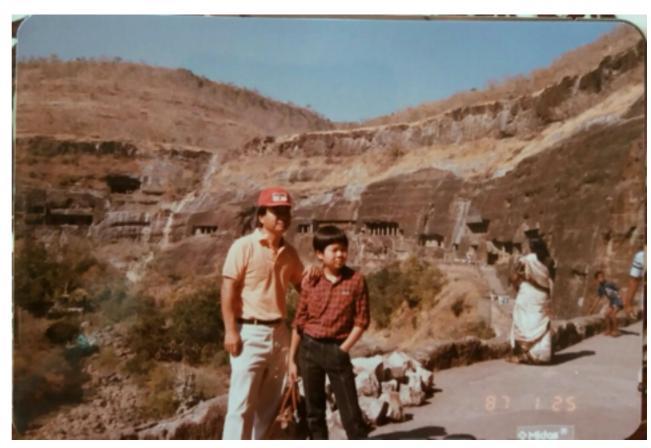
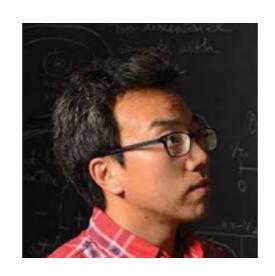
Cooper pair spin collective phenomena in the SrRuO₃ / Sr₂RuO₄ heterostructure


Suk Bum Chung
University of Seoul

Asia Pacific Workshop on Quantum Magnetism 2018 December 6, 2018

Return to India after 30 years!!!



Collaborators

Y. Tserkovnyak (UCLA)

Se Kwon Kim (UCLA → U Missouri)

Kihoon Lee (SNU/IBS-CCES)

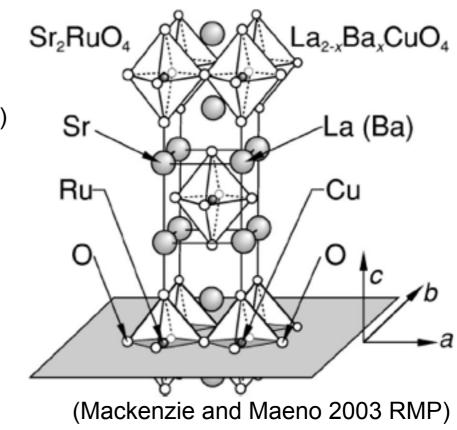
Also: Hendrik Bluhm (Aachen), Eun-Ah Kim (Cornell) Tae Won Noh (SNU) Raffi Budakian (Waterloo), Joonho Jang (MIT → SNU)

Works: SBC, S. K. Kim, K. Lee, and Y. Tserkovnyak, PRL (2018) 121, 167001
SBC, H. Bluhm, and E-.A. Kim, PRL (2007) 99, 197002
J.Jang, SBC, R. Budakian, et al., Science (2011) 331, 186
M. S. Anwar, T. W. Noh, Y. Maeno, et al., Nat Comm (2016) 7, 13220

Acknowledgements to:

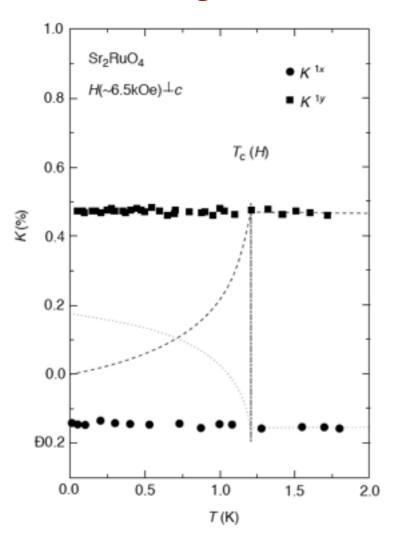
M. Sigrist, S. Raghu, S. Kivelson, S. Takei, M. S. Anwar, B. Kim, Y. Maeno

Sr₂RuO₄: normal state conventional...


Fermi liquid at low-T

 Multiple Fermi pockets from ruthenium orbitals

$$e_g$$
 ____ ___ t_{2g} \uparrow \uparrow \downarrow Ru⁴⁺ 4d⁴


Only SRO superconductor (T_c=1.5K)

(Maeno et al. 1994 Nature)

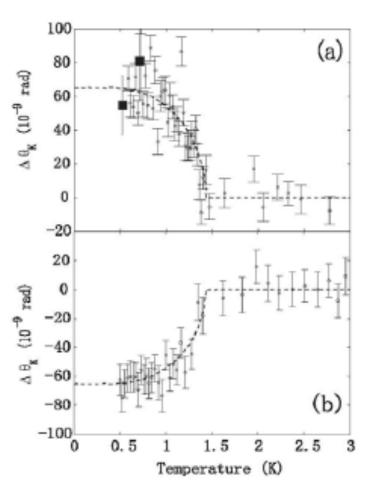
... but superconductivity most unconventional!

¹⁷O Knight shift

(Ishida et al. 1998 Nature)

μ spin rotation

(Luke et al. 1998 Nature)


corner junction spontaneous flux

(Nelson et al. 2004 Science)

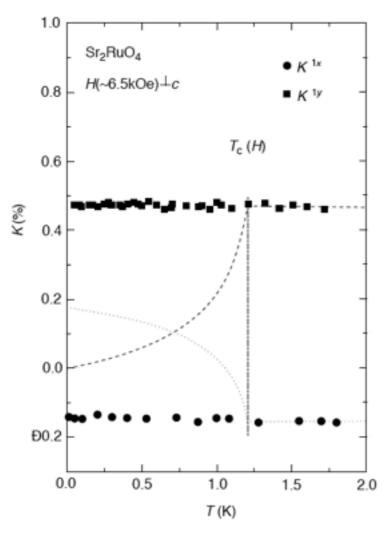
Josephson interferometry

(Kidwingira *et al*. 2006 Science)

Kerr rotation

(Xia et al. 2006 PRL)

Spin-triplet Cooper pairing:

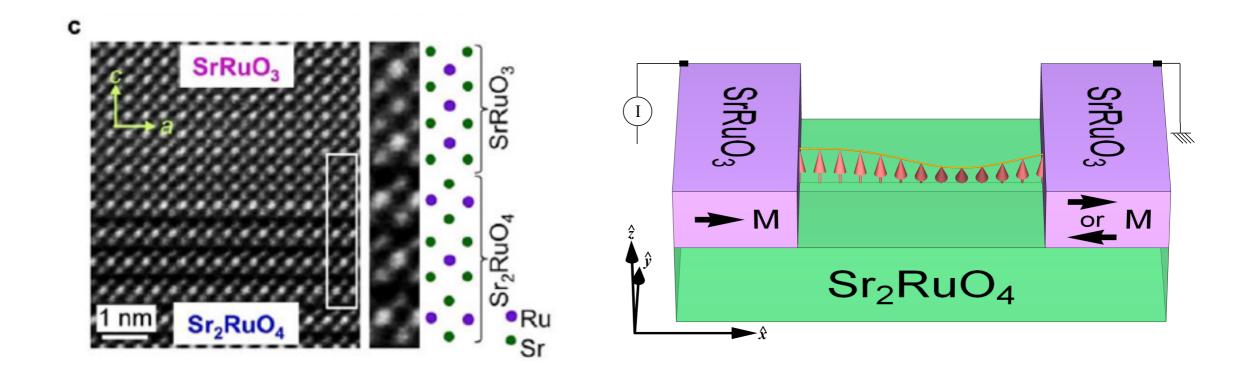

$$\Delta_{\alpha\beta}(\mathbf{k}) = i(\vec{d}(\mathbf{k}) \cdot \vec{\sigma}\sigma_2)_{\alpha\beta}$$

Time-reversal Symmetry Breaking

$$\vec{d}(\mathbf{k}) = (k_x + ik_y)\hat{\mathbf{z}}$$

... but superconductivity most unconventional!

¹⁷O Knight shift


(Ishida et al. 1998 Nature)

- Zero spin susceptibility for Cooper pairs in conventional superconductor
 - ← spin singlet pairing gives us S=0 pairs

Unchanged spin susceptibility across T_c indicates equal-spin pairing, i.e. S=1 (spin triplet) pairing

- Corroboration needed for spin rotational symmetry breaking:
 - ⇒ any spin collective phenomena arising from spin triplet pairing?

Sr₂RuO₄ spin controlled by SrRuO₃

 Coupling of SrRuO₃ ferromagnetism to spin rotational symmetry breaking of Sr₂RuO₄ spin-triplet superconductivity
 ⇒ generate spin supercurrent & spin wave

Voltage bias controlled spin supercurrent / wave

Outline

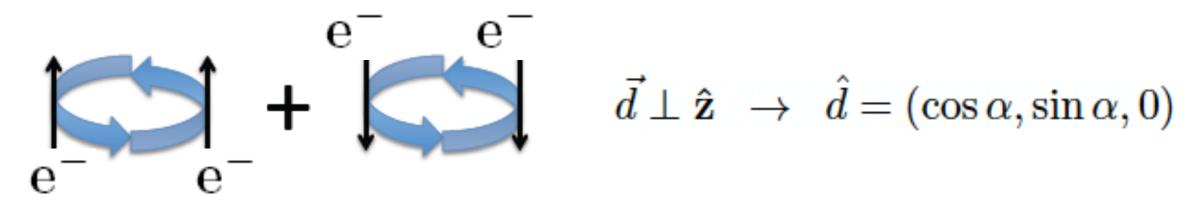
- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - Example: Half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias
- Ongoing experimental efforts

Broken spin-rotational symmetry for spin triplet

Possible to parametrize by the 3-component d-vector:

(Leggett 1975 RMP; Sigrist and Ueda 1991 RMP; Mackenzie and Maeno 2003 RMP)

$$\Delta_{lphaeta}(\mathbf{k}) = \left[egin{array}{ccc} \Delta_{\uparrow\uparrow} & \Delta_{\uparrow\downarrow} \ \Delta_{\downarrow\uparrow} & \Delta_{\downarrow\downarrow} \end{array}
ight] &\equiv \left[egin{array}{ccc} -d_x + id_y & d_z \ d_z & d_x + id_y \end{array}
ight] \\ &\equiv i(\vec{d}(\mathbf{k}) \cdot \vec{\sigma} \sigma_y)_{lphaeta} \end{array}$$


 $\leftarrow \vec{d}$ is a 3-component real vector up to a U(1) overall phase, in absence of condensate spin-polarization

- ullet Order parameter rotation is generated by spin: $[S^i,\hat{d}^j]=i\epsilon^{ijk}\hat{d}^k$
 - $ightharpoonup {f S} \cdot \hat{d}$ rotation is a residual symmetry
 - ► the d-vector alignment implies breaking of SO(3) / SO(2) = S₂ symmetry

Spin supercurrent from spin-triplet pairing (1)

$$\Delta_{\alpha\beta}(\mathbf{k}) = \begin{bmatrix} \Delta_{\uparrow\uparrow} & 0 \\ 0 & \Delta_{\downarrow\downarrow} \end{bmatrix} \equiv \begin{bmatrix} -d_x + id_y & 0 \\ 0 & d_x + id_y \end{bmatrix}$$
$$\equiv i(\vec{d}(\mathbf{k}) \cdot \vec{\sigma}\sigma_y)_{\alpha\beta}$$

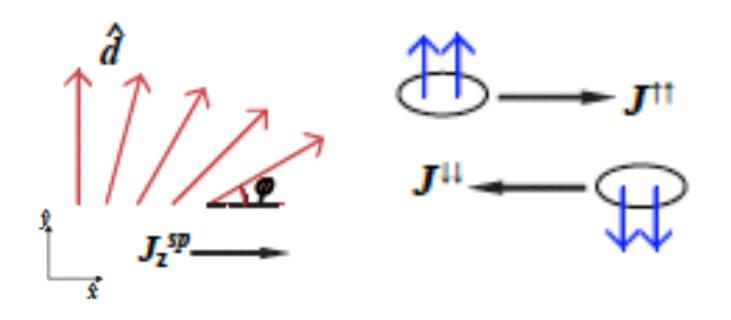
* consider the case with zero spin-polarization i.e. the d-vector is real after factoring out exp(iθ)

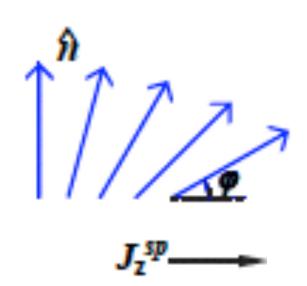
- Phase factors of -exp[i(θ-α)] for |↑↑⟩ pairs
 +exp[i(θ+α)] for |↓↓⟩ pairs
- Nonzero gradient of α with $\nabla\theta$ $2\pi e A/h = 0$ means counterflowing supercurrent from $|\uparrow\uparrow\rangle$ pairs and $|\downarrow\downarrow\rangle$ pairs

⇒
$$-\nabla \alpha \propto J_{\uparrow\uparrow}-J_{\downarrow\downarrow} = (S_z \text{ spin supercurrent})$$

Spin supercurrent from spin-triplet pairing (2)

$$egin{array}{lll} \Delta_{lphaeta}(\mathbf{k}) = \left[egin{array}{ccc} \Delta_{\uparrow\uparrow} & \Delta_{\uparrow\downarrow} \ \Delta_{\downarrow\uparrow} & \Delta_{\downarrow\downarrow} \end{array}
ight] & \equiv & \left[egin{array}{cccc} -d_x + id_y & d_z \ d_z & d_x + id_y \end{array}
ight] \ & \equiv & i(ec{d}(\mathbf{k}) \cdot ec{\sigma}\sigma_y)_{lphaeta} \end{array}$$

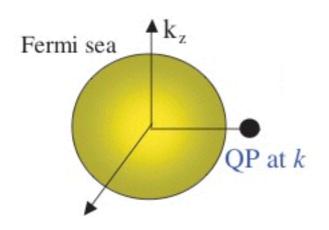

- * consider the case with zero spin-polarization i.e. the d-vector is real after factoring out exp[iθ]
- $\nabla \theta$ $2\pi e A/h \propto J_s$ (charge supercurrent)


Spin supercurrent arises with gradient of the d-vector

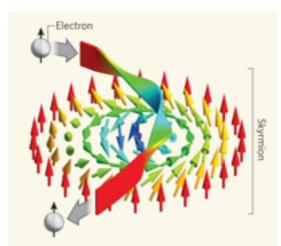
$$\Rightarrow \epsilon^{\alpha\beta\gamma} \hat{d}^{\beta} \nabla \hat{d}^{\gamma} \propto \mathbf{J}_{\mathrm{sp}}^{\alpha}$$
 (supercurrent of S^{α} spin)

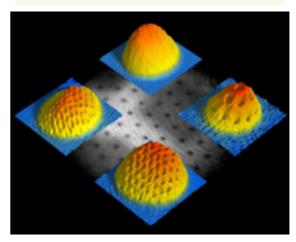
Analogy to antiferromagnetic insulator

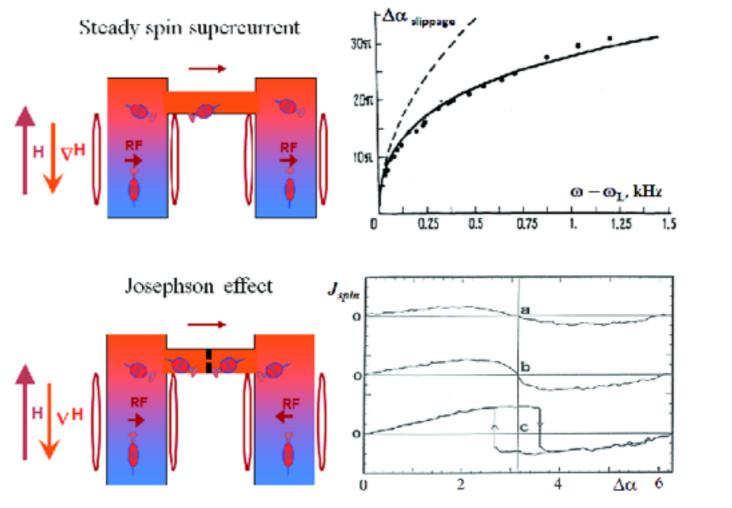
(SBC, Lee, Kim, Tserkovnyak 2018 PRL)



d-vector winding means
 Cooper pair spin current,
 i.e. |↑↑⟩ / |↓↓⟩ counterflow


- Néel vector winding in AFM insulator means coherent magnon current
- ⇒ coherent transport by Goldstone boson due to spontaneous breaking of continuous symmetry


Suppressing dissipation in transport

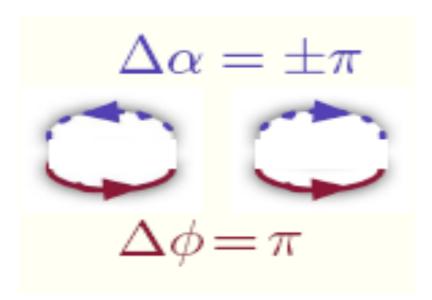

- Transport through excited states in metal:
 - entropy increase
 - → thermal dissipation
 - → spin current exponentially suppressed
- Adiabatic transport through the ground state:
 - ⇒ NO single-particle dissipation!!
 - ex) Berry phase in band insulator
 (Pancharatnam Proc Indian Acad Sci 1956;
 Berry Proc R Soc 1984)

Superfluid transport in BEC

Long-known spin current in 3He superfluid...

(Fomin 1984 JETP Lett; Borovik-Romanov, Bunkov et al. 1984 ibid)

- Carried by spin-triplet Cooper pairs
- No exponentially suppression in the bulk
 ⇒ spin / mass superfluidity co-existing!


Outline

- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - Example: Half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias
- Ongoing experimental efforts

Half-quantum vortex (HQV) require spin current!

$$\Delta \phi = 2\pi$$

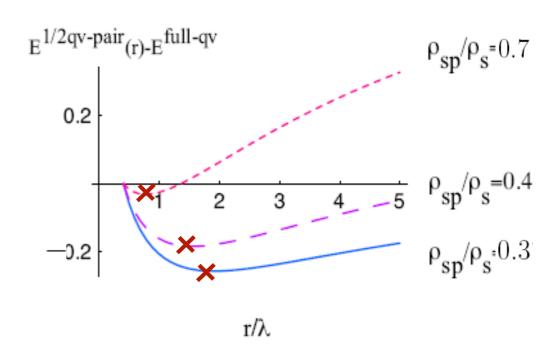
- Vortex flux in conventional superconductor: h/2e (Abrikosov 1953)
- $\leftarrow 2\pi$ phase winding for single-valued pair wave function

- For two component condensate,
 h/4e vortex is allowed
- ← HQV≡(π overall + π relative) winding (Salomaa, Volovik 1985 PRL)
 - ⇒ spin supercurrent circulation!

HQV Energetics - General

In the London limit,

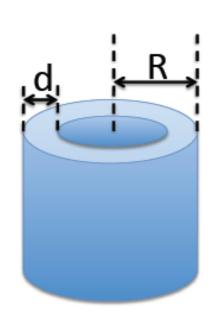

$$f_{\rm grad}^{\rm 2D} = \frac{1}{2} \left(\frac{\hbar}{2m} \right)^2 \! \left[\rho_{\rm s} \! \left(\! \nabla_{\!\! \perp} \! \phi \! - \! \frac{2e}{\hbar c} \mathbf{A} \! \right)^2 \! + \! \rho_{\rm sp} \left(\! \nabla_{\!\! \perp} \! \alpha \right)^2 \! \right] + \frac{1}{8\pi} \! \left(\! \nabla \! \times \! \mathbf{A} \right)^2 \! . \label{eq:f_grad}$$

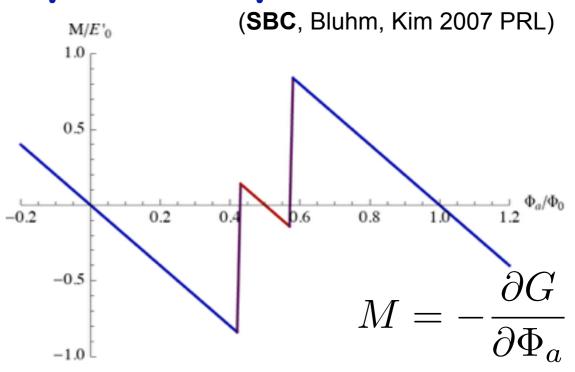

- (screened charge current)
 φ winding
 + (unscreened spin current)
- α winding: energy cost ~ log L (L system size)
 smaller φ vorticity may NOT reduce energy cost

(Babaev 2005 PRL)

Energy Competition - Magnetic vs. Spin

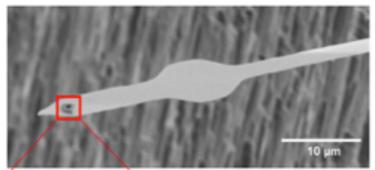
(SBC, Bluhm, Kim 2007 PRL)

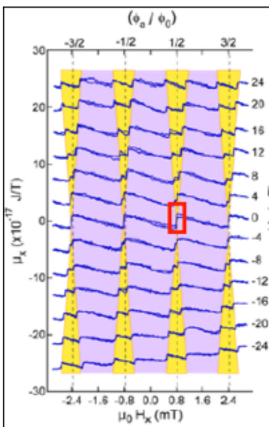

Energy competition in HQV pair:


screened magnetic repulsion

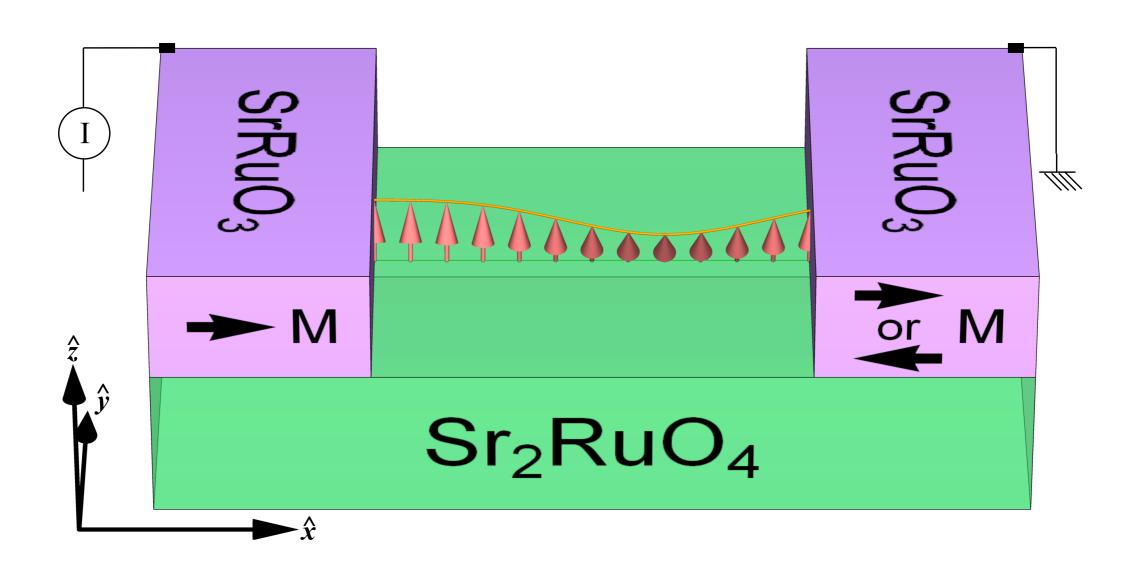
vs. <u>unscreened spin attraction</u>

Long-wavelength spin wins → confined HQV in the bulk
 (Kee, Kim & Maki 2000 PRB)


HQV in Mesoscopic Sample

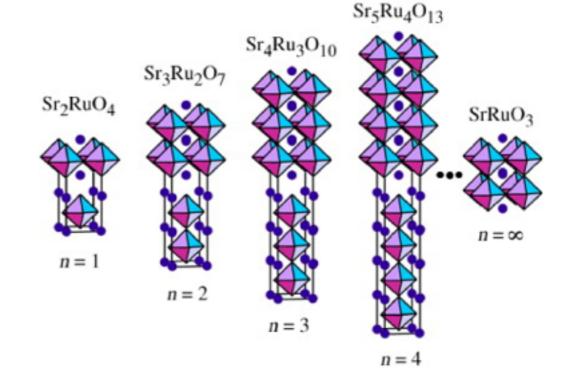


- Flux entry at $\Phi_a = (n + 1/2) h/2e$ \Rightarrow Predict 'double saw-tooth' magnetization curve.
- Experimental confirmation!


(Jang, Budakian, SBC et al. 2011 Science)

⇒ How can we generate spin supercurrent in the bulk Sr₂RuO₄?

Single platform for detecting both spin supercurrent and spin collective mode:

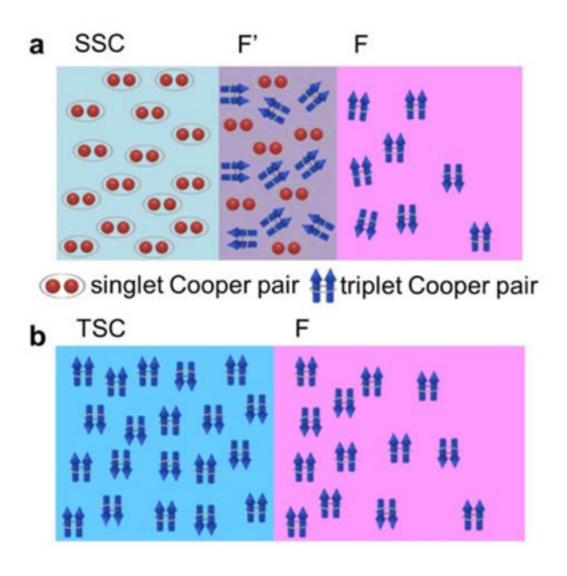


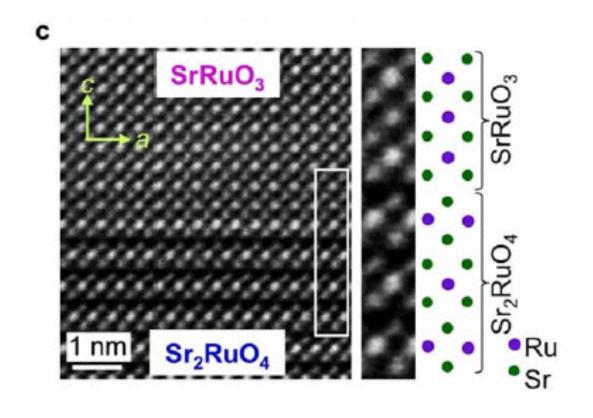
Outline

- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - ► Sr₂RuO₄ spin supercurrent in half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias
- Ongoing experimental efforts

SrRuO3: ferromagnetic metal

- Similar structure to Sr₂RuO₄ except for all apical O shared by Ru
 - ► 1.3% lattice mismatch in (001) direction

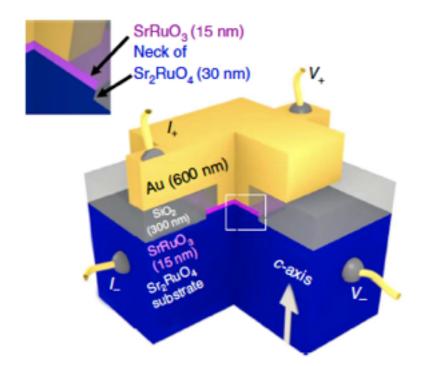

Thin film remains ferromagnetic w/ 3:1 transport spin polarization


(Nadgorny Eom *et al.* 2003 Appl Phys Lett; Raychaudhuri Mackenzie Beasley *et al.* 2003 PRB)

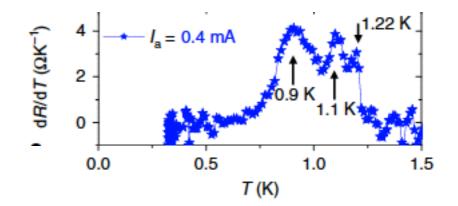
- Metallic with Curie temperature of 160K (c.f. T_c=1.5K for Sr₂RuO₄)
 - ⇒ NO effect of Sr₂RuO₄ superconductivity on magnetization

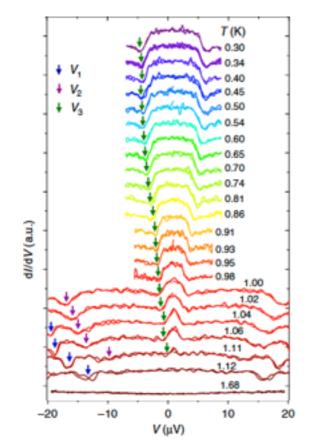
Characteristics of SRO 214/113 interface

(Anwar, Lee, Noh, Maeno et al. 2016 Nat Comm)



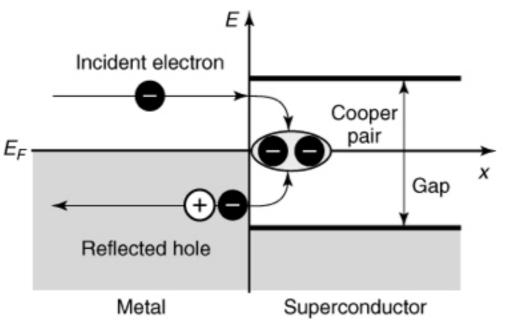
- FM/SC junction may NOT require impurity for proximity effect
- 113/214 interface is impurityfree even on the atomic scale


SRO 214/113 proximity effect measurement


(Anwar, Lee, Noh, Maeno et al. 2016 Nat Comm)

 Measured junction voltage V for the given applied current I

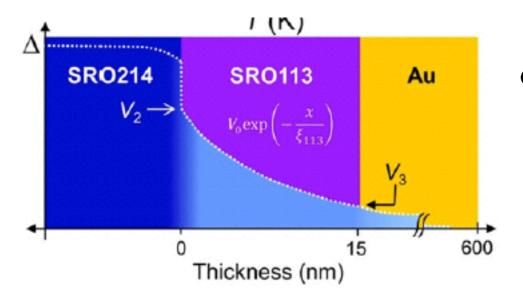
 Multiple transition seen on dR/dT as indication of proximity effect onset



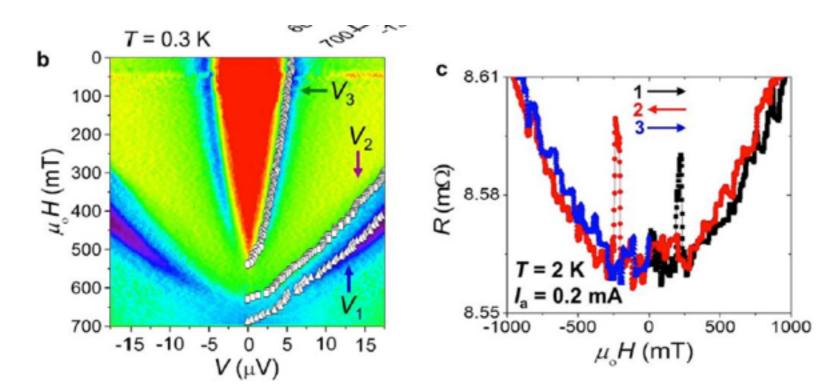
 dl/dV measurement to obtain the pairing gap at each interface

Andreev reflection in spin-triplet superconductor

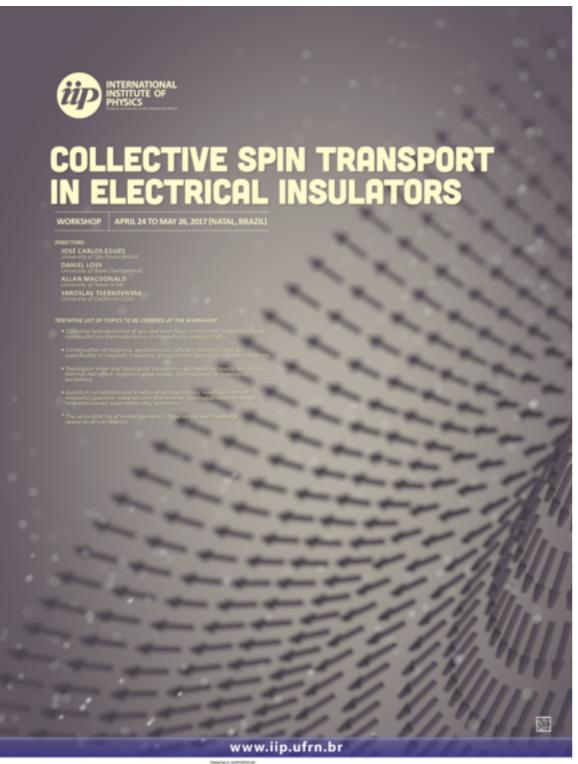
Andreev reflection always occurs between superconductor and metal



- electron near Fermi level gets reflected as hole
- electron / hole equal superposition localized at the interface

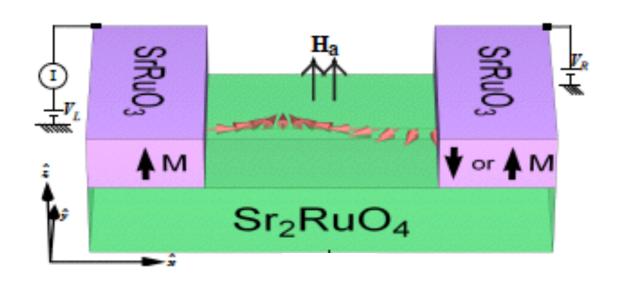

- Andreev reflection at the metal / spin-triplet SC interface leads to formation of equal-spin Cooper pairs in spin-triplet SC
 - ⇒ In absence of spin-flip scattering, an FM metal injects spin-polarized supercurrent into spin-triplet SC

Evidence for triplet pairing induced in 113


(Anwar, Lee, Noh, Maeno et al. 2016 Nat Comm)

- Cooper pair decay length in 113 is very long
 - → Andreev reflection, not tunneling at 113/214 interface

- Proximity effect intrinsic, e.g. unaffected by 113 domain switching
- ⇒ proximity effect NOT collective phenomenon...



Outline

- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - ► Sr₂RuO₄ spin supercurrent in half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias
- Ongoing experimental efforts

Spin supercurrent proposal for SRO 214/113

(SBC, Lee, Kim, Tserkovnyak 2018 PRL)

 For collinear 113 magnetization, independent Andreev conductance for spin-up / spin-down:

$$I_{L,R}^{\sigma} = \pm g_{L,R}^{\sigma\sigma}(V_{L,R} - \hbar \partial_t \varphi_{\sigma}/2e)$$

- Cooper pairs injected from 113 leads are spin-polarized as parametrized by $p_{L,R} = \sum_{\sigma} \sigma g_{L,R}^{\sigma\sigma} / \sum_{\sigma} g_{L,R}^{\sigma\sigma}$ (\approx 0.5 estimated for 113)
 - → spin-polarized supercurrent, i.e. spin supercurrent along with charge super current

Spin transport from d-vector

 The effective easy-plane d-vector Hamiltonian gives, as the equation of motion, the local Cooper pair spin conservation:

$$H_{eff} = \frac{1}{2} \int d\mathbf{r} [A(\nabla \alpha)^2 + \gamma^2 S_z^2/\chi]$$
 (with [\alpha, S_z]=i\hbar)
 $\Rightarrow \ \partial_t S_z + \nabla \cdot \mathbf{J}_{sp}^z = 0$ (with \mathbf{J}_{sp}^{α} =-A\bar\alpha)

 Finite lifetime can be introduced phenomenologically for imbalance between |↑↑> and |↓↓>, while retaining spin ordering

i.e.
$$\partial_t S_z +
abla \cdot {f J}^z_{sp} = -rac{1}{ au} S_z$$
 (with $1/ au$ =ãnħ γ e²/ χ) (Tserkovnyak, Brataas, Bauer, Halperin 2005 RMP)

SRO Cooper pair spin valve

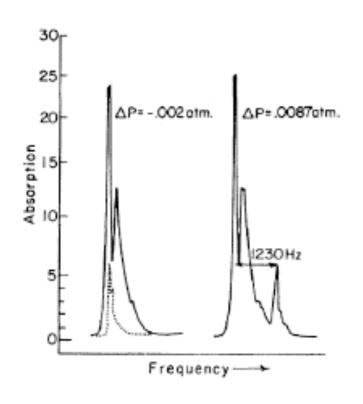
(SBC, Lee, Kim, Tserkovnyak 2018 PRL)

Boundary condition for charge & spin supercurrent:

$$\sum_{\sigma} (I_L^{\sigma} - I_R^{\sigma}) = 0, \qquad \sum_{\sigma} \sigma (I_L^{\sigma} - I_R^{\sigma}) = 2\tilde{\alpha}e\Omega_s SL$$

 No distance cutoff for supercurrent dependence on conductance spin polarization difference between two leads

$$I^c = \sum_{\sigma} I^{\sigma} = I_0 \left[1 - \frac{g_L g_R (p_L - p_R)^2}{(g_L + g_R)(g_L + g_R + g_{\alpha}) - (p_L g_L + p_R g_R)^2} \right]$$
 (where $g_{\alpha} = 4\tilde{\alpha}nSLe^2/\hbar$)

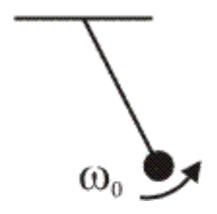

- Magnetoresistance for beyond spin diffusion length proportional to condensate fraction → increase with 1-T/T_c (Romeo, Citro 2013 PRL)
 - ⇒ d-vector Hamiltonian convenient for collective spin dynamics

Outline

- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - ► Sr₂RuO₄ spin supercurrent in half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias
- Ongoing experimental efforts

Symmetry breaking leads to collective modes

Crystal (broken translational symm) → phonons
 Magnet (broken rotational symm) → spin wave

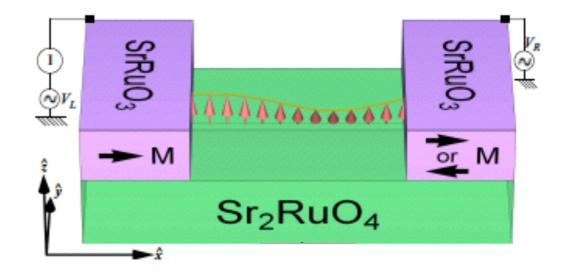


- ³He: 1st known example of spin-triplet Cooper pairing
 ⇒ NMR resonance signature of
 - spin collective mode confirmed spin-triplet pairing

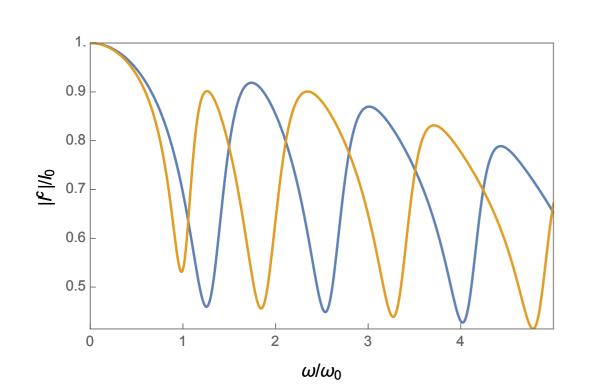
(Osheroff, Lee, Richardson *et al.* 1972 PRL; A J Leggett 1974 Ann Phys; Maki, Ebisawa 1974 PRL)

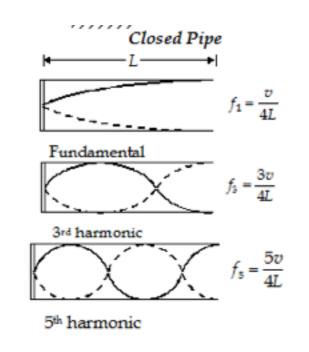
NO analogous resonance detected in Sr₂RuO₄ superconductor

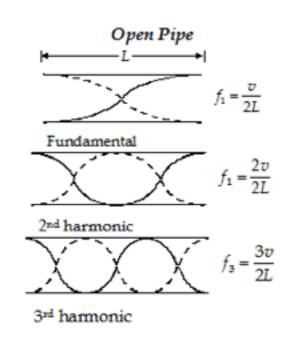
d-vector collective motion


$$H[\mathbf{\hat{d}}, \mathbf{S}] = \frac{1}{2\chi_{\rm sp}} \mathbf{S}^2 + \Gamma_0 \mathbf{\hat{d}}_{\parallel}^2$$

- \rightarrow oscillation of relative phase between $|\uparrow\uparrow\rangle$ and $|\downarrow\downarrow\rangle$
- For the (d_y,S_x) mode in x-axis spin quantization (Leggett 1975 RMP)
 - Cooper pair spin state $\exp(i\alpha) \mid \uparrow \uparrow \rangle + \exp(-i\alpha) \mid \downarrow \downarrow \rangle$ with α =0 at the ground state
 - ► $d_y \approx \alpha$ means we can take the relative phase as the pendulum angle
- SRO 113/214 can induce oscillation of relative phase between |↑↑⟩ and |↓↓⟩


SRO spin mode detection by 214/113 junction


(SBC, Lee, Kim, Tserkovnyak 2018 PRL)


- Spin-polarized AC supercurrent injection excites spin collective mode
 - ⇒ electrically generated spin wave

- Current maxima indicates resonant frequency for spin wave
 - → maxima / minima dependent on magnetization alignment

Blue: parallel 113 magnetization

Orange: opposite 113 magnetization

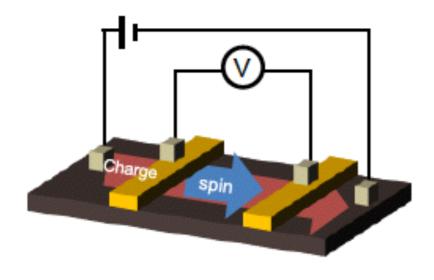
Outline

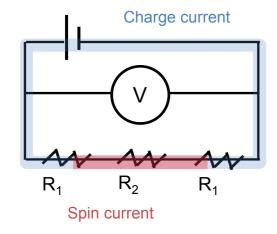
- Spin supercurrent from spin triplet pairing in Sr₂RuO₄
 - ► Sr₂RuO₄ spin supercurrent in half-quantum vortex
- Spin collective phenomena in SrRuO₃ / Sr₂RuO₄ junction
 - ► SrRuO₃ / Sr₂RuO₄ heterostructure
 - ► 2-terminal junction as spin valve
 - Spin collective mode generation via AC bias

Ongoing experimental efforts

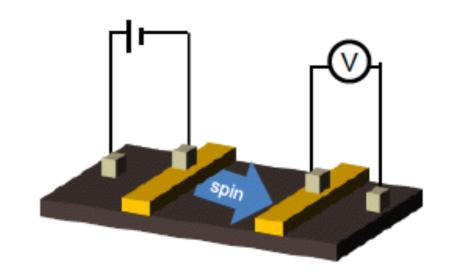
EunKyo Ko (SNU/IBS-CCES)

Bongju Kim (SNU/IBS-CCES)



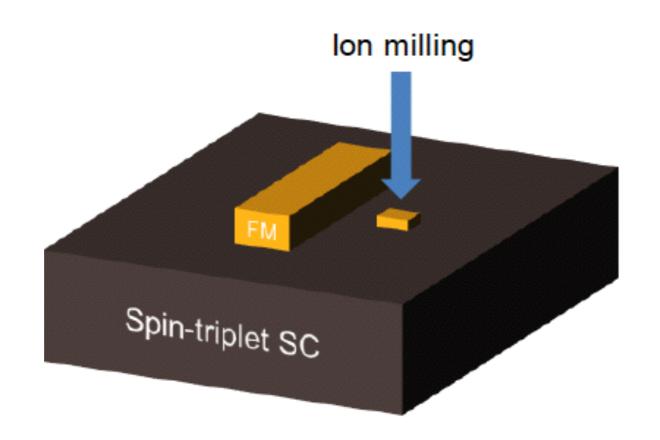

Tae Won Noh (SNU/IBS-CCES)

Non-local setup


(Ko, B Kim, **SBC**, Noh *et al* in progress)

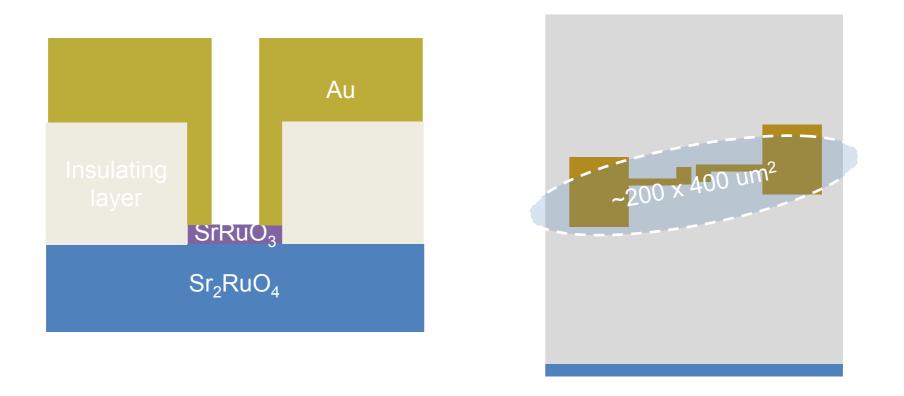

local measurement

non-local measurement



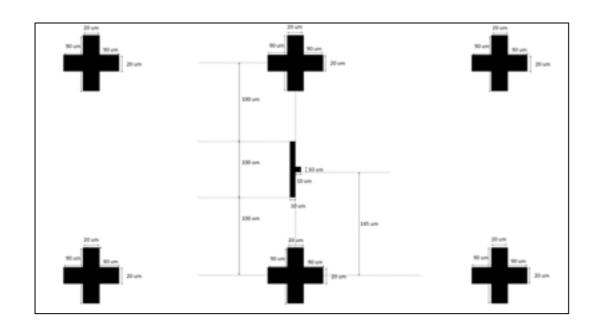
- Non-local measurement is widely used for detecting giant magnetoresistance in spin valve device
- Non-local measurement can detect pure spin current while local measurement measure both charge and spin current

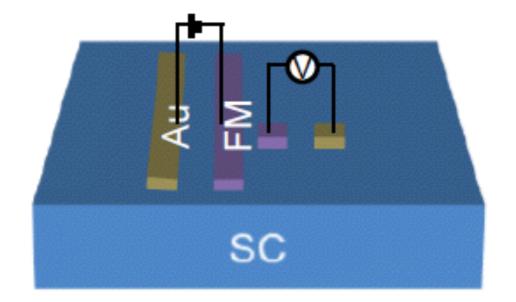
General device fabrication 1

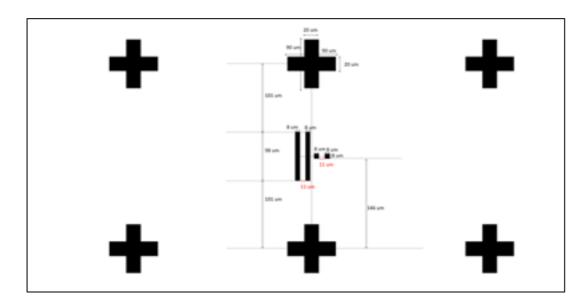

(Ko, B Kim, **SBC**, Noh *et al* in progress)

- For a spin valve device, different coercivity required for two ferromagnets
- Different thickness means different coercivity for SrRuO₃

General device fabrication 2


(Ko, B Kim, **SBC**, Noh *et al* in progress)




- Small device needed, in order to prevent electrode touching Sr₂RuO₄
- The area of the device should be ≤ 200 x 400 um²

Device design: mask for non-local setup

(Ko, B Kim, **SBC**, Noh *et al* in progress)

Designing mask for non local measurement is ongoing.

Conclusions

- Spin collective phenomena would be the signature of spin-triplet superconductivity of Sr₂RuO₄.
- Two such phenomena are the spin supercurrent and the order parameter spin collective mode.
- Both can be electrically realized in the SrRuO₃ / Sr₂RuO₄ junction.