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Motivation

I No-Hair theorems: Loosely, Black Holes are completely specified by
global charges, like mass, charge, and angular momentum.

I The lack of hair prevents a classical understanding of the Black Hole
entropy, which has consequences for the information paradox.

I No-hair theorems can been evaded in some circumstances, for eg.
attractor black holes, changing the asymptotics, etc.

I The Hairy Black Hole in AdS was the basis of setting up the
holographic superconductor.[Hatnoll,Herzog ,Horowtiz′08]

I The major difference between asymptotically flat space and AdS has
a timelike boundary, like a box, and it only takes finite proper time
for signal to get to the boundary.

I A spherical box in flat space has a timelike boundary, just like global
AdS.

I So: Can we evade flat space No-Hair theorem by putting the
black hole in a box?



Full phase diagram of global-AdS4 [Basu,Krishnan,BS:JHEP2016:139]

I To build intuition for the box, we looked at global-AdS4.

I The Poincaré patch case is analysed in studying the holographic
superconductor.[Hartnoll,Herzog,Horowitz(2008), Horowitz,Way(2010)]

I There are three non-trivial solutions that are asymptotically
global-AdS :

1. RNAdS black hole
2. Boson star: Horizon-less (zero temperature) configuration with a

non-trivial scalar profile.
3. Hairy black hole: RN black hole which supports a non-trivial scalar

hair.



Full phase diagram of global-AdS4

I Global-AdS is unstable to developing a scalar hair to form boson star
above some chemical potential, µbs , decided by q, the coupling
between scalar and gauge field.

I RNAdS develops scalar hair above some µbh which is a function of q
and rh.

I Boson star and hairy black hole are second order phase transitions
from global-AdS and RNAdS respectively.

I The phase diagram is evaluated in the grand canonical ensemble.

I The phase diagrams are different for q > 1 and q ≤ 1



Full phase diagram of global-AdS4
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Flat space: some definitions

I The Einstein-Maxwell-Scalar action with no cosmological constant is
given by,

S = − 1

16π
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I We will be looking at spherically symmetric time-independent
solutions, with the ansatz

ds2 = −g(r)h(r)dt2 +
dr2

g(r)
+ r2dΩ2

2, A(r) = φ(r)dt, ψ = ψ(r). (2)

I Scaling symmetries: There are two scaling symmetries for the
equations of motion under this ansatz

1. r → ar : used to set rb = 1.
2. h → a2h, φ→ aφ, t → t

a
: used to set gtt |rb = 1. This sets

a = (g(rb)h(rb))−
1
2 .



Flat space: some definitions
I The quasilocal energy can be defined by [Brown and York,1992]

E = − 1

8π
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where k (k0) is the extrinsic curvature of the two sphere embedded
in the geometry (flat space).

I The temperature of the system is defined by demanding that there
are no conical singularities in going to the Euclidean signature,
which gives
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√
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g(rb)h(rb)
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I The chemical potential is defined as the value of gauge field at
r = rb, i.e. µ = φ(rb).

I The charge of the system is defined by

Q = lim
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Scalar-less solutions

I The simplest possible non-trivial solution in the box, like in the case
of asymptotically flat space, is the Schwarzschild black hole, with

g(r) = 1− rh
r
, h(r) =

1

g(rb)
, φ(r) = 0, ψ(r) = 0. (6)

This solution has µ = 0 = Q, and the temperature is given by
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I This shows that black hole has two solutions for a given temperature
above Tmin, which is the minimum possible temperaure.

I The Brown-York quasilocal energy gives
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Scalar-less solutions

I The free energy for Schwarzschild solution is

F = rb − rb

√
1− rh

rb
+

rh
√
rb

4
√
rb − rh

. (9)
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Figure : Schwarzschild plots

I These figures are analogous to the Hawking-Page transition.



Scalar-less solutions

I The RN black hole is studied by Braden, et al., in the pre-AdS/CFT
era.

I We do a more systematic study based on free energy which is the
language that is more familiar from AdS/CFT.
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where rin =
Q2

rh
= εrh with 0 ≤ ε ≤ 1.

I The temperature,chemical potential and free energy are given by
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Scalar-less solutions

I The F = 0 equations gives the following solutions

ε =
9rh − 8rb

rh
, 1. (13)
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Figure : Phase diagram of Einstein-Maxwell system in a box

I Along the F = 0 curve, larger µ black holes in AdS become zero
sized, whereas, here it approaches the size of the box.



Scalar-less solutions
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F = 0 curve.



The no-hair theorem, and How the box makes things
different

I We can start with a series expansion about infinity in the
asymptotically flat space, and impose equations of motion.

I This will lead to setting the expansion coefficient of ψ(r) to zero,
order by order, and h(r) = const., which is set to 1, and the general
solution becomes the RN Black hole.

I This is our version of the no-hair theorem.

I Asymptotically flat spaces thus do not support a scalar profile.

I However, it turns out to be not the case if the boundary is at some
finite rb.

I The series expansions are determined in terms of six coefficients,

ψb
0 = ψ(rb), ψb

1 = ψ′(rb), gb
0 = g(rb),

φb0 = φ(rb), φb1 = φ′(rb), hb0 = h(rb) (14)



Some comments on the scalar

I The primary difference is that there is no smooth rb →∞ when
there is a scalar profile.

I The quasilocal energy definition turns out to be not a good
definition of the mass of the scalar.

I When there is no scalar, the information if we truncate the space at
finite rb is the same as that of the asymptotic case.

I We will take the definition of free energy to be

F = −T logZ = TScl . (15)

I This allows us to find the full set of phase diagrams.



Full set of solutions

I With the scalar turned on, we get the boson star and hairy black
hole solutions.

I In all cases we set the boundary condition ψb
0 = 0 (Dirichlet).

I For boson star, the derivatives of all the functions are set to zero at
r = 0, and also g(0) = 1, which leaves three parameters
ψ(0), φ(0), h(0).

I h(0) can be chosen arbitrarily, as we will rescale in the end.

I For a given ψ(0), φ(0) is chosen such that ψb
0 = 0.

I For the hairy black hole we have to set

g(rh) = 0, φ(rh) = 0. (16)

I The set of solutions are parametrized by ψ(rh), φ′(rh) and h(rh),
which is again arbitrary, and φ′(rh) is determined for given values of
ψ(rh).



Boson Star

I The boson star also has zero temperature, and smaller free energy
than flat space, and is a second order phase transition from the
latter.

I The instability of flat space to become boson star can be computed
analytically, as the backreaction for ψ(r)� 1.

I Keeping terms to linear order in ψ(r), which gives the flat box, and

ψ(r) = ψ(0)
sin(µqr)

r
. (17)

I From the boundary condition at rb we will get the instability point

µ q rb = nπ, n = 1, 2, 3, . . . (18)

I We will be looking only at the n = 1 modes.

I The fully backreacted solutions are computed numerically.



Plots for the fully backreacted boson star solutions
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Figure : Profiles of ψ(r), φ(r), g(r), h(r).



Hairy Black Hole

I The hairy black hole is a finite temperature solution.

I It has a lower free energy than the RN black hole with the same
values of (T , µ).

I The hairy black hole is a second order phase transition from the RN
black hole.

I The instability of RN black hole can be determined by a probe
computation, which is dependent on q, rh

ψ′′(r) +

(
Q2 − 2rh r + r2h

)
(r − rh) (Q2 − rh r)

ψ′(r) +
q2Q2r2

(Q2 − rhr)2
ψ(r) = 0. (19)

I The fully backreacted solutions for a given (q, rh) will have a higher
µ and a lower T as we increase ψ(rh).

I The fully backreacted solutions are computed numerically.



Plots for the fully backreacted hairy black hole solutions
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The Phase diagrams

I The phase diagrams are evaluated by comparing the free energies of
the different phases.

I There are at most four phases in the diagram.

I The phase diagrams are dependent on q.

I Since the metric is rescaled, the temperatures of the hairy black hole
is the same as that of flat space.

I This makes the background subtraction using flat space
straightforward.

I There are no divergences, but the subtraction is still done for a
common reference.

I There are three types of phase diagrams.



The Phase diagrams: q1 < q <∞

I In this case all the four phases exist.
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Figure : The sturcture of phase diagram for q1 < q <∞.



The Phase diagrams: q1 < q <∞
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I The region of hairy black hole shrinks as we lower q.

I The hairy black hole phase is entirely absent below q1 ≈ 36.



The Phase diagrams: q2 < q < q1

I The phase diagram has only three of the four phases.
I The hairy black hole solutions happen to be at (T , µ) where the

boson star is the favourable phase.
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Figure : The sturcture of phase diagram for q2 < q < q1.



The Phase diagrams: q2 < q < q1
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I The boson star to RN black hole transition curve shrinks as we lower
q.

I The boson star phase for q < q2 does not share a phase boundary
with the RN black hole.



The Phase diagrams: 0 < q < q2
I The phase diagram has only three of the four phases.
I The phase diagram for the RN black hole is the same as the

scalar-less case.
I The boson star happens only at a larger µ compared to the RN

black hole.
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Figure : The sturcture of phase diagram for 0 < q < q2.



Key Takeaway Points

I We consider the Einstein-Maxwell system in a box (extending the
work of Braden et.al.) and do a detailed study of the phase diagram.

I We solve the fully backreacted Einstein-Maxwell-Scalar system in a
box, and find hairy solutions.

I The hairy solutions are the Boson star and the Hairy Black Hole.

I We find that they can be thermodynamically favourable phases.
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