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Pure Yang-Mills Theory

Review of YM Theory

What are the physical states of Yang-Mills-Dirac theory?
Wide implications: confinement, chiral symmetry breaking, color
superconductivity, . . ..
Even at zero temperature, QCD displays diverse phases:
vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor
locking,. . ..

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 4 / 35



Pure Yang-Mills Theory

Review of YM Theory

What are the physical states of Yang-Mills-Dirac theory?
Wide implications: confinement, chiral symmetry breaking, color
superconductivity, . . ..
Even at zero temperature, QCD displays diverse phases:
vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor
locking,. . ..

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 4 / 35



Pure Yang-Mills Theory

Review of YM Theory

What are the physical states of Yang-Mills-Dirac theory?
Wide implications: confinement, chiral symmetry breaking, color
superconductivity, . . ..
Even at zero temperature, QCD displays diverse phases:
vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor
locking,. . ..

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 4 / 35



Pure Yang-Mills Theory

Review of YM Theory

What are the physical states of Yang-Mills-Dirac theory?
Wide implications: confinement, chiral symmetry breaking, color
superconductivity, . . ..
Even at zero temperature, QCD displays diverse phases:
vacuum/hadronic, nuclear superfluid, quark liquid, color-flavor
locking,. . ..

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 4 / 35



Pure Yang-Mills Theory

YM Matrix Model

Many of these phases have uniform chromo-magnetic (or electric)
fields, and fermions with uniform density (condensates).
We will try to describe this phase structure by quantizing these
spatially homogeneous degrees of freedom.
More precisely, we study YM theory on S3 × R and restrict to the
zero mode sector.
This is simply the Yang-Mills-Dirac matrix model.
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Matrix Model for Yang-Mills

Case of SU(2)

An intrinsic derivation of the matrix model comes from the work of
Narasimhan and Ramadas (1979).
The key idea for SU(2) YM theory on S3 × R:
They consider a special subset of left-invariant connections

ω = (Tr τiu−1du)Mijτj , u ∈ SU(2),M ∈ M3(R) ≡M0.

This connection is pulled back to spatial S3 using S3 → SU(2).
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Matrix Model for Yang-Mills

Case of SU(2)

The set of such ω’s is preserved under global SU(2) adjoint action
ω → vωv−1, or equivalently, M → MR(v)T .
The action of SO(3) onM0 is free for all matrices with rank 2 or 3.
This gives a fibre bundle SO(3)→M0 →M0/SO(3).
The matrix model for SU(2) comes from this matrix Mij .
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Matrix Model for Yang-Mills

Case of SU(3)

Start with the left-invariant one-form on SU(3):

Ω = Tr
(
λ

2
u−1du

)
Mabλb, u ∈ SU(3).

Here M is a 8× 8 real matrix.
Map the spatial S3 diffeomorphically to SU(2) ⊂ SU(3).
Xi ≡ vector fields for right action on SU(3) representing λi
(i = 1,2,3), then [Xi ,Xj ] = iεijkXk .

Ω(Xi) = −Mib
λb
2 .

This gives us the gauge potential Aj = −iMib
λb
2
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Matrix Model for Yang-Mills

SU(3) Yang-Mills

The M ’s parametrize a submanifold of connections A.
They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.
Only the global transformations are left – the ones responsible for
the Gribov problem.
Global color SU(3) acts on the vector potential:

Aj → hAjh−1, or M → M(Ad h)T , h ∈ SU(3)

For SU(3), the M ’s are 3× 8 matrices.

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 9 / 35



Matrix Model for Yang-Mills

SU(3) Yang-Mills

The M ’s parametrize a submanifold of connections A.
They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.
Only the global transformations are left – the ones responsible for
the Gribov problem.
Global color SU(3) acts on the vector potential:

Aj → hAjh−1, or M → M(Ad h)T , h ∈ SU(3)

For SU(3), the M ’s are 3× 8 matrices.

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 9 / 35



Matrix Model for Yang-Mills

SU(3) Yang-Mills

The M ’s parametrize a submanifold of connections A.
They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.
Only the global transformations are left – the ones responsible for
the Gribov problem.
Global color SU(3) acts on the vector potential:

Aj → hAjh−1, or M → M(Ad h)T , h ∈ SU(3)

For SU(3), the M ’s are 3× 8 matrices.

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 9 / 35



Matrix Model for Yang-Mills

SU(3) Yang-Mills

The M ’s parametrize a submanifold of connections A.
They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.
Only the global transformations are left – the ones responsible for
the Gribov problem.
Global color SU(3) acts on the vector potential:

Aj → hAjh−1, or M → M(Ad h)T , h ∈ SU(3)

For SU(3), the M ’s are 3× 8 matrices.

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 9 / 35



Matrix Model for Yang-Mills

SU(3) Yang-Mills

The M ’s parametrize a submanifold of connections A.
They have no spatial dependence: we have completely
gauge-fixed the "small" gauge transformations.
Only the global transformations are left – the ones responsible for
the Gribov problem.
Global color SU(3) acts on the vector potential:

Aj → hAjh−1, or M → M(Ad h)T , h ∈ SU(3)

For SU(3), the M ’s are 3× 8 matrices.

S. Vaidya (IISc) MatrixYM, Fermions, Spectrum Bangalore, July 2016 9 / 35



Matrix Model for Yang-Mills

Configuration space of SU(N) YM Matrix Model

More generally, The configuration space C for pure SU(N) is
M3,N2−1(R)/Ad SU(N).

This space has dimension 3(N2 − 1)− (N2 − 1) = 2(N2 − 1) (but
not so at fixed points).
Wavefunctions are sections of vector bundles on C that transform
according to representations of Ad SU(N).
Those transforming according to the trivial representation are
colorless, which those transforming nontrivially are coloured.
The M ’s are constant gauge fields on S3, so perhaps this
approximation can capture the condensate dynamics of YM
theory.
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Matrix Model for Yang-Mills

YM Matrix Model

Recall that the YM Hamiltonian is

HYM =
1
2

∫
d3x Tr

(
g2EiEi +

1
g2 F 2

ij

)
.

For the matrix model, Mia are the dynamical variables, and the
(Legendre transform of) dMia

dt the conjugate of Mia.
We identify this conjugate operator as the matrix model
chormoelectric field Eia.
Quantization: [Mia,Πjb] = iδijδab. (Πjb = Ejb)

The above can easily be generalised to SU(N) YM theory.
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Matrix Model for Yang-Mills

Quantization of the Matrix Model

The reduced matrix model Hamiltonian is

H =

(
g2EiaEia

2
+ V (M)

)
.

The quantum Hamiltonian is

H = −g2

2

∑
i,a

∂2

∂M2
ia

+ V (M)

It acts on the Hilbert space of functions ψ(M) with scalar product

(ψ1, ψ2) =

∫ ∏
i,a

dMia ψ̄1(M)ψ2(M)

Physical states obey Gauss law constraint:
Ga|ψ〉 = εabcΠiaMib|ψ〉 = 0.
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Matrix Model for Yang-Mills

Rotations, Gauge transformations and SVD

Return to SU(2):
Physical rotations act on the left M → gM, gauge transformations
act on the right M → MhT .
A natural decomposition of M3(R) is thus in terms of Singular
Value Decomposition:
M = RAST , where R and S are orthogonal matrices, and A is a
diagonal matrix with non-negative entries ai , which we arrange as
a1 ≥ a2 ≥ a3 ≥ 0.
Rank of M is the number of non-zero ai ’s.
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Adding Fermions

Fermions make things interesting!

Realistic models have fermions.
They transform according to some representation of the gauge
group.
We will consider massless fundamental fermions (quarks!).
They (may) come in several flavors Nf , and hence additional
symmetry U(Nf ).
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Adding Fermions

We first look at a single fundamental Weyl fermion.
The fundamental fermions couple to the gauge field via

H ff ≡ 1
g2

(
−(λA)†λA − 1

2
(τb)AC(λA)†σiλ

CMib

)
= (λA)†Hff

ABλB.

The first term is curvature term on S3. We ignore it henceforth, it
only contributes an additive constant to the energy.
The second term is the analog of ψ†γiAiψ.
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Born-Oppenheimer Approximation

The total Hamiltonian is H = HYM + H ff .
Solve HψE = EψE .
We look at g << 1, but rather than do perturbation theory,
quantize in two steps:
First treat the gauge field as a (background) fixed field and
quantize the fermions.
Then quantize the gauge field.
This is same as Born-Oppenheimer in, say, molecular physics:
"Slow" nuclear variables↔ gauge field Mia.
"Fast" electronic variables↔ fermions.
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Born-Oppenheimer Approximation

Born-Oppenheimer quantization

Total Hilbert space H ' Hslow ⊗Hfast .
First solve H ff |n(M); M〉 = En(M)|n(M); M〉
Basis vectors of H are of the form |M〉⊗̃|n(M)〉.
So 〈M; n(M)|Πia|Ψ〉 6= −i ∂

∂Mia
〈M; n(M)|Ψ〉.

Instead, we must derive the matrix element of Πia ≡ Πia ⊗ 1fast .
Computing 〈n(M)|H|n(M)〉 gives us the effective Hamiltonian for
the "slow" degrees.
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Born-Oppenheimer Approximation

The discussion is simplest in terms of projectors
Pn = |n(M)〉〈n(M)|.
Then the effective Hamiltonian is simply

g2

2
(Π−A) · (Π−A) + V (M) +

g2

2
Φ(M) + En(M)

where A is the adiabatic gauge potential Pnd , and

Φ = Tr

[
Pn(∂iaH ff )Qn

(
1

H − En

)2

Qn(∂iaH ff )Pn

]
, Qn = 1− Pn

If En is g0-fold degenerate then LHS of above is g0Φ.
Goal: compute Φ, and use it to study effective dynamics.
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Born-Oppenheimer Approximation

The scalar potential Φ is versatile, appears in diverse settings.
Related to the real part of the quantum geometric tensor

GIJ =
1
g0

Tr[P(∂IP)(∂JP)P] = gIJ +
i
2

FIJ ,

Φ = δIJgIJ

gIJ is a Riemannian metric, a measure of distance between pure
states represented by projectors P(xI) and P(xI + dxI).
For adiabatic evolution, it is a measure of operator fidelity between
the adiabatic Hamiltonian and the true Hamiltonian.
Φ (or gIJ ) is used to hunt for quantum phase transitions (QPTs), as
the latter often defy the standard Landau-Ginzburg paradigm.
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Fermion Energies

Φ for YM fermions

We will compute Φ for fundamental fermions coupled to the
Yang-Mills field Mia.
The 1-fermion states |ψ(1)〉 =

∑
A cA(M)(λA)†|0〉, A = (α,a).

The cA(M) are complex functions of Mia; λ, λ† obey
{λA, (λB)†} = δAB, λA|0〉 = 0.
For 1-fermion states, H ff |ψ(1)〉 = E |ψ(1)〉 becomes:

Hff
ABcB = EcA, Hff = −1

2
σi ⊗ τaMia

That is, we want to investigate

det(Hff
AB − λI) = 0.
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Fermion Energies

Fundamental Fermions

The eigenvalue equation H ff |ψ〉 = E |ψ〉 is now an eigenvalue
equation for a 4× 4 matrix.

The characteristic equation (with x = g2E
( 1

3 Tr MT M)1/2 ) is

x4 − 3
2

x2 − gx + h = 0

where

g ≡ det M(1
3Tr(MT M)

)3/2 , h ≡ 1
16

[
2Tr(MT M)2(1
3Tr(MT M)

)2 − 9

]
.
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Fermion Energies

Since Hff is manifestly Hermitian, it has only real roots.
The conditions for this come from Sylvester’s theorem: one
condition is that the discriminant ∆ of x4 − 3

2x2 − gx + h must be
non-negative.
This gives us another unexpected identity obeyed by 3× 3 real
matrices:

−1
4

729
[
108(det M)4+(

Tr(MT M)2 − 2 Tr(MT M)2
)(

Tr(MT M)2 − Tr(MT M)2
)2
−

4 (det M)2
(

5 Tr(MT M)3 − 9 Tr(MT M) Tr(MT M)2
)]
≥ 0

or
27g2 − 54g4 + 162h− 432g2h − 576h2 + 512h3 ≥ 0
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Fermion Energies

Any 3× 3 matrix lies inside the bounded region.
At the top corner, the degeneracy structure is (2,2).
At the two corners at the bottom, the degeneracy structure is
(3,1).
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Fermion Energies

Weyl 1-fermion spectrum
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Fermion Energies

Actually, the theory with a single fermion is has a gauge anomaly.
The physical theory has two fermions (with either chirality).
We can compute the effective potential for this case as well.
It shows a divergent behaviour whenever the ground state
degeneracy jumps.
The fundamental fermion is more sensitive than an adjoint
fermion:
For example, it can distinguish between situations when only two
of the singular values coincide, as opposed to all three.
The edges/corners are places where fermion eigenmodes
condense.
Could these be quantum phases of Yang-Mills-Dirac theory?
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Fermion Energies

Weyl 2-fermion spectrum
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Fermion Energies

2 Weyl fermions

Inside ABC A AB

BC

AC

B C(0,0)
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Fermion Energies

The characteristic polynomial of the two fermion Hamiltonian is

P2(x) = x6 − 3x4 + 4x2
(

9
16
− h

)
− g2 = 0

This gives us the effective potential

Φ
(2)
bulk =

6
f2

−x6
1 + 5x4

1 + 4(9/16− h)(1− 7x2
1/3)

(3x4
1 − 6x2

1 + 4(9/16− h))2
, f2 =

1
3

TrMT M.

where x1(g,h) is the smallest root of P2.
The ground state degeneracy changes from 1 to 2 at the edge
BC, and to 3 at the corner B. At the edge BC:

Φ
(2)
edge =

2
9f2

9− 6x2
1 + 5x4

1

x2
1 (1− x2

1 )2
→ 2

9a2
1

(1 + x1)2
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Finally we can also compute

Φ
(2)
corner =

1
a2

We see that the Hilbert space for gauge dynamics has split into 3
regions:

Inside the bulk, it is governed by Φ
(2)
bulk , which diverges as we

approach the edge BC or the corner B.

On the edge BC, the dynamics is governed by Φ
(2)
edge, which

diverges as we approach the corner B.

At the corner B, the dynamics is governed by Φ
(2)
corner .

The effective scalar potential is not analytic in the full region ABC.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Scalar potential for 2 Weyl fermions
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

There are therefore three distinct phases of SU(2) gauge theory
(with Weyl fermions).
These are superselected: states in one phase cannot be obtained
as superpositions of states from other sectors.
At the corner B, gauge symmetry is broken, and gets locked with
rotations.
We can identify the phase as color-spin locked phase. These are
known to exist in 3-color QCD.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Dirac fermion

Inside ABC A AB (same for AC)

BC B (same for C)(0,0)

16 levels,
12 distinct+
4 at x=0 4+4

4

4

2
1

1
2

2
6
2

1
2

2
1

2

2
4+2

1
4

4
1

4+2

4

3

3

4+3+3
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Scalar Potential for Dirac fermion
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

For massless Dirac fermions, the situation is similar.
Now, we can identify four distinct phases.
There is also a color-spin locked phase, corresponding to the
corner B.
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Quantum Phases of SU(2) Yang-Mills-Dirac Theory

Summary

The effective potential induced by the fermions has interesting
singularity structure, suggestive of quantum phases.
The singularities of the effective potential arise from fermion
eigenvalue repulsion.
the SU(N) matrix model is amenable to large N computations
(only preliminary results).
What are the quantum phases of 3-color QCD? (in progress, with
Mahul Pandey)
Extension to N = 2,4 SUSY YM (in progress, with Mahul Pandey
and Veronica Errasti Diez).
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