: $\left[M_{i a}, \Pi_{j b}\right]=i \delta_{i j} \delta_{a b} . \quad\left(\Pi_{j b}=E_{j b}\right)$
- The above can easily be generalised to $S U(N)$ YM theory.

YM Matrix Model

- Recall that the YM Hamiltonian is

$$
H_{Y M}=\frac{1}{2} \int d^{3} x \operatorname{Tr}\left(g^{2} E_{i} E_{i}+\frac{1}{g^{2}} F_{i j}^{2}\right)
$$

- For the matrix model, $M_{i a}$ are the dynamical variables, and the (Legendre transform of) $\frac{d M_{i a}}{d t}$ the conjugate of $M_{i a}$.
- We identify this conjugate operator as the matrix model chormoelectric field $E_{i a}$.
- Quantization: $\left[M_{i a}, \Pi_{j b}\right]=i \delta_{i j} \delta_{a b} . \quad\left(\Pi_{j b}=E_{j b}\right)$
- The above can easily be generalised to $S U(N)$ YM theory.

Quantization of the Matrix Model

- The reduced matrix model Hamiltonian is

$$
H=\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)
$$

- The quantum Hamiltonian is

It acts on the Hilbert space of functions $\psi(M)$ with scalar product

$$
\left(\psi_{1}, \psi_{2}\right)=\int \prod_{i, a} d M_{i a} \bar{\psi}_{1}(M) \psi_{2}(M)
$$

- Physical states obey Gauss law constraint:

Quantization of the Matrix Model

- The reduced matrix model Hamiltonian is

$$
H=\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)
$$

- The quantum Hamiltonian is

$$
H=-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)
$$

It acts on the Hilbert space of functions $\psi(M)$ with scalar product

$$
\left(\psi_{1}, \psi_{2}\right)=\int \prod_{i, a} d M_{i a} \bar{\psi}_{1}(M) \psi_{2}(M)
$$

- Physical states obey Gauss law constraint: $G_{a}|\psi\rangle=\epsilon_{a b c} \Pi_{i a} M_{i b}|\psi\rangle=0$.

Quantization of the Matrix Model

- The reduced matrix model Hamiltonian is

$$
H=\left(\frac{g^{2} E_{i a} E_{i a}}{2}+V(M)\right)
$$

- The quantum Hamiltonian is

$$
H=-\frac{g^{2}}{2} \sum_{i, a} \frac{\partial^{2}}{\partial M_{i a}^{2}}+V(M)
$$

It acts on the Hilbert space of functions $\psi(M)$ with scalar product

$$
\left(\psi_{1}, \psi_{2}\right)=\int \prod_{i, a} d M_{i a} \bar{\psi}_{1}(M) \psi_{2}(M)
$$

- Physical states obey Gauss law constraint:

$$
G_{a}|\psi\rangle=\epsilon_{a b c} \Pi_{i a} M_{i b}|\psi\rangle=0
$$

Rotations, Gauge transformations and SVD

- Return to $S U(2):$
- Physical rotations act on the left $M \rightarrow g M$, gauge transformations act on the right $M \rightarrow M h^{\top}$.
- A natural decomposition of $M_{3}(\mathbb{R})$ is thus in terms of Singular Value Decomposition:
- $M=R A S^{T}$, where R and S are orthogonal matrices, and A is a diagonal matrix with non-negative entries a_{i}, which we arrange as $a_{1} \geq a_{2} \geq a_{3} \geq 0$.
- Rank of M is the number of non-zero a_{i} 's.

Rotations, Gauge transformations and SVD

- Return to $S U(2)$:
- Physical rotations act on the left $M \rightarrow g M$, gauge transformations act on the right $M \rightarrow M h^{T}$.
- A natural decomposition of $M_{3}(\mathbb{R})$ is thus in terms of Singular Value Decomposition:
- $M=R A S^{\top}$, where R and S are orthogonal matrices, and A is a diagonal matrix with non-negative entries a_{i}, which we arrange as $a_{1} \geq a_{2} \geq a_{3} \geq 0$.
- Rank of M is the number of non-zero aj's.

Rotations, Gauge transformations and SVD

- Return to $S U(2)$:
- Physical rotations act on the left $M \rightarrow g M$, gauge transformations act on the right $M \rightarrow M h^{T}$.
- A natural decomposition of $M_{3}(\mathbb{R})$ is thus in terms of Singular Value Decomposition:
- $M=R A S^{T}$, where R and S are orthogonal matrices, and A is a diagonal matrix with non-negative entries a_{i}, which we arrange as $a_{1} \geq a_{2} \geq a_{3} \geq 0$.
- Rank of M is the number of non-zero a_{i} 's.

Rotations, Gauge transformations and SVD

- Return to $S U(2)$:
- Physical rotations act on the left $M \rightarrow g M$, gauge transformations act on the right $M \rightarrow M h^{T}$.
- A natural decomposition of $M_{3}(\mathbb{R})$ is thus in terms of Singular Value Decomposition:
- $M=R A S^{T}$, where R and S are orthogonal matrices, and A is a diagonal matrix with non-negative entries a_{i}, which we arrange as $a_{1} \geq a_{2} \geq a_{3} \geq 0$.
- Rank of M is the number of non-zero a_{j} 's.

Rotations, Gauge transformations and SVD

- Return to $S U(2)$:
- Physical rotations act on the left $M \rightarrow g M$, gauge transformations act on the right $M \rightarrow M h^{T}$.
- A natural decomposition of $M_{3}(\mathbb{R})$ is thus in terms of Singular Value Decomposition:
- $M=R A S^{T}$, where R and S are orthogonal matrices, and A is a diagonal matrix with non-negative entries a_{i}, which we arrange as $a_{1} \geq a_{2} \geq a_{3} \geq 0$.
- Rank of M is the number of non-zero a_{i} 's.

Fermions make things interesting!

- Realistic models have fermions.
- They transform according to some representation of the gauge group.
- We will consider massless fundamental fermions (quarks!).
- They (may) come in several flavors N_{f}, and hence additional symmetry $U\left(N_{f}\right)$.

Fermions make things interesting!

- Realistic models have fermions.
- They transform according to some representation of the gauge group.
- We will consider massless fundamental fermions (quarks!).
- They (may) come in several flavors N_{f}, and hence additional symmetry $U\left(N_{f}\right)$.

Fermions make things interesting!

- Realistic models have fermions.
- They transform according to some representation of the gauge group.
- We will consider massless fundamental fermions (quarks!).
- They (may) come in several flavors N_{f}, and hence additional symmetry $U\left(N_{f}\right)$.

Fermions make things interesting!

- Realistic models have fermions.
- They transform according to some representation of the gauge group.
- We will consider massless fundamental fermions (quarks!).
- They (may) come in several flavors N_{f}, and hence additional symmetry $U\left(N_{f}\right)$.
- We first look at a single fundamental Weyl fermion.
- The fundamental fermions couple to the gauge field via

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.
- The second term is the analog of $\psi^{\dagger} \gamma_{i} A_{i} \psi$.
- We first look at a single fundamental Weyl fermion.
- The fundamental fermions couple to the gauge field via

$$
H^{f f} \equiv \frac{1}{g^{2}}\left(-\left(\lambda^{A}\right)^{\dagger} \lambda^{A}-\frac{1}{2}\left(\tau_{b}\right)_{A C}\left(\lambda^{A}\right)^{\dagger} \sigma_{i} \lambda^{C} M_{i b}\right)=\left(\lambda_{A}\right)^{\dagger} \mathcal{H}_{A B}^{f f} \lambda_{B}
$$

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.
- The second term is the analog of $\psi^{\dagger} \gamma_{i} A_{i} \psi$.
- We first look at a single fundamental Weyl fermion.
- The fundamental fermions couple to the gauge field via

$$
H^{f t} \equiv \frac{1}{g^{2}}\left(-\left(\lambda^{A}\right)^{\dagger} \lambda^{A}-\frac{1}{2}\left(\tau_{b}\right)_{A C}\left(\lambda^{A}\right)^{\dagger} \sigma_{i} \lambda^{C} M_{i b}\right)=\left(\lambda_{A}\right)^{\dagger} \mathcal{H}_{A B}^{f f} \lambda_{B}
$$

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.
- The second term is the analog of $\psi^{\dagger} \gamma_{i} A_{i} \psi$.
- We first look at a single fundamental Weyl fermion.
- The fundamental fermions couple to the gauge field via

$$
H^{f t} \equiv \frac{1}{g^{2}}\left(-\left(\lambda^{A}\right)^{\dagger} \lambda^{A}-\frac{1}{2}\left(\tau_{b}\right)_{A C}\left(\lambda^{A}\right)^{\dagger} \sigma_{i} \lambda^{C} M_{i b}\right)=\left(\lambda_{A}\right)^{\dagger} \mathcal{H}_{A B}^{f f} \lambda_{B}
$$

- The first term is curvature term on S^{3}. We ignore it henceforth, it only contributes an additive constant to the energy.
- The second term is the analog of $\psi^{\dagger} \gamma_{i} \boldsymbol{A}_{i} \psi$.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.
- The total Hamiltonian is $H=H_{Y M}+H^{f f}$.
- Solve $H \psi^{E}=E \psi^{E}$.
- We look at $g \ll 1$, but rather than do perturbation theory, quantize in two steps:
- First treat the gauge field as a (background) fixed field and quantize the fermions.
- Then quantize the gauge field.
- This is same as Born-Oppenheimer in, say, molecular physics:
- "Slow" nuclear variables \leftrightarrow gauge field $M_{i a}$.
- "Fast" electronic variables \leftrightarrow fermions.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$.
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes 1_{\text {fast }}$.
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes 1_{\text {fast }}$.
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes \mathbf{1}_{\text {fast }}$.
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$.
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes 1_{\text {fast }}$.
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$.
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes \mathbf{1}_{\text {fast }}$. the "slow" degrees.

Born-Oppenheimer quantization

- Total Hilbert space $\mathcal{H} \simeq \mathcal{H}^{\text {slow }} \otimes \mathcal{H}^{\text {fast }}$.
- First solve $H^{f f}|n(M) ; M\rangle=E_{n}(M)|n(M) ; M\rangle$
- Basis vectors of \mathcal{H} are of the form $|M\rangle \tilde{\otimes}|n(M)\rangle$.
- So $\langle M ; n(M)| \Pi_{i a}|\Psi\rangle \neq-i \frac{\partial}{\partial M_{i a}}\langle M ; n(M) \mid \Psi\rangle$.
- Instead, we must derive the matrix element of $\Pi_{i a} \equiv \Pi_{i a} \otimes \mathbf{1}_{\text {fast }}$.
- Computing $\langle n(M)| H|n(M)\rangle$ gives us the effective Hamiltonian for the "slow" degrees.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

$$
\Phi=\operatorname{Tr}\left[P_{n}\left(\partial_{i a} H^{f f}\right) Q_{n}\left(\frac{1}{H-E_{n}}\right)^{2} Q_{n}\left(\partial_{i a} H^{f f}\right) P_{n}\right], \quad Q_{n}=1-P_{n}
$$

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

$$
\Phi=\operatorname{Tr}\left[P_{n}\left(\partial_{i a} H^{f f}\right) Q_{n}\left(\frac{1}{H-E_{n}}\right)^{2} Q_{n}\left(\partial_{i a} H^{f f}\right) P_{n}\right], \quad Q_{n}=\mathbf{1}-P_{n}
$$

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The discussion is simplest in terms of projectors $P_{n}=|n(M)\rangle\langle n(M)|$.
- Then the effective Hamiltonian is simply

$$
\frac{g^{2}}{2}(\Pi-\mathcal{A}) \cdot(\Pi-\mathcal{A})+V(M)+\frac{g^{2}}{2} \Phi(M)+E_{n}(M)
$$

where \mathcal{A} is the adiabatic gauge potential $P_{n} d$, and

$$
\Phi=\operatorname{Tr}\left[P_{n}\left(\partial_{i a} H^{f f}\right) Q_{n}\left(\frac{1}{H-E_{n}}\right)^{2} Q_{n}\left(\partial_{i a} H^{f f}\right) P_{n}\right], \quad Q_{n}=\mathbf{1}-P_{n}
$$

- If E_{n} is g_{0}-fold degenerate then LHS of above is $g_{0} \Phi$.
- Goal: compute Φ, and use it to study effective dynamics.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- Φ (or $\left.a_{I, J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{I} P\right)\left(\partial_{J} P\right) P\right]=g_{I J}+\frac{i}{2} F_{I J} \\
\Phi & =\delta_{I J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- $\Phi\left(\right.$ or $\left.a_{I, l}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{l} P\right)\left(\partial_{J} P\right) P\right]=g_{I J}+\frac{i}{2} F_{I J} \\
\Phi & =\delta_{I J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- $\Phi\left(\right.$ or $\left.g_{i J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.
- The scalar potential Φ is versatile, appears in diverse settings.
- Related to the real part of the quantum geometric tensor

$$
\begin{aligned}
G_{I J} & =\frac{1}{g_{0}} \operatorname{Tr}\left[P\left(\partial_{l} P\right)\left(\partial_{J} P\right) P\right]=g_{l J}+\frac{i}{2} F_{l J} \\
\Phi & =\delta_{l J} g_{I J}
\end{aligned}
$$

- $g_{I J}$ is a Riemannian metric, a measure of distance between pure states represented by projectors $P\left(x_{l}\right)$ and $P\left(x_{l}+d x_{l}\right)$.
- For adiabatic evolution, it is a measure of operator fidelity between the adiabatic Hamiltonian and the true Hamiltonian.
- $\Phi\left(\right.$ or $\left.g_{I J}\right)$ is used to hunt for quantum phase transitions (QPTs), as the latter often defy the standard Landau-Ginzburg paradigm.

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- The 1 -fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} C_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle, A=(\alpha$, a).
- The $c_{A}(M)$ are complex functions of $M_{i a} ; \lambda, \lambda^{\dagger}$ obey $\left\{\lambda_{A},\left(\lambda_{B}\right)^{\dagger}\right\}=\delta_{A B}, \lambda_{A}|0\rangle=0$.
- For 1-fermion states, $H^{f f}\left|\psi^{(1)}\right\rangle=\mathbb{E}\left|\psi^{(1)}\right\rangle$ becomes:

- That is, we want to investigate

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- The 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle, A=(\alpha, a)$.
- The $c_{A}(M)$ are complex functions of $M_{i a} ; \lambda, \lambda^{\dagger}$ obey $\left\{\lambda_{A},\left(\lambda_{B}\right)^{\dagger}\right\}=\delta_{A B}, \lambda_{A}|0\rangle=0$.
- For 1-fermion states, $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

- That is, we want to investigate

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- The 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle, A=(\alpha, a)$.
- The $c_{A}(M)$ are complex functions of $M_{i a} ; \lambda, \lambda^{\dagger}$ obey $\left\{\lambda_{A},\left(\lambda_{B}\right)^{\dagger}\right\}=\delta_{A B}, \lambda_{A}|0\rangle=0$.
- For 1-fermion states, $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

- That is, we want to investigate

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- The 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle, A=(\alpha, a)$.
- The $c_{A}(M)$ are complex functions of $M_{i a} ; \lambda, \lambda^{\dagger}$ obey $\left\{\lambda_{A},\left(\lambda_{B}\right)^{\dagger}\right\}=\delta_{A B}, \lambda_{A}|0\rangle=0$.
- For 1-fermion states, $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

$$
\mathcal{H}_{A B}^{f f} c_{B}=E c_{A}, \quad \mathcal{H}^{f f}=-\frac{1}{2} \sigma_{i} \otimes \tau_{a} M_{i a}
$$

- That is, we want to investigate

Φ for YM fermions

- We will compute Φ for fundamental fermions coupled to the Yang-Mills field $M_{i a}$.
- The 1-fermion states $\left|\psi^{(1)}\right\rangle=\sum_{A} c_{A}(M)\left(\lambda_{A}\right)^{\dagger}|0\rangle, A=(\alpha, a)$.
- The $c_{A}(M)$ are complex functions of $M_{i a} ; \lambda, \lambda^{\dagger}$ obey $\left\{\lambda_{A},\left(\lambda_{B}\right)^{\dagger}\right\}=\delta_{A B}, \lambda_{A}|0\rangle=0$.
- For 1-fermion states, $H^{f f}\left|\psi^{(1)}\right\rangle=E\left|\psi^{(1)}\right\rangle$ becomes:

$$
\mathcal{H}_{A B}^{f f} c_{B}=E c_{A}, \quad \mathcal{H}^{f f}=-\frac{1}{2} \sigma_{i} \otimes \tau_{a} M_{i a}
$$

- That is, we want to investigate

$$
\operatorname{det}\left(\mathcal{H}_{A B}^{f f}-\lambda \mathbb{I}\right)=0
$$

Fundamental Fermions

- The eigenvalue equation $H^{f f}|\psi\rangle=E|\psi\rangle$ is now an eigenvalue equation for a 4×4 matrix.
- The characteristic equation (with $\left.x=\frac{g^{2} E}{\left(\frac{1}{3} \operatorname{Tr} M^{T} M\right)^{1 / 2}}\right)$ is

where

Fundamental Fermions

- The eigenvalue equation $H^{f f}|\psi\rangle=E|\psi\rangle$ is now an eigenvalue equation for a 4×4 matrix.
- The characteristic equation (with $\left.x=\frac{g^{2} E}{\left(\frac{1}{3} \operatorname{Tr} M^{T} M\right)^{1 / 2}}\right)$ is

$$
x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}=0
$$

where

$$
\mathbf{g} \equiv \frac{\operatorname{det} M}{\left(\frac{1}{3} \operatorname{Tr}\left(M^{T} M\right)\right)^{3 / 2}}, \quad \mathbf{h} \equiv \frac{1}{16}\left[\frac{2 \operatorname{Tr}\left(M^{T} M\right)^{2}}{\left(\frac{1}{3} \operatorname{Tr}\left(M^{T} M\right)\right)^{2}}-9\right]
$$

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us another unexpected identity obeyed by 3×3 real matrices:

$$
\begin{aligned}
& -\frac{1}{4} 729\left[108(\operatorname{det} M)^{4}+\right. \\
& \left(\operatorname{Tr}\left(M^{\top} M\right)^{2}-2 \operatorname{Tr}\left(M^{\top} M\right)^{2}\right)\left(\operatorname{Tr}\left(M^{\top} M\right)^{2}-\operatorname{Tr}\left(M^{\top} M\right)^{2}\right)^{2} \\
& \left.4(\operatorname{det} M)^{2}\left(5 \operatorname{Tr}\left(M^{\top} M\right)^{3}-9 \operatorname{Tr}\left(M^{\top} M\right) \operatorname{Tr}\left(M^{\top} M\right)^{2}\right)\right] \geq 0
\end{aligned}
$$

$$
27 g^{2}-54 g^{4}+162 h-432 g^{2} h-576 \mathbf{h}^{2}+512 h^{3} \geq 0
$$

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us another unexpected identity obeyed by 3×3 real matrices:

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us another unexpected identity obeyed by 3×3 real matrices:

- Since $\mathcal{H}^{f f}$ is manifestly Hermitian, it has only real roots.
- The conditions for this come from Sylvester's theorem: one condition is that the discriminant Δ of $x^{4}-\frac{3}{2} x^{2}-\mathbf{g} x+\mathbf{h}$ must be non-negative.
- This gives us another unexpected identity obeyed by 3×3 real matrices:

$$
\begin{aligned}
& -\frac{1}{4} 729\left[108(\operatorname{det} M)^{4}+\right. \\
& \left(\operatorname{Tr}\left(M^{T} M\right)^{2}-2 \operatorname{Tr}\left(M^{T} M\right)^{2}\right)\left(\operatorname{Tr}\left(M^{T} M\right)^{2}-\operatorname{Tr}\left(M^{T} M\right)^{2}\right)^{2}- \\
& \left.4(\operatorname{det} M)^{2}\left(5 \operatorname{Tr}\left(M^{T} M\right)^{3}-9 \operatorname{Tr}\left(M^{T} M\right) \operatorname{Tr}\left(M^{T} M\right)^{2}\right)\right] \geq 0
\end{aligned}
$$

or

$$
27 \mathbf{g}^{2}-54 \mathbf{g}^{4}+162 \mathbf{h}-432 \mathbf{g}^{2} h-576 \mathbf{h}^{2}+512 \mathbf{h}^{3} \geq 0
$$

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

- Any 3×3 matrix lies inside the bounded region.
- At the top corner, the degeneracy structure is $(2,2)$.
- At the two corners at the bottom, the degeneracy structure is $(3,1)$.

Weyl 1-fermion spectrum

- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
S. Vaidya (IISc)
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For examole, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?
- Actually, the theory with a single fermion is has a gauge anomaly.
- The physical theory has two fermions (with either chirality).
- We can compute the effective potential for this case as well.
- It shows a divergent behaviour whenever the ground state degeneracy jumps.
- The fundamental fermion is more sensitive than an adjoint fermion:
- For example, it can distinguish between situations when only two of the singular values coincide, as opposed to all three.
- The edges/corners are places where fermion eigenmodes condense.
- Could these be quantum phases of Yang-Mills-Dirac theory?

Weyl 2-fermion spectrum

2 Weyl fermions

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential

where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential
$\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{\top} M$.
where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:
- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential
$\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{\top} M$.
where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.
The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

- The characteristic polynomial of the two fermion Hamiltonian is

$$
P_{2}(x)=x^{6}-3 x^{4}+4 x^{2}\left(\frac{9}{16}-\mathbf{h}\right)-\mathbf{g}^{2}=0
$$

- This gives us the effective potential

$$
\Phi_{\text {bulk }}^{(2)}=\frac{6}{\mathbf{f}^{2}} \frac{-x_{1}^{6}+5 x_{1}^{4}+4(9 / 16-\mathbf{h})\left(1-7 x_{1}^{2} / 3\right)}{\left(3 x_{1}^{4}-6 x_{1}^{2}+4(9 / 16-\mathbf{h})\right)^{2}}, \quad \mathbf{f}^{2}=\frac{1}{3} \operatorname{Tr} M^{T} M .
$$

where $x_{1}(\mathbf{g}, \mathbf{h})$ is the smallest root of P_{2}.

- The ground state degeneracy changes from 1 to 2 at the edge $B C$, and to 3 at the corner B. At the edge $B C$:

$$
\Phi_{e d g e}^{(2)}=\frac{2}{9 \mathbf{f}^{2}} \frac{9-6 x_{1}^{2}+5 x_{1}^{4}}{x_{1}^{2}\left(1-x_{1}^{2}\right)^{2}} \rightarrow \frac{2}{9 a^{2}} \frac{1}{\left(1+x_{1}\right)^{2}}
$$

- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is qoverned by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region $A B C$.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region ABC.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region $A B C$
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region ABC.
- Finally we can also compute

$$
\Phi_{\text {corner }}^{(2)}=\frac{1}{a^{2}}
$$

- We see that the Hilbert space for gauge dynamics has split into 3 regions:
- Inside the bulk, it is governed by $\Phi_{\text {bulk }}^{(2)}$, which diverges as we approach the edge $B C$ or the corner B.
- On the edge $B C$, the dynamics is governed by $\Phi_{\text {edge }}^{(2)}$, which diverges as we approach the corner B.
- At the corner B, the dynamics is governed by $\Phi_{\text {corner }}^{(2)}$.
- The effective scalar potential is not analytic in the full region $A B C$.

Scalar potential for 2 Weyl fermions

- There are therefore three distinct phases of $S U(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B gauge symmetry is broken and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $\operatorname{SU}(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $\operatorname{SU}(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.
- There are therefore three distinct phases of $S U(2)$ gauge theory (with Weyl fermions).
- These are superselected: states in one phase cannot be obtained as superpositions of states from other sectors.
- At the corner B, gauge symmetry is broken, and gets locked with rotations.
- We can identify the phase as color-spin locked phase. These are known to exist in 3-color QCD.

Dirac fermion

Scalar Potential for Dirac fermion

- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.
- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.
- For massless Dirac fermions, the situation is similar.
- Now, we can identify four distinct phases.
- There is also a color-spin locked phase, corresponding to the corner B.

Summary

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)
- Extension to $\mathcal{N}=2,4$ SUSY YM (in progress, with Mahul Pandey and Veronica Errasti Diez).
S. Vaidya (IISc)

Summary

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)
- Extension to $\mathcal{N}=2,4$ SUSY YM (in progress, with Mahul Pandey and Veronica Errasti Diez).

Summary

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)
- Extension to $\mathcal{N}=2,4$ SUSY YM (in progress, with Mahul Pandey and Veronica Errasti Diez).

Summary

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)
- Extension to $\mathcal{N}=2,4$ SUSY YM (in progress, with Mahul Pandey and Veronica Errasti Diez).

Summary

- The effective potential induced by the fermions has interesting singularity structure, suggestive of quantum phases.
- The singularities of the effective potential arise from fermion eigenvalue repulsion.
- the $S U(N)$ matrix model is amenable to large N computations (only preliminary results).
- What are the quantum phases of 3-color QCD? (in progress, with Mahul Pandey)
- Extension to $\mathcal{N}=2,4$ SUSY YM (in progress, with Mahul Pandey and Veronica Errasti Diez).

References

- M. Pandey and S. Vaidya: arXiv:1606.05466
- A. P. Balachandran, A. R. e Queiroz and S. Vaidya: arXiv:1412.7900, arXiv:1407.8352 (Matrix Model for QCD).

