

Crossover of Correlation Functions near a Quantum Impurity in a Tomonaga-Luttinger Liquid

Pochung Chen
National Tsing Hua University (NTHU), Taiwan

Dec. 5, 2018 2nd Asia Pacific Workshop on Quantum Magnetism, ICTS, India

Collaborators

- Chung-Yu Lo, NTHU, Taiwan.
- Ying-Jer Kao, NTU, Taiwan.
- Yoshiki Fukusumi, ISSP, Univ. of Tokyo, Japan.
- Masaki Oshikawa, ISSP, Univ. of Tokyo, Japan.
- Ref.: arXiv:1805.05006

Tomonaga-Luttinger Liquid

Theory

- Characterized by the Luttinger parameter g.
- Critical, with divergent correlation length.
- Translational/Scale invariance.
- Power law decay of the correlation functions.

Numerical study (DMRG)

- Finite size calculation (OBC, PBC)
 - Finite size effects, finite size scaling.
 - Boundary effects.
- Infinite size calculation
 - Take advantage of the translational/scale invariance.
 - iDMRG/sMERA.

Tomonaga-Luttinger Liquid + Impurity

- Finite size calculation (OBC, PBC)
 - Very large size is needed.
- Infinite size calculation
 - Broken translational invariance (iMPS).
- Boundary/Impurity calculation
 - bMERA
 - iMPS with ``infinite boundary conditions (IBC)."
 - H. Phien, G. Vidal, I. P. McCulloch, PRB 86, 245107 (2012).

Transport in a One-Channel Luttinger Liquid

C. L. Kane

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

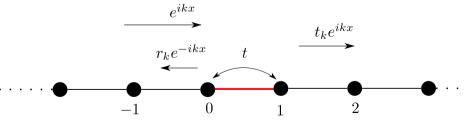
Matthew P. A. Fisher

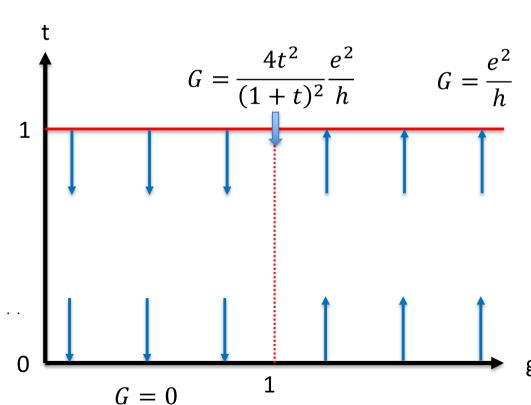
IBM Research, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

$$H_{wire} = \sum_{j} -(c_{j}^{\dagger}c_{j+1} + c_{j+1}^{\dagger}c_{j}) + V\left(n_{j} - \frac{1}{2}\right)\left(n_{j+1} - \frac{1}{2}\right)$$

$$H_{junc} = -t\left(c_j^{\dagger}c_{j+1} + c_{j+1}^{\dagger}c_j\right)$$

$$g = \frac{\pi}{2\arccos(-V/2)}$$





Kondo effect in XXZ spin chains

A. Furusaki*

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

T. Hikihara

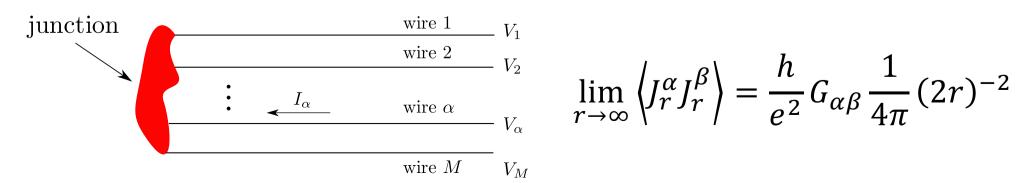
Division of Information and Media Science, Graduate School of Science and Technology, Kobe University, Rokkodai, Kobe 657-8501, Japan

$$H_{0} = J \sum_{j} \left(S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} \right) + \Delta S_{j}^{z} S_{j+1}^{z}$$

$$H_{K} = J_{K} \left(S_{0}^{x} S_{imp}^{x} + S_{0}^{y} S_{imp}^{y} + \Delta S_{0}^{z} S_{imp}^{z} \right)$$
PHYSICAL REVIEW B **85**, 045120 (2012)

General method for calculating the universal conductance of strongly correlated junctions of multiple quantum wires

Armin Rahmani, Chang-Yu Hou, Adrian Feiguin, Masaki Oshikawa, Claudio Chamon, and Ian Affleck

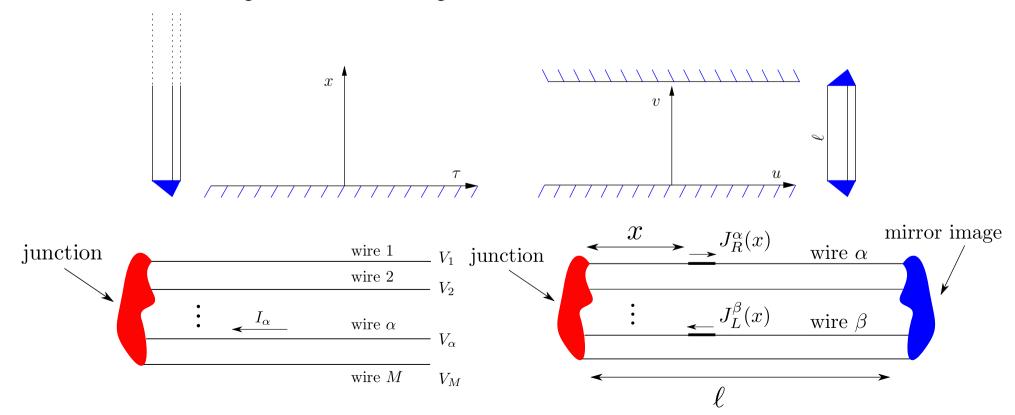


TLL with Impurity The Conformal Mapping Way

PHYSICAL REVIEW B 85, 045120 (2012)

General method for calculating the universal conductance of strongly correlated junctions of multiple quantum wires

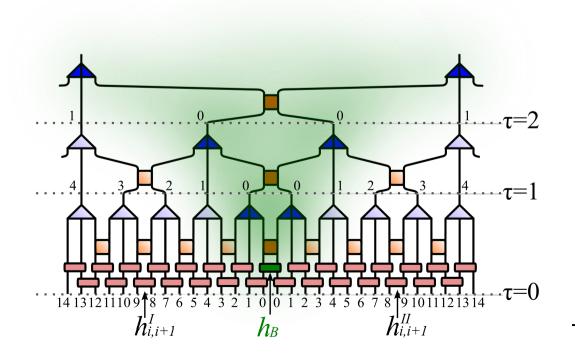
Armin Rahmani, Chang-Yu Hou, Adrian Feiguin, Masaki Oshikawa, Claudio Chamon, and Ian Affleck

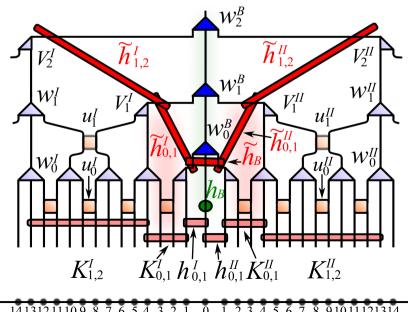


PHYSICAL REVIEW B 90, 235124 (2014)

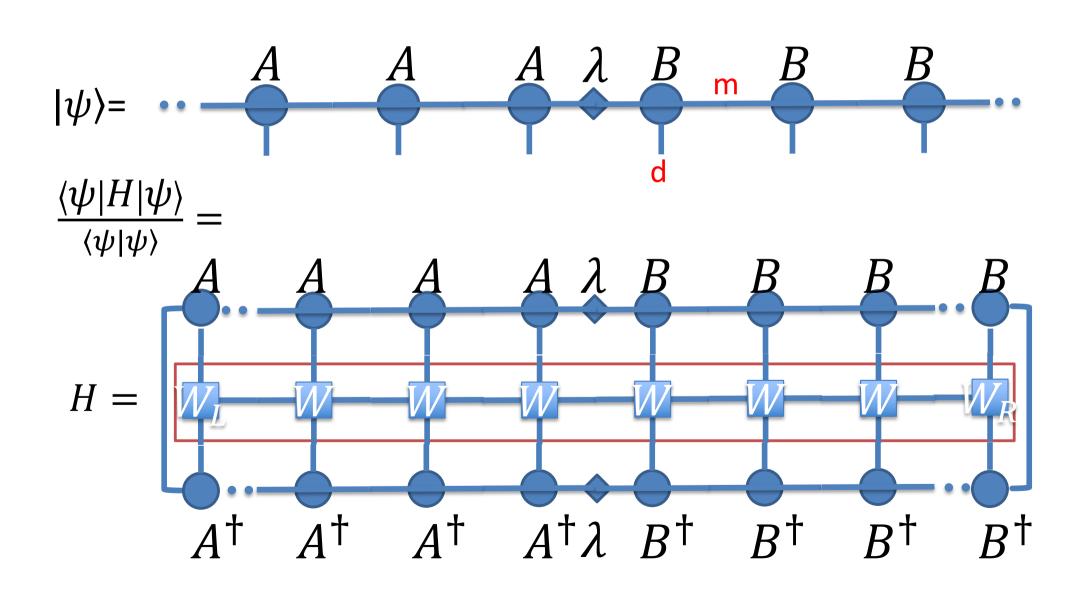
Quantum impurity in a Luttinger liquid: Universal conductance with entanglement renormalization

Ya-Lin Lo (羅雅琳),^{1,2} Yun-Da Hsieh (謝昀達),^{1,2} Chang-Yu Hou,³ Pochung Chen (陳柏中),^{4,5,*} and Ying-Jer Kao (高英哲)^{1,5,6,†}

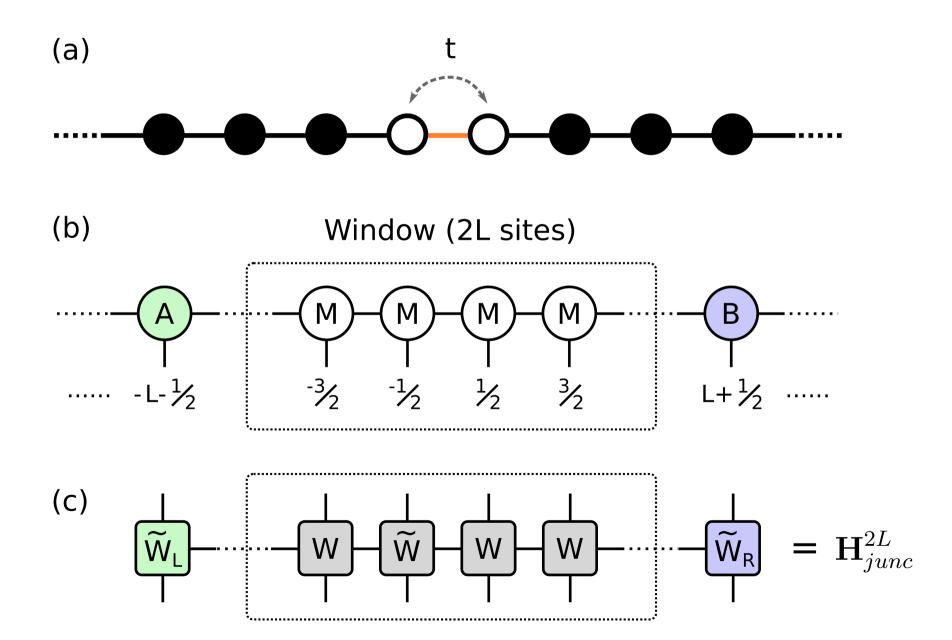




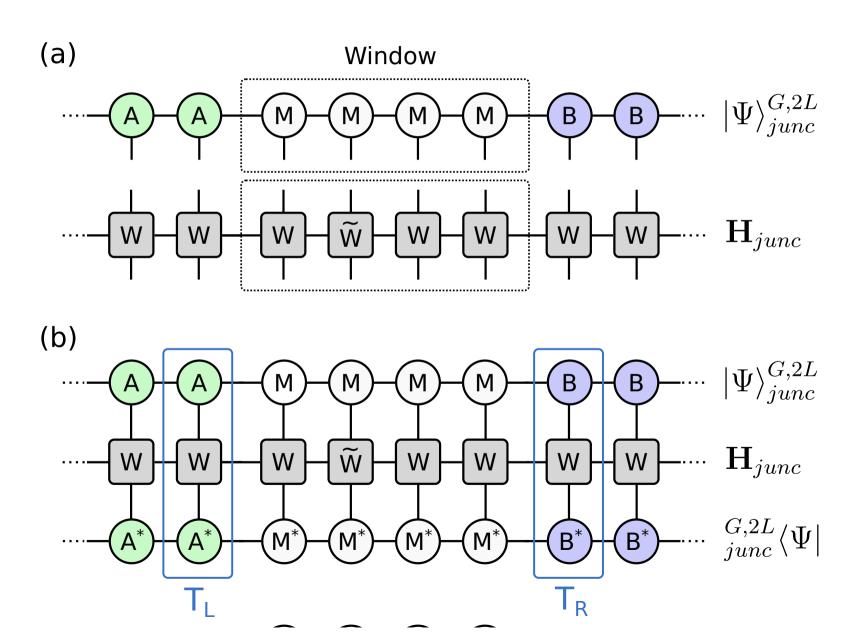
Infinite Matrix Product State (iMPS)



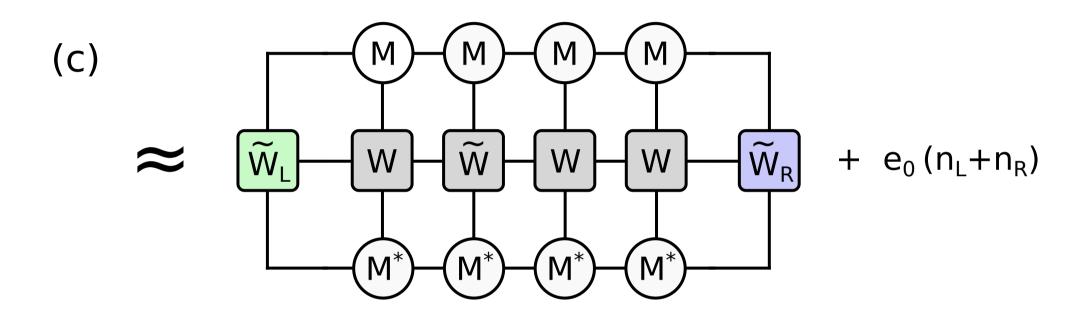
Finite Window in an Infinite System

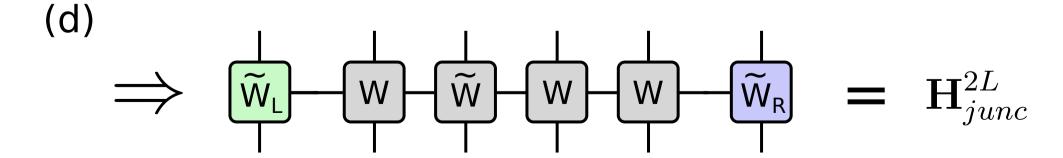


Effective Hamiltonian



Effective Hamiltonian





Bethe Ansatz, Field Theory, iMPS

Bethe ansatz

 Exact analytical expression for short range correlation functions.

Field theory

Asymptotically correct analytical expression.

iMPS

- Finite correlation length.
- (More) accurate at short distance.
- (Less) accurate at long distance.

Bulk Benchmark (Short Distance)

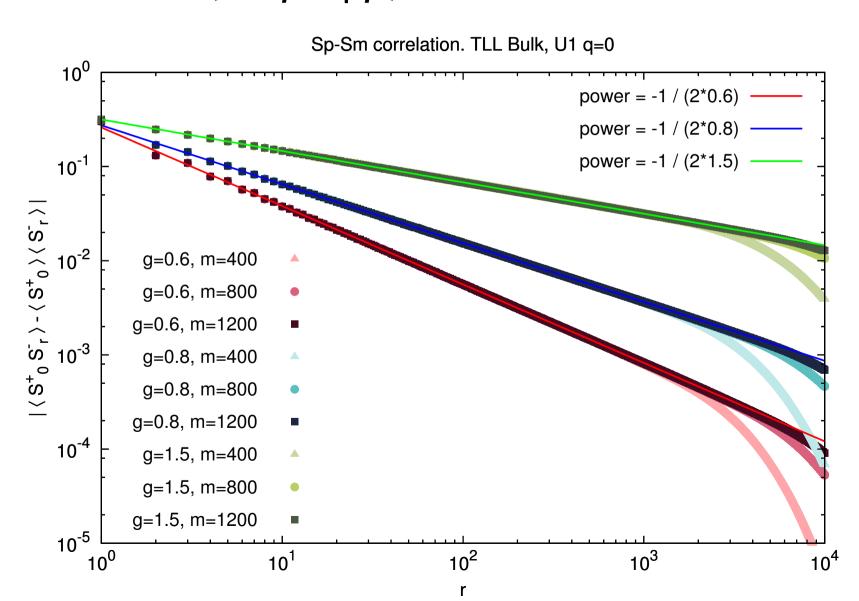
$$V = 0.5$$

r	$\langle S_{-1/2}^z S_{-1/2+r}^z \rangle$	$\langle S_{1/2}^z S_{1/2+r}^z \rangle$	Average	Bethe Ansatz ⁷	Field Theory ⁹	Absolute Error
1	-0.5000010645	-0.4999989325	-0.4999999985	-0.5000000000	-0.5805187860	0.0000000015
2	0.1093749813	0.1093749813	0.1093749813	0.1093750000	0.1135152692	0.0000000187
3	-0.0979007322	-0.0978998444	-0.0979002883	-0.0979003906	-0.0993588501	0.0000001023
4	0.0439766803	0.0439766803	0.0439766803	0.0439770222	0.0440682654	0.0000003419
5	-0.0443373471	-0.0443369169	-0.0443371320	-0.0443379157	-0.0444087865	0.0000007837
6	0.0249922056	0.0249922056	0.0249922056	0.0249933420	0.0249365346	0.0000011364
7	-0.0262659910	-0.0262656732	-0.0262658321	-0.0262668452	-0.0262404925	0.0000010131
8	0.0166097867	0.0166097867	0.0166097867	0.0166105110	0.0165641239	0.0000007243

- Bethe ansztz: N. A. Slavnov, Theor Math Phys **150**, 259 (2007).
- Field theory: S. L. Lukyanov and V. Terras, Nucl. Phys. B 654, 323 (2003).

Bulk Benchmark (Long Distance)

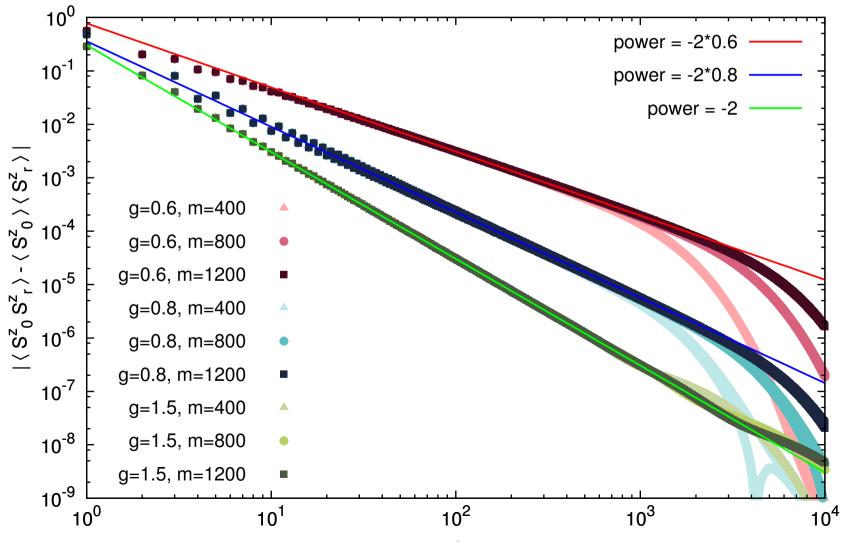
$$\langle S_{-r}^+ S_{+r}^- \rangle \propto r^{-1/(2g)}$$



Bulk Benchmark (Long Distance)

$$\langle S_{-r}^z S_{+r}^z \rangle \propto r^{-2g}$$

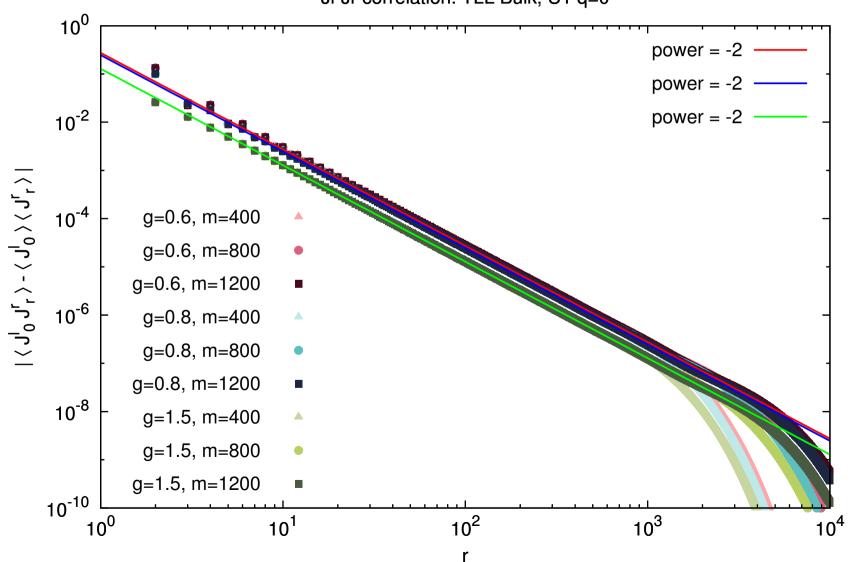
Sz-Sz correlation. TLL Bulk, U1 q=0



Bulk Benchmark (Long Distance)

$$\langle J_{-r}J_{+r}\rangle \propto r^{-2}$$

JI-Jr correlation. TLL Bulk, U1 q=0



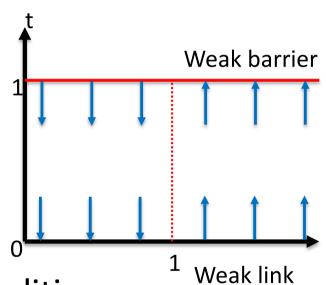
Field Theory: Boundary Perturabtion

Weak barrier (small 1-t): free boundary condition.

$$-\langle S_{-i}^{+} S_{+i}^{-} \rangle = C_{0} r^{-\left(\frac{1}{2g}\right)} + D_{0} (-1)^{r} r^{-\left(\frac{1}{2g}+2g\right)}.$$

$$-\langle S_{-i}^{z} S_{+i}^{z} \rangle = C_{0} r^{-(2)} + D_{0} (-1)^{r} r^{-(2g)}.$$

$$-\langle J_{-i-\frac{1}{2}}^{+} J_{+i+\frac{1}{2}}^{-} \rangle = C_{0} r^{-2}.$$



• Weak link (small t): Dirichlet boundary condition.

$$-\langle S_{-i}^{+} S_{+i}^{-} \rangle = t \left[C_{0} r^{-\left(\frac{3}{2g}-1\right)} + D_{0} (-1)^{r} r^{-\left(\frac{3}{2g}+2g-1\right)} \right].$$

$$-\langle S_{-i}^{z} S_{+i}^{z} \rangle = t^{2} \left[C_{0} r^{-\left(\frac{2}{g}\right)} + D_{0} (-1)^{r} r^{-\left(\frac{2}{g}+2g-2\right)} \right].$$

$$-\langle J_{-i-\frac{1}{2}}^{+} J_{+i+\frac{1}{2}}^{-} \rangle = t^{2} C_{0} r^{-\frac{2}{g}}.$$

Dominant Exponents

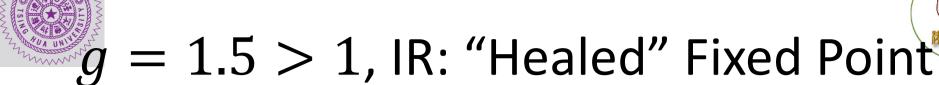
		g > 1	L	g < 1		
	Bulk IR	IR	UV	Buik IR	IR	UV
$\langle S_{-i}^+ S_{+i}^- \rangle$	$\frac{1}{2g}$	$\frac{1}{2g}$	$\frac{3}{2g}-1$	$\frac{1}{2g}$	$\frac{3}{2g}-1$	$\frac{1}{2g}$
$\langle S_{-i}^z S_{+i}^z \rangle$	2	2	$\frac{2}{g}$	2g	$2g + \frac{2}{g} - 2$	2 <i>g</i>
$\left\langle J_{-i-\frac{1}{2}}^{+}J_{+i+\frac{1}{2}}^{-}\right\rangle$	2	2	$\frac{2}{g}$	2	$\frac{2}{g}$	2

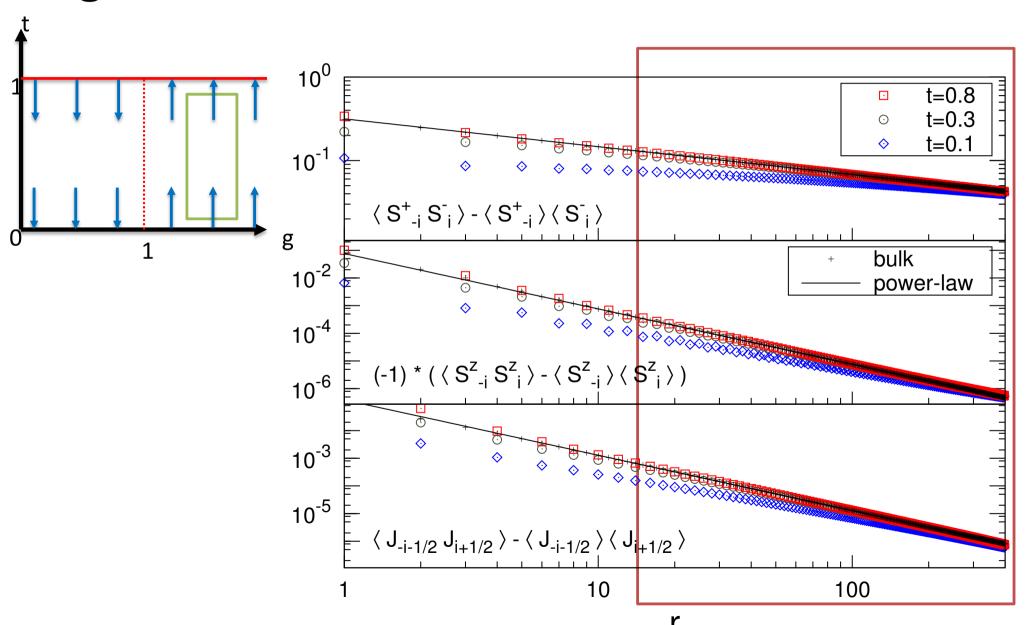
Weak barrier

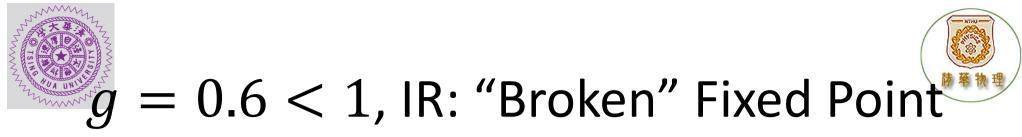
Weak barrier

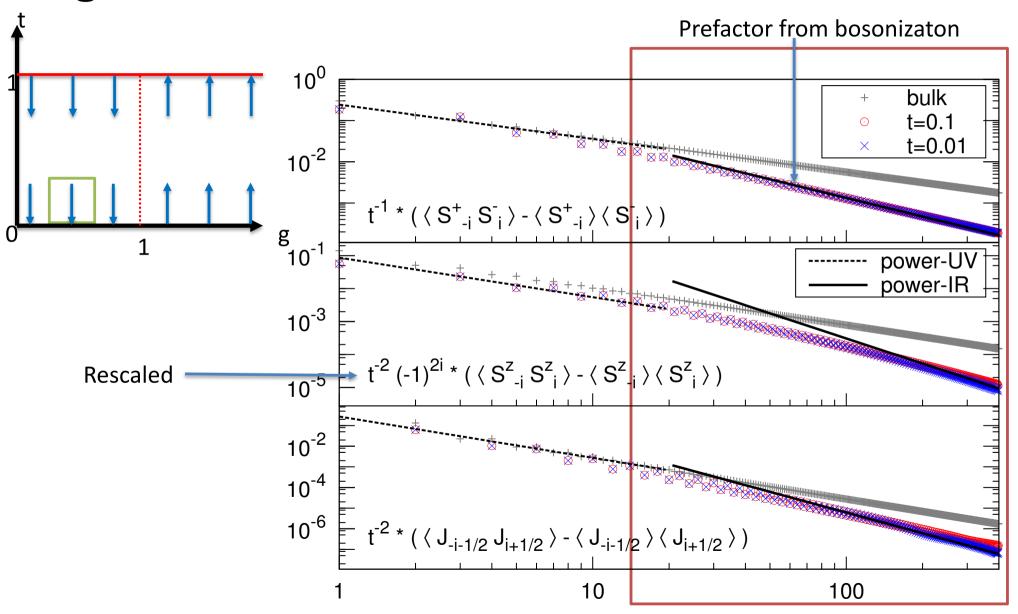
Weak link

Weak link

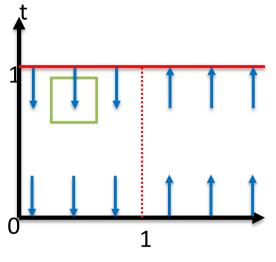


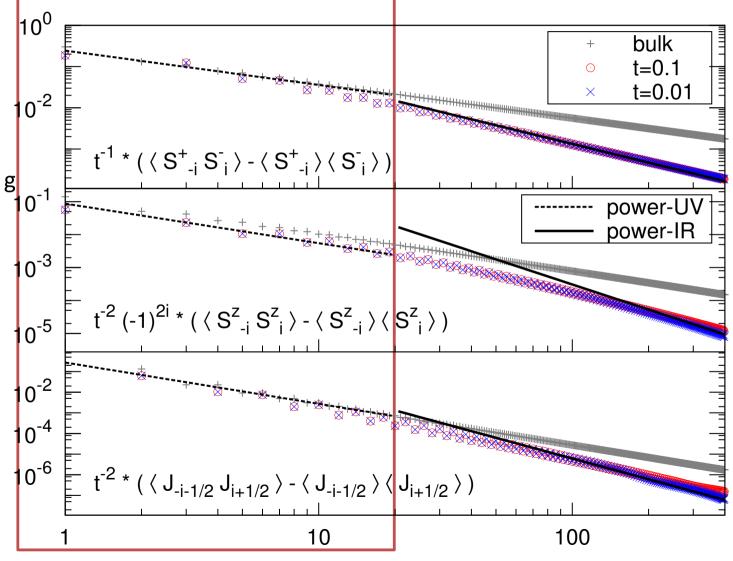






g = 0.6 < 1, UV Fixed Point





g = 1.2 > 1, UV Fixed Point



Summary & Outlook

- Impurity in a Tomonaga-Luttinger Liquid
 - Finite window iMPS with infinite boundary conditions.
- Spin-1/2 XXZ (Spinless fermion)
 - $-\langle S_{-r}^+ S_{+r}^- \rangle, \langle S_{-r}^z S_{+r}^z \rangle, \langle J_{-r} J_{+r} \rangle$ correlation functions
 - Confirm fixed points: g>1 (heal) and g<1 (broken).
 - Confirm exponents: UV and IR.
 - Crossover of correlation functions from UV to IR.
- Applicable interesting problems:
 - Y-junction, spin-1/2 fermion leads, etc.
- Further generalization:
 - Finite bias, finite temperature.