Topological triplon band and edge states in the spin dimer antiferromagnet Ba₂CuSi₂O₆Cl₂

Institute of Multidisciplinary Research for Advanced Materials
Tohoku University

Kazuhiro Nawa

The 2nd Asia pacific workshop on quantum magnetism ICTS, 2018/12/04

K. Nawa et al., cond-mat arXiv:1810.08931 (2018).

Experimental team

Sample Preparation and Characterization

Tanaka Kimihiko, Kurita Nobuyuki, Hidekazu Tanaka (Tokyo Inst. Tech.)

Inelastic neutron scattering experiments

Tanaka Kimihiko, Kurita Nobuyuki, Hidekazu Tanaka (Tokyo Inst. Tech.)

Kazuhiro Nawa, Taku J Sato (Tohoku Univ.) Seiko Kawamura, Kenji Nakajima (J-PARC)

Single crystal XRD diffraction experiments

Haruki Sugiyama, Hidehiro Uekusa (Tokyo Inst. Tech.)

Thanks for discussion

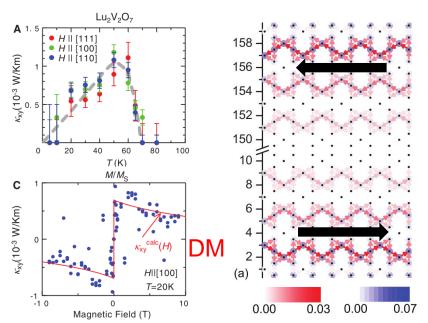
Masashige Matsumoto (Sizuoka Univ.) and Kentaro Nomura (Tohoku Univ.)

Contents

- Introduction
 Topological properties on bosonic system a spin dimer antiferromagnet Ba₂CuSi₂O₆Cl₂
- Triplon bands of Ba₂CuSi₂O₆Cl₂
 investigated by inelastic neutron scattering experiments
- Topological character of triplon bands associated edge states

Topological bosonic bands

Magnons : Ferromagnet Lu₂V₂O₇

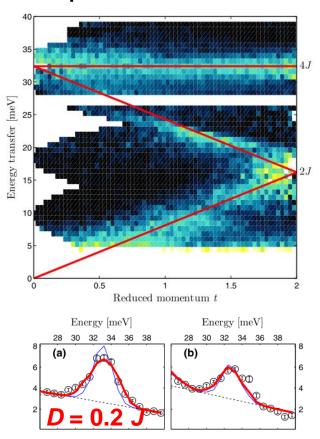


- Y. Onose et al., Science 329, 297 (2010).
- L. Zhang et al., PRB **87**, 144101 (2013).

Thermal Hall effect: DM interactions produce non zero Berry curvature of excited bands

cf. Cu(1,3-bdc), Cu₃TeO₆

Necessary to reveal dispersion relations.



M. Mena et al., PRL **113**, 047202 (2014).

- R. Chisnell et al., PRL 115, 147201 (2015).
- W. Yao et al. Nat. Phys. **14**, 1011 (2018).
- S. Bao et al., Nat. Commun. 9, 2591 (2018).

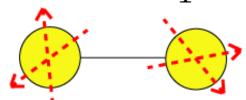
Magnetism of quantum dimer system

Magnons ← ordered magnets

Triplons ← a dimer antiferromagnet

ex. Isolated dimers with S = 1/2 $\begin{array}{l} \text{intradimer interactions} \\ H = NJS_1 \cdot S_2 \end{array} \stackrel{1}{\leftarrow} {}_{4}^{NJ}: |S,S_z> = \left\{ \begin{array}{l} |1,1\rangle \\ |1,0\rangle \end{array} \right. \text{`Triplons''} \\ |1,-1\rangle \\ \text{Singlet} \end{array}$

$$H = NJS_1 \cdot S_2$$



$$E_{\rm S} = -\frac{3}{4}NJ : |S, S_z\rangle = |0, 0\rangle$$

ground state

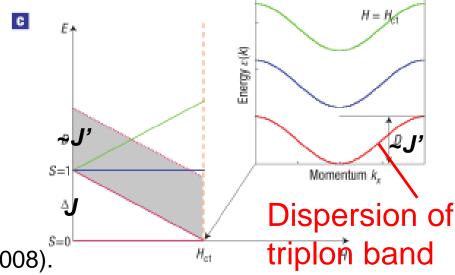
In real compounds,

+ interdimer interactions

$$J'(S_i^+S_j^- + S_i^-S_j^+)$$

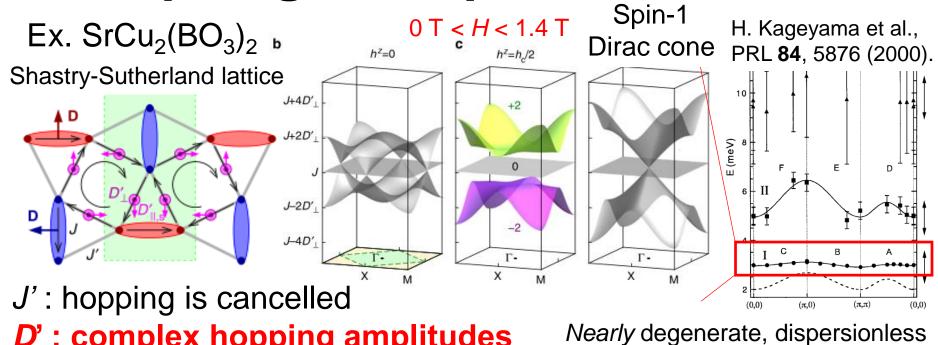
hopping of triplons

Very simple but rich physics!



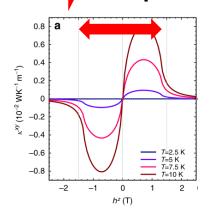
T. Giamarchi et al., Nature Physics, 4, 198 (2008).

Topological triplon bands



D': complex hopping amplitudes

Triplon Hall effect



Thermally excited triplon edge states

Energy (meV) Triplon bands

2-triplon BS

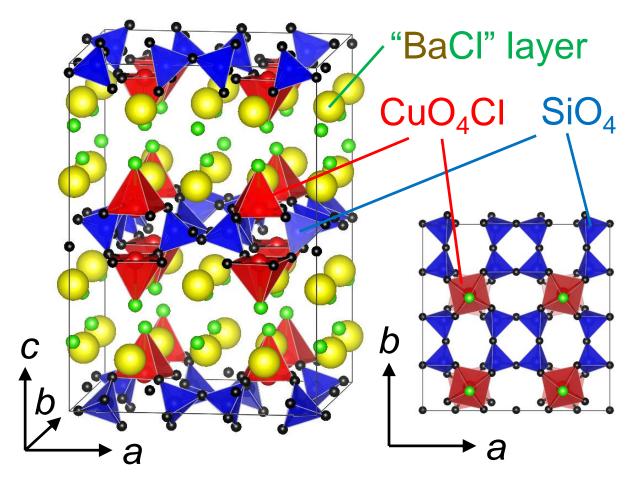
-0.50.0 [-1 + H, 1 + H]

P. A. McMlarty et al., Nature Physics **13**, 736 (2017).

0.5

J. Romhanyi et al., Nat. Commun. 6, 7805 (2015).

The dimer antiferromagnet Ba₂CuSi₂O₆Cl₂

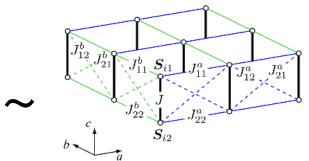


 $\frac{Cmce}{}$ \rightarrow $\frac{Cmc2}{}$ (loss of a-glide)

a = 13.8917(12) Å

b = 13.8563(11) Å

c = 19.6035(15) Å



Dimer forms a rectangular lattice

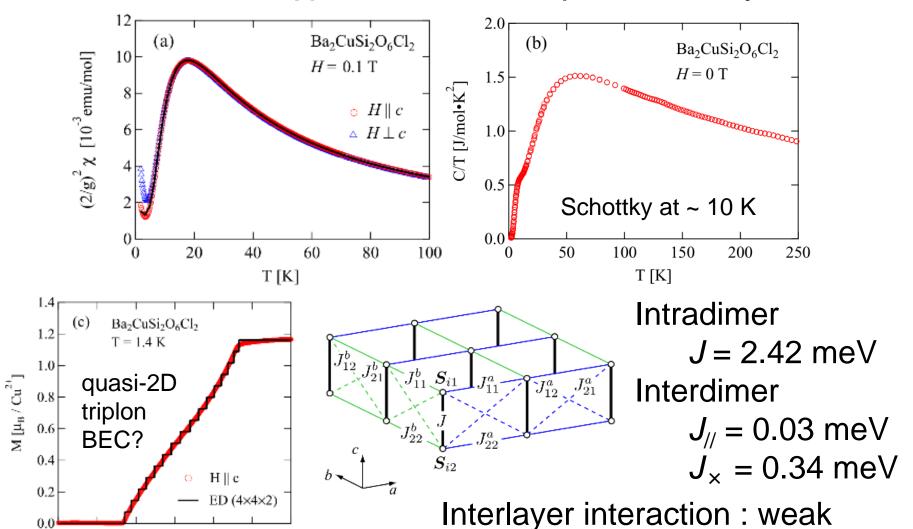
cf. E. C. Samulon et al., PRB **73**, 100407(R) (2006).

Structure is similar to that of BaCuSi₂O₆, PRB **73**, 100407(R) (2006) but all dimers are equivalent and all layers are also equivalent.

M. Okada et al., Phys. Rev. B, **94**, 094421 (2016).

Magnetic properties of Ba₂CuSi₂O₆Cl₂

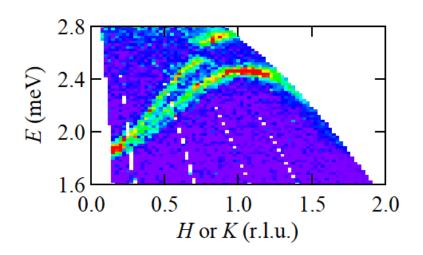
Consistent with χ and C of the spin dimer system.

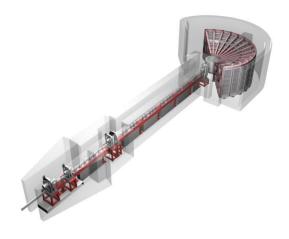


H [T]

M. Okada et al., Phys. Rev. B, **94**, 094421 (2016).

Triplon band splitting examined by inelastic neutron scattering experiments

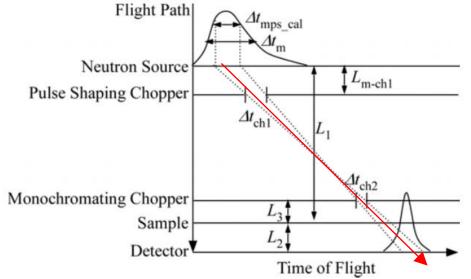


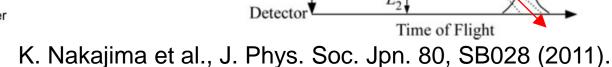


Cold-neutron disk chopper spectrometer AMATERAS (BL-14)

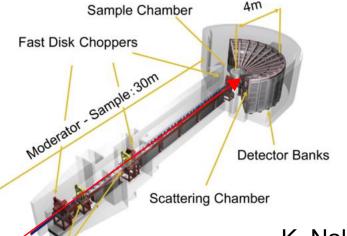
$$E_{\rm i} = 1 \sim 20 \; {\rm meV}$$

- High resolution (ΔE/E > 1 %)
 achieved by disk coppers
- A rate repetition multiplication
 M. Nakamura et al., JPSJ 78, 093002 (2009).





H. Seto et al., Biochimica et Biophysica Acta 1861, 3651 (2017).

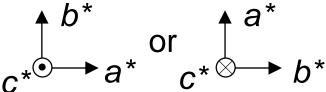


Slow Disk Choppers

Experiments

- Blue platelike single crystals were grown by a self-flux method (M. Okada et al., PRB 94, 094421 (2016))
- Twenty pieces (~ 2 g) were coaligned on a rectangular Al plate (→).
- Few degrees of mozaicity.
- Main data measured with
 E_i = 5.92 meV (ΔΕ/Ε_i = 0.027)
 90 degree sample rotation
 around k_i // c*
- 0.3 K using ³He refrigerator.
- Analyzed by the software suite UTSUSEMI.

(Y. Inamura et al., JPSJ 82, SA031 (2013).)

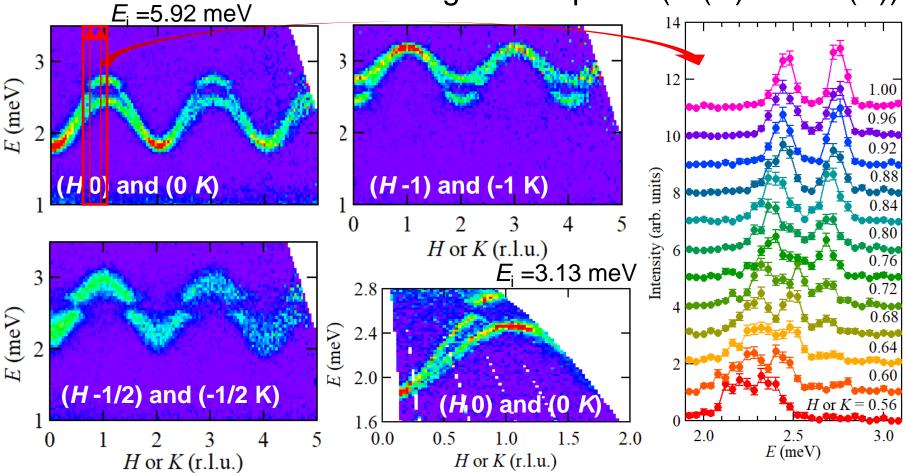


a* and b* cannot bedistinguished because ofcrystallographic domains...

does not affect the analysis. a axis length ~ b axis length

Split in triplon bands

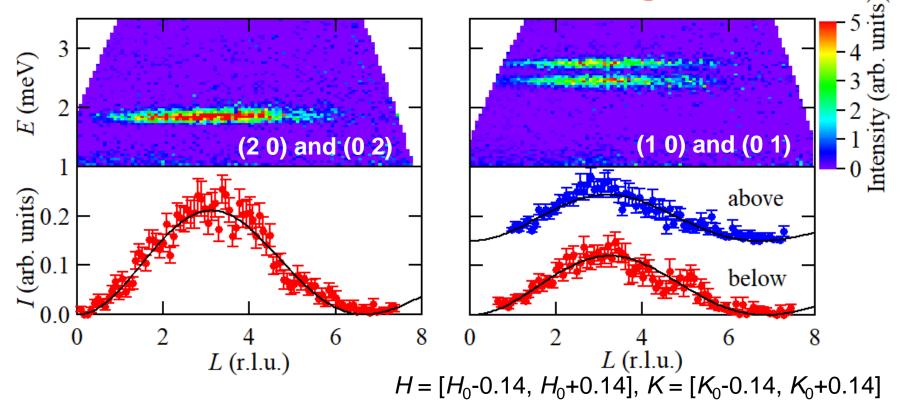
Sliced along the 2D plane $(a^*(H))$ and $b^*(K)$



- Two dispersive branches at 2-3 meV: along H and K
- The minimum energy at even integers
- Split of the band at 2.6 meV

H or $K = [H_0-0.1, H_0+0.1]$ L = [-1.1, 8.0]

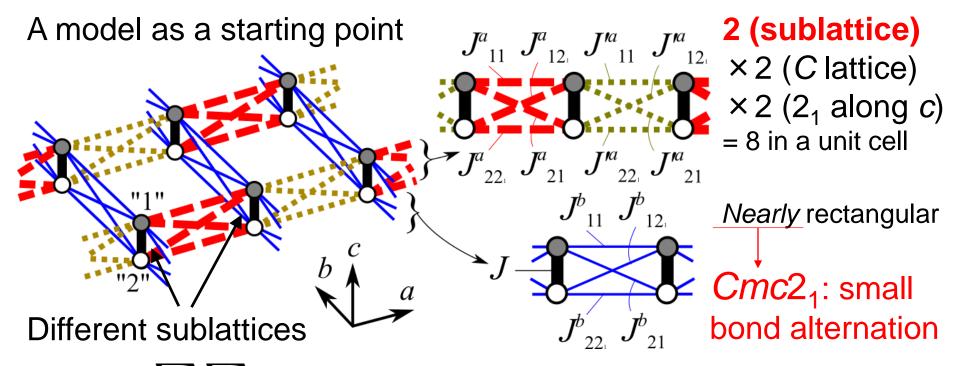
Dimer formation along c



- Dispersionless along $c^*(L) \rightarrow$ negligible interlayer interactions
- Intensity oscillation → Dimer formation along c.

The fit yields 0.150(1)
$$c$$
 $I(Q,\omega) \sim |f(Q)|^2 (1-\cos(\mathbf{Q}\cdot\mathbf{d}))$ \rightarrow consistent with 0.148 c (XRD). Form factor of Cu²⁺ cf. Y. Sasago et al., Phys. Rev. B 55, 8357 (1997).

Why does the triplon band split?



$$\mathcal{H}_0 = J \sum \sum S_{mn1} \cdot S_{mn2}$$
 : Intradimer interactions

$$\mathcal{H}' = \sum_{m+n = ext{even } \langle i,j \rangle} \sum_{mni} \left(J_{ij}^a m{S}_{mni} \cdot m{S}_{(m+1)nj} + J_{ij}^{a\prime} m{S}_{(m-1)ni} \cdot m{S}_{mnj} \right)$$

$$+J_{ij}^boldsymbol{S}_{mni}\cdotoldsymbol{S}_{m(n+1)j}+J_{ij}^boldsymbol{S}_{m(n-1)i}\cdotoldsymbol{S}_{mnj}\Big)$$

Interdimer interactions: 4×3 types

Effective Hamiltonian of triplons

Applying bond-operator approach

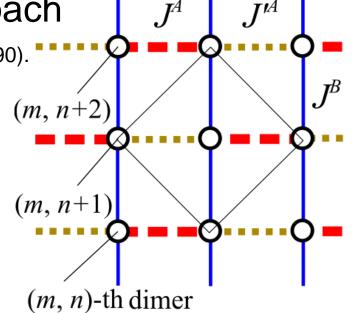
S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).

$$s_{mn}^{\dagger}|0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_{mn1}|\downarrow\rangle_{mn2} - |\downarrow\rangle_{mn1}|\uparrow\rangle_{mn2})$$

$$t_{xmn}^{\dagger}|0\rangle = -\frac{1}{\sqrt{2}}(|\uparrow\rangle_{mn1}|\uparrow\rangle_{mn2} - |\downarrow\rangle_{mn1}|\downarrow\rangle_{mn2})$$

$$t_{ymn}^{\dagger}|0\rangle = \frac{i}{\sqrt{2}}(|\uparrow\rangle_{mn1}|\uparrow\rangle_{mn2} + |\downarrow\rangle_{mn1}|\downarrow\rangle_{mn2})$$

$$t_{zmn}^{\dagger}|0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_{mn1}|\downarrow\rangle_{mn2} + |\downarrow\rangle_{mn1}|\uparrow\rangle_{mn2})$$



Projection to a triplon language
$$J^A = \frac{1}{4}(J_{11}^a + J_{22}^a - J_{12}^a - J_{21}^a), \cdots$$

$$\mathcal{H}_0 + \mathcal{H}' \sim \frac{1}{2} \sum_{\alpha} \sum_{\mathbf{k}} \begin{pmatrix} t_{\alpha \mathbf{k}}^{\dagger,1}, t_{\alpha \mathbf{k}}^{\dagger,2}, t_{\alpha (-\mathbf{k})}^1, t_{\alpha (-\mathbf{k})}^2, t_{\alpha (-\mathbf{k})}^2 \end{pmatrix} \begin{pmatrix} J & \Lambda_{\mathbf{k}} & 0 & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^* & J & \Lambda_{\mathbf{k}}^* & 0 \\ 0 & \Lambda_{\mathbf{k}} & J & \Lambda_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} t_{\alpha \mathbf{k}}^1 \\ t_{\alpha \mathbf{k}}^2 \\ t_{\alpha (-\mathbf{k})}^{\dagger,1} \\ t_{\alpha (-\mathbf{k})}^{\dagger,2} \end{pmatrix}$$

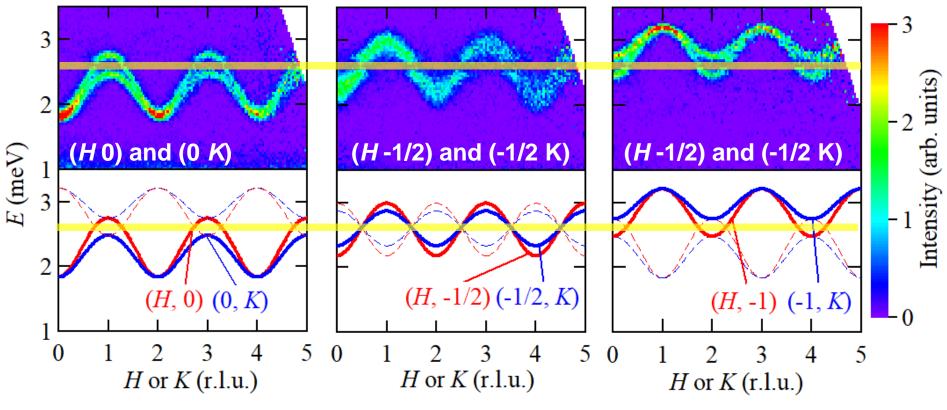
$$\text{Mode : \textit{x, y, or z (triply degenerate)}} \begin{pmatrix} J & \Lambda_{\mathbf{k}} & 0 & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^* & J & \Lambda_{\mathbf{k}}^* & J \\ \Lambda_{\mathbf{k}}^* & 0 & \Lambda_{\mathbf{k}}^* & J \end{pmatrix} \begin{pmatrix} t_{\alpha \mathbf{k}}^1 \\ t_{\alpha (-\mathbf{k})}^1 \\ t_{\alpha (-\mathbf{k})}^{\dagger,2} \\ t_{\alpha (-\mathbf{k})}^{\dagger,2} \end{pmatrix}$$

Mode: x, y, or z (triply degenerate)

$$\Lambda_{\mathbf{k}} = J^A e^{-ik_x a/2} + J^{A'} e^{ik_x a/2} + J^B \left(e^{-ik_y b/2} + e^{ik_y b/2} \right)$$

Dispersion relation obtained by diagonalizing $\sigma_3 M_k^{(4)}$ $\sigma_3 = \text{diag}(1, 1 - 1, -1)$

Absence of the gap in Cmce



Two modes (solid/dashed)

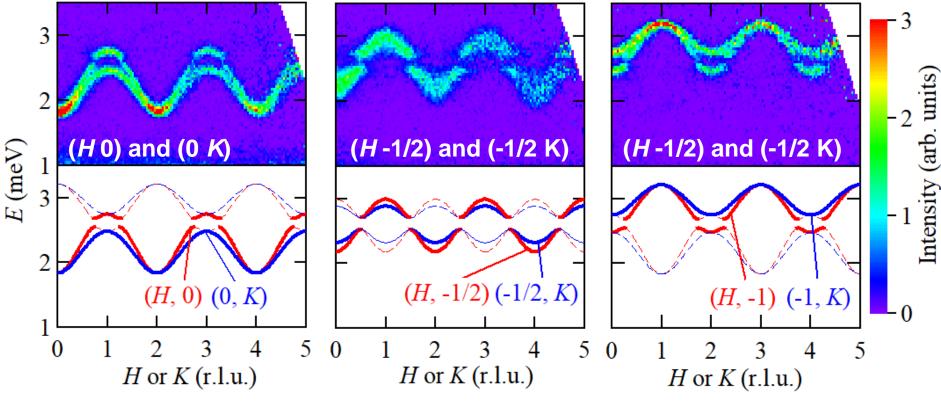
H or $K = [H_0-0.1, H_0+0.1], L = [-1.1, 8.0]$

$$E_{\pm,\mathbf{k}} = \sqrt{J^2 \pm 2J|\Lambda_{\mathbf{k}}|}$$
 $J = 2.61, J^{A} = J^{A'} = -0.79, J^{B} = -0.53$ (meV)

 $Cmce \rightarrow J^A = J^{A'}$: Two sublattices become almost equivalent

The structure factor of one band is nearly zero.

Presence of the gap in Cmc2 (+ bond alternation)



Two modes (solid/dashed)

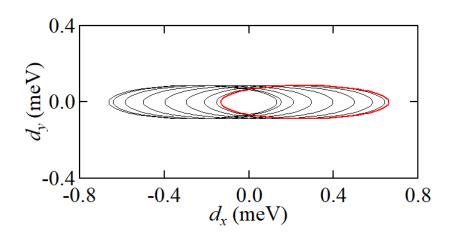
H or $K = [H_0-0.1, H_0+0.1], L = [-1.1, 8.0]$

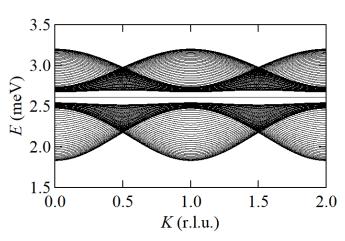
$$J = 2.61, J^{A} = -0.97, J^{A'} = -0.62, J^{B} = -0.53 \text{ (meV)}$$
 reproduce the experiment results.

 $Cmc2_1 \rightarrow possible to increase |J^A| and decrease |J^A'|$

Structure factor almost the same as those of the previous model.

Topologically protected triplon edge states





Band topology in Ba₂CuSi₂O₆Cl₂

$$\mathcal{H}_{0} + \mathcal{H}' \sim \frac{1}{2} \sum_{\alpha} \sum_{\mathbf{k}} \left(t_{\alpha \mathbf{k}}^{\dagger,1}, t_{\alpha \mathbf{k}}^{\dagger,2}, t_{\alpha(-\mathbf{k})}^{1}, t_{\alpha(-\mathbf{k})}^{2} \right) \begin{pmatrix} J & \Lambda_{\mathbf{k}} & 0 & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^{*} & J & \Lambda_{\mathbf{k}}^{*} & 0 \\ 0 & \Lambda_{\mathbf{k}} & J & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^{*} & 0 & \Lambda_{\mathbf{k}}^{*} & J \end{pmatrix} \begin{pmatrix} t_{\alpha \mathbf{k}}^{1} \\ t_{\alpha \mathbf{k}}^{2} \\ t_{\alpha(-\mathbf{k})}^{\dagger,1} \\ t_{\alpha(-\mathbf{k})}^{\dagger,2} \end{pmatrix}$$

For simplicity, let's neglect pair-creation and pair-annihilation terms and think only a reduced matrix first... (dispersion is not so much deformed by this procedure)

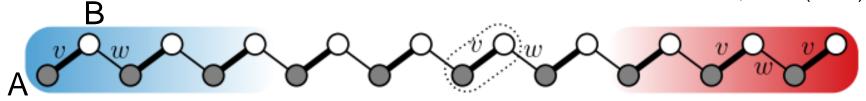
reduced into..

$$(\mathcal{H}_{0} + \mathcal{H}')_{\alpha} \sim \sum_{\mathbf{k}} \left(t_{\mathbf{k}}^{\dagger,1} t_{\mathbf{k}}^{\dagger,2} \right) \begin{pmatrix} J & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^{*} & J \end{pmatrix} \begin{pmatrix} t_{\mathbf{k}}^{1} \\ t_{\mathbf{k}}^{2} \end{pmatrix}$$

$$\mathcal{M}_{\mathbf{k}}^{(2)}$$

Su-Schrieffer-Heeger (SSH) model

- Fermionic system: hopping of an electron on a chain
- Two sublattice (A and B) (cf. polyacetylene)
- W. Su et al., Phys. Rev. Alternated hopping amplitude (v and w) Lett. 42, 1698 (1979).



$$\mathcal{H}_{\text{SSH}} \equiv \begin{pmatrix} 0 & v + we^{-ik} \\ v + we^{ik} & 0 \end{pmatrix} = \mathbf{d}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

$$\mathbf{d}(\mathbf{k}) = (\hat{\operatorname{Re}}\Lambda_{\mathbf{k}}, -\operatorname{Im}\Lambda_{\mathbf{k}}, 0), \Lambda_{\mathbf{k}} = v + we^{-ik}$$

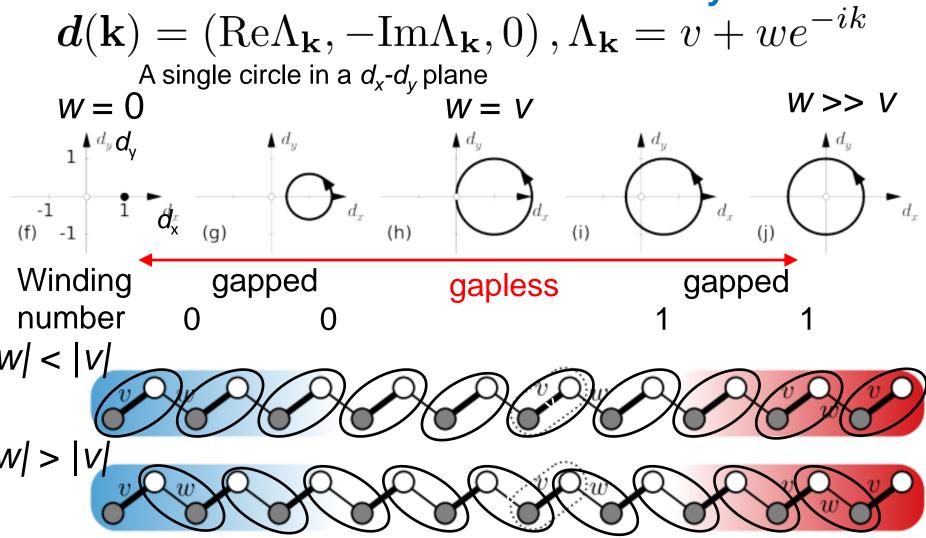
$$\boldsymbol{\sigma} = \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$
: pseudomagnetic field pseudospin 1/2 (Pauli matrix)

 $E=\pm |{m d}({f k})|=\pm |\Lambda_{f k}|\;\;$: Two bands with an energy gap

Energy gap
$$\Delta = 2 \min_{\mathbf{k}} \Lambda_{\mathbf{k}} = 2(|v| - |w|)$$

J. K. Asbóth et al., Lecture Notes in Physics, 919 (2016).

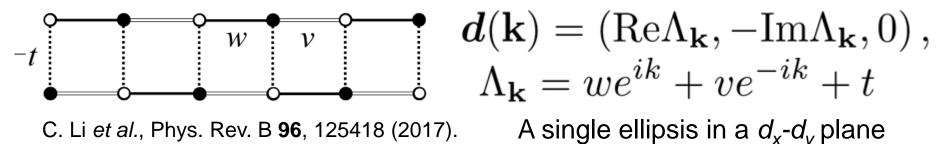
Relation between d_x and d_y in SSH



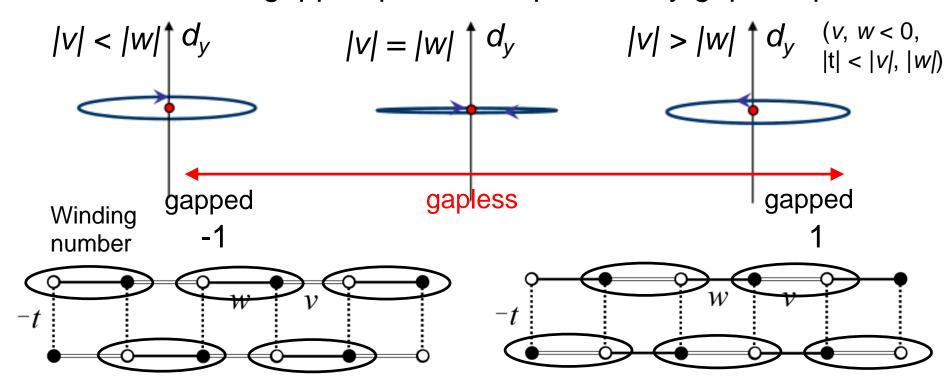
 $d_z(k) = 0$: cannot change winding number without closing the gap topologically protected (by chiral symmetry)

Coupled SSH model

SSH chains coupled with an opposite alternating sequence

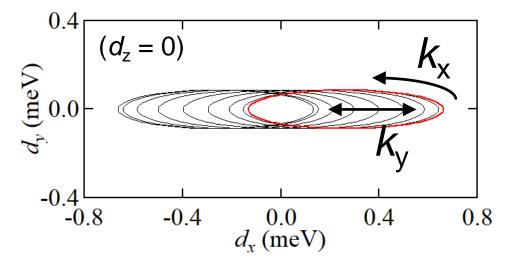


Two nontirvial gapped phases, separated by gapless phase



Ba₂CuSi₂O₆Cl₂ as a coupled SSH model

$$\mathcal{H}_d \equiv \begin{pmatrix} J & \Lambda_{\mathbf{k}} \\ \Lambda_{\mathbf{k}}^* & J \end{pmatrix} = \underbrace{J\mathbf{1}} + d(\mathbf{k}) \cdot \boldsymbol{\sigma} \qquad \begin{array}{l} \text{shift energy} \\ \text{Edge modes} \\ \text{appear at } J \\ \\ \Lambda_{\mathbf{k}} = \underbrace{J^A e^{-ik_x a/2} + J^{A\prime} e^{ik_x a/2}}_{} + \underbrace{J^B \left(e^{-ik_y b/2} + e^{ik_y b/2}\right)}_{} \end{array}$$



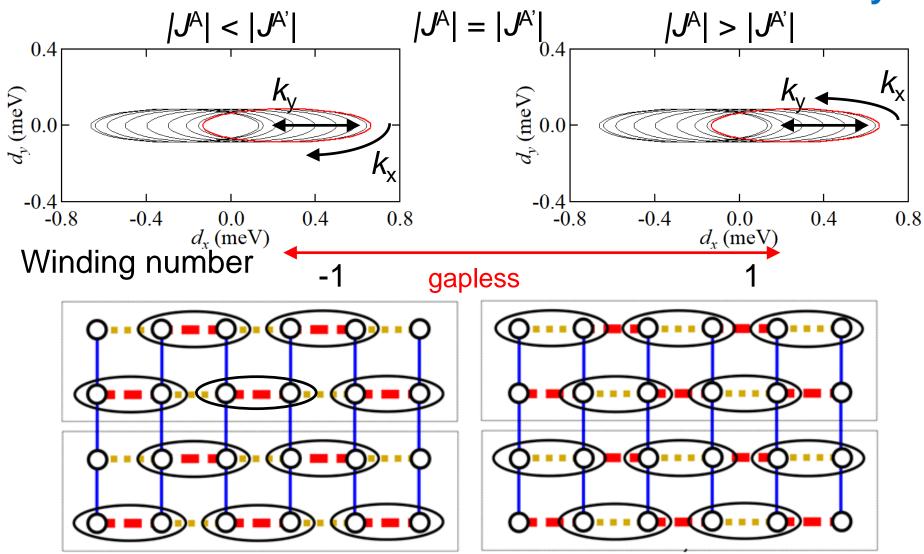
- k_x varied: a ellipsis.
- k_y varied : shift along d_x .

d: "aggregate" of ellipses

Fixing k_y single ellipsis

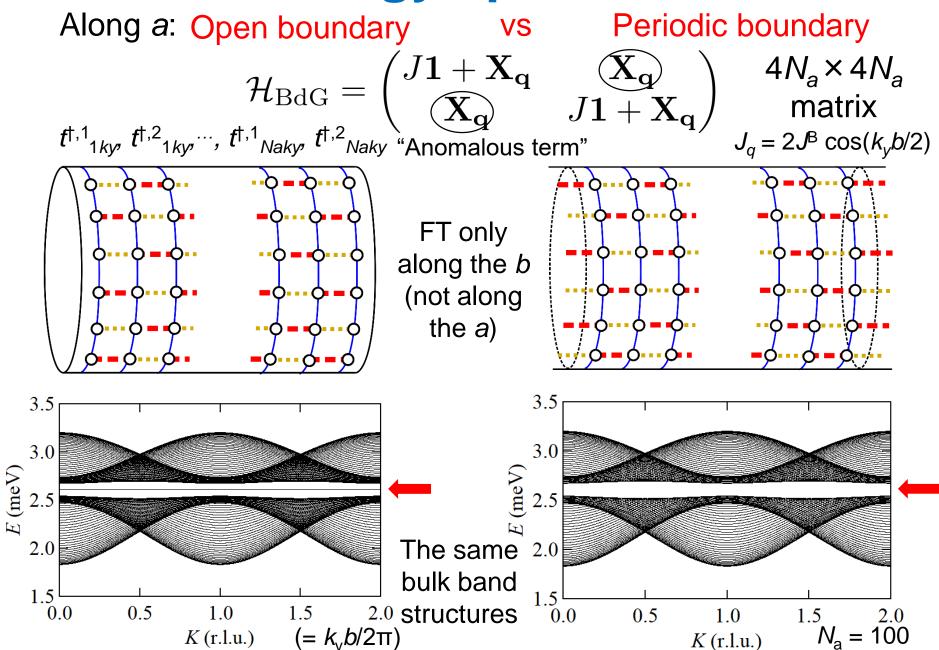
The winding number is the same for the all k_y owing to $|J^B| < |J^A + J^{A'}|/2$. \rightarrow quasi-1D extension of SSH

Coupled SSH model with fixed k_y



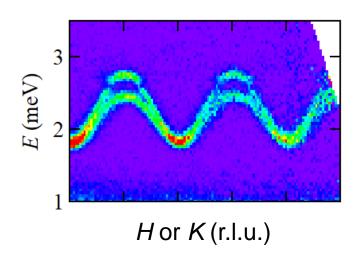
Alternation of J_A , J_A ' \to two sublattices \to nontrivial topology $d_z(k) = 0 \to topologically protected edge states (thermally excited)$

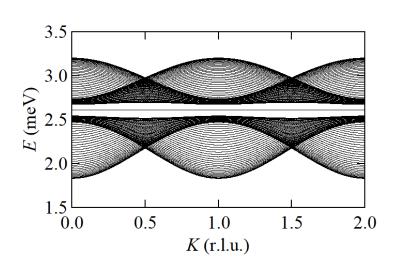
Energy spectrum



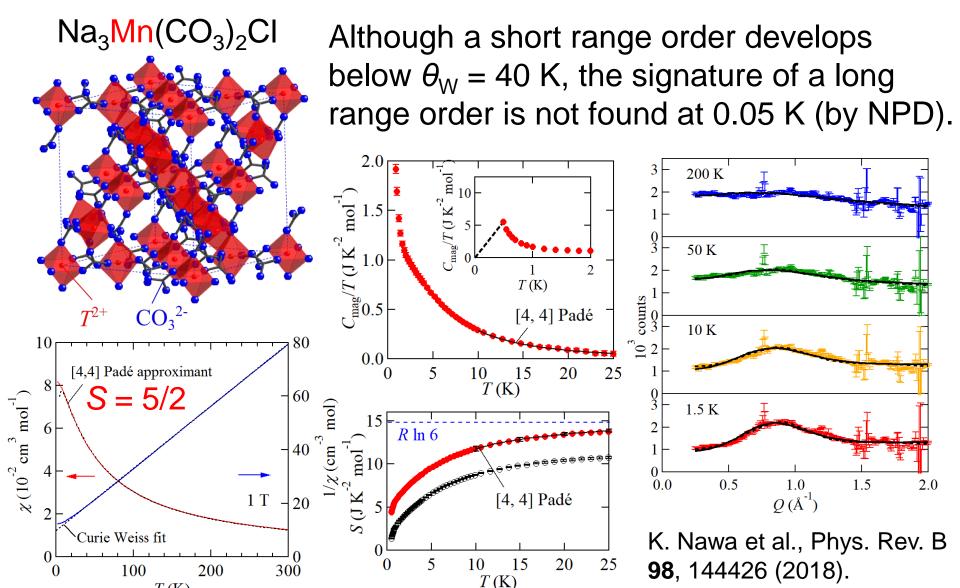
Summary

- Spin excitation spectrum of Ba₂CuSi₂O₆Cl₂ exhibits two triplon bands with a small gap between them, which is due to the alternation of interdimer interactions.
- The triplon band topology is the same as the coupled SSH model, indicating the presence of topologically protected edge states.





A large degeneracy near the ground states in "pyrochlore" antiferromagnet



T(K)