Resonating three colouring wavefunctions for the Kagome antiferromagnet

Sumiran Pujari

with Hitesh Changlani (FSU), Chia-Min Chung (LMU), Bryan Clark (UIUC)

IIT Bombay

ICTS, Dec 2018

ntro : Three Colouring

Troblem Statement

ocalized Magnons.

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

ipartite XXZ

Outline of the Talk

Intro: Three Colouring solutions

Troblem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XX

Bipartite XXZ

- quick intro to Kagome AFM
- ▶ The three colouring (3c) solvable point (H_{XXZ0})
- ► The problem statement in higher magnetization sectors / 3c solutions for $J_z > -1/2$
- ▶ Localized (flat-band) magnon modes $(J_z > 0)$
- Mapping of magnons to three colourings
- Resolves the problem AND adiabaticity in these high mag sectors
- ▶ DMRG evidence for adiabaticity in zero mag sector
- Colouring perspective on bipartite XXZ

Introduction

Intro: Three Colouring solutions

Classic Issue of frustrated Heisenberg magnets

- ► Triangle motifs: Triangular, Kagome, etc. (2d)
- ▶ Kagome lattice Herbertsmithite $(ZnCu_3(OH)_6Cl_2)$
- lacksquare No magnetic order till 50 mK $(heta_{CW} \sim \textit{O}(100K))$
- ► Candidate for a Quantum Spin Liquid (QSL)
- \triangleright Z_2 QSL, U(1) QSL proposals have gotten attention..
- Ordered states also, e.g. Ralko et al PRB (2018)
- Which QSL? : NOT Focus of this talk
- Broader perspective: the XXZ phase diagram (See Essafi et al, Nature Comm (2016) and precursors)

i iobiciii Stateilielle

ocalized Magnons

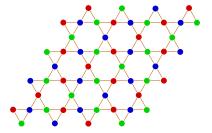
Mapping to 3c's and the

Adiabaticity to XXZ0

Bipartite XXZ

The three colouring solvable point

- ▶ Recently, a new colouring perspective on Kagome AFM: Changlani et al, PRL (2018)
- $\blacktriangleright H_{XXZ0} = \sum_{\langle i,j \rangle \in \mathsf{Kagome}} \left(S_i^{\mathsf{X}} S_j^{\mathsf{X}} + S_i^{\mathsf{y}} S_j^{\mathsf{y}} \frac{1}{2} S_i^{\mathsf{z}} S_j^{\mathsf{z}} \right)$
- ► Exact solutions representable as three colourings
- ► For Triangular lattice by Momoi & Suzuki in 1994



- $ightharpoonup \mathsf{RGB} o 120^\circ$ states in XY plane of Bloch sphere
- e.g. $|\bullet\rangle = |\uparrow\rangle + |\downarrow\rangle$, $|\bullet\rangle = |\uparrow\rangle + \omega|\downarrow\rangle$, $|\bullet\rangle = |\uparrow\rangle + \omega^2|\downarrow\rangle$,

Intro: Three Colouring solutions

. robiciii Statement

ocalized Magnons

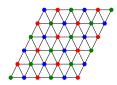
Mapping to 3c's and the RCL wavefunction

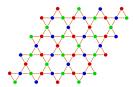
Adiabaticity to XXZ0

Bipartite XXZ

Three Colouring POV on frustration

now goes to





- \blacktriangleright only finite 3c's on triangle ... essentially, 120° order
- Exponentially many 3c's on Kagome...
- ► IMP XXZ0 holds together the Kagome phase diagram

Intro: Three Colouring solutions

1 Toblem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

CONCIUSION

- ▶ On a single \triangle , H_{XXZ0} ground state manifold is fully polarized $|\uparrow\uparrow\uparrow\rangle$ chiral state 1 $|\downarrow\uparrow\uparrow\rangle + \omega|\uparrow\downarrow\uparrow\rangle + \omega^2|\uparrow\uparrow\downarrow\rangle$ chiral state 2 $|\downarrow\uparrow\uparrow\rangle + \omega^2|\uparrow\downarrow\uparrow\rangle + \omega|\uparrow\uparrow\downarrow\rangle$ & $\uparrow\rightarrow\downarrow$ above (6 states in total)
- ► ⇒ Full Kagome $H_{XXZ0} \propto \sum_{\triangle} P_{\triangle}$ where $P_{\triangle} = |+\rangle\langle+|+|-\rangle\langle-|$
- $\begin{array}{c} |+\rangle = |\downarrow\uparrow\uparrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle, \\ |-\rangle = |\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle \text{ achiral states} \end{array}$
- ▶ P_{\triangle} are non-commuting
- ▶ Any $|3c\rangle$ is manifestly a ground state (e.g. $|\bullet \bullet \bullet\rangle$ on a \triangle)
- ▶ XXZ has total Sz conserved, $\therefore |GS\rangle = P_{Sz}|3c\rangle$
- Exponentially degenerate GS manifold in each Sz sector at XXZ0 point .. NOT CLEAR which state gets selected towards $J_z=1$

Our Problem Statement

▶ 3c solns away from XXZ0, on whole $J_z > -\frac{1}{2}$ segment in high magnetization sectors..

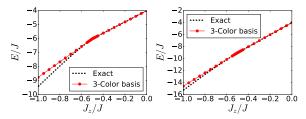


Figure: LEFT: $L = 4 \times 2 \times 3$ narrow cylinder (total

Sz = 8 or 1/6 boson filling

RIGHT: 36-site cluster (total Sz = 14 or 1/9 boson filling)

- ► In 3c diagonalization, 3c mat elems need to be evaluated efficiently .. Changlani et al, PRL supp
- ▶ What are these 3c states?? .. Ans: Resonating 3c's

ntro : Three Colouring

Problem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XX

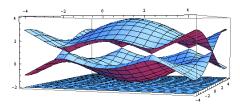
Bipartite XXZ

Localized magnons ($J_z > 0$) 1

▶ For $J_z > 0$, Schulenberg et al PRL (2002), Zhitormitsky-Tsunetsugu PRB (2004), Bergmann et al PRB (2008)

► $J_z > 0$ is repulsive interactions for bosons $(H_{XXZ} = \frac{1}{2} \sum_{\langle i,j \rangle} b_i^{\dagger} b_j + h.c. + J_z n_i n_j)$

► At single particle level..



- Lowest states are flat band states
- One extra state from the second band

Intro: Three Colouring solutions

Localized Magnons

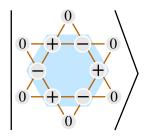
Mapping to 3c's and the RCL wavefunction

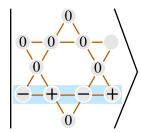
Adiabaticity to XXZ0

Bipartite XXZ

Localized magnons ($J_z > 0$) 2

Can be understood as localized magnons





- \blacktriangleright ± amplitudes give destructive interference
- ▶ leads to localizing the boson/↓
- ▶ Only N-1 hexagons linearly independent
- ► Actual counting *N* flatband states + 1 from second band
- Extra two states ... "topological" magnons

Intro: Three Colouring solutions

Troblem Statement

Localized Magnons

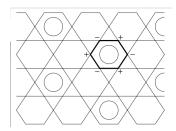
Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Close-packing of Localized magnons

- To get the many-body ground state, closely-pack these localized magnons!
- ► The 0 amplitude sites avoid any $J_z > 0$ repulsion costs
- ightharpoonup Thus, simultaneously minimizes XY and J_z pieces
- This gives the required filling ...
 e.g. 1/9 on Kagome lattice (and finite clusters that accommodate the associated root 3 pattern)



Intro: Three Colouring solutions

Localized Magnons

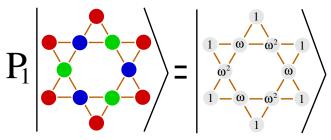
Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

ipartite XXZ

Mapping from magnons to three colourings

- Previous $J_z > 0$ or repulsive bosons
- ▶ How to go to $J_z > -1/2$ or attractive bosons
- ▶ Quite clearly magnons are playing a role
- ► Thus, find a mapping btn. 3c's and magnons
- ▶ NOW projection (P_{S_z}) becomes crucial...
- ▶ Step 1



Recall
$$| \bullet \rangle = | \uparrow \rangle + | \downarrow \rangle$$
, $| \bullet \rangle = | \uparrow \rangle + \omega | \downarrow \rangle$, $| \bullet \rangle = | \uparrow \rangle + \omega^2 | \downarrow \rangle$

Intro: Three Colouring solutions

Troblem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Mapping from magnons to three colourings

▶ Step 2 ... Resonate on a 2c loop (RCL)

$$\mathbf{P}_{1} \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \mathbf{P}_{1} \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left| \begin{array}{c} \\ \\ \end{array} \right\rangle = \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

- Also above P_0 gives ZERO, ie. $P_0(|3c_1\rangle |3c_2\rangle) = 0$
- ► Mapping to 1 particle magnons DONE, including topo magnons

$$P_{l} \left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle = P_{l} \left(\left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - \left| \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \right) = \left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$$

Intro: Three Colouring solutions

_ocalized Magnon:

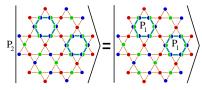
Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

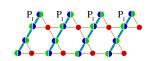
Bipartite XXZ

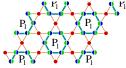
Mapping from magnons to three colourings

▶ Step 3 ... Localize bosons



- Projection forces to put 1 boson on each RCL
- Closely pack the RCLs to get the desired filling





- Finally why $J_z > -1/2$??
- ▶ Decompose H as $H_{XXZ0} + \left(J_z + \frac{1}{2}\right) n_i n_j$
- NOW the 0 amplitude sites avoid $\left(J_z + \frac{1}{2}\right) n_i n_j$ repulsive costs ... simulatenous minimization DONE

Intro: Three Colouring solutions

1 Tobletti Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

- ► For these high magnetization sectors, Ising \leftrightarrow Heisenberg \leftrightarrow XY \leftrightarrow XXZ0
- Zero mag sector, NOT clear how to apply 3c's yet
- Above adiabaticity evidence exists!
- ▶ He & Chen, PRL (2015) .. using DMRG for $XY \leftrightarrow$ Heisenberg \leftrightarrow Ising
- ▶ Changlani et al, PRL (2018) ... ED data on 36 sites $XXZ0 \leftrightarrow XY \leftrightarrow Heisenberg$ (realistically, upto $J_z = -0.4$)
- Highly suggestive of state stabilizing near XXZ0 IMP to Kagome physics
- Doing this pert theory HARD ... (Exp. colorings) ...suspect further insights to be learned
- ▶ Similar adiabaticity from XXZ0 to 120° on triangle

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

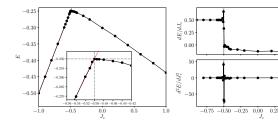
Bipartite XXZ

Conclusion

0.50 0.75

DMRG data in absence of analytics (O(150) sites)

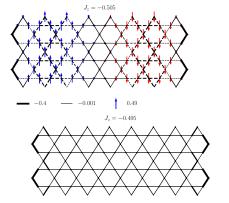
▶ Track energy vs. J_z



- ▶ NO HINT of any other discontinuity
- strengthens indications from Changlani et al, PRL.

Adiabaticity to XXZ0

▶ Below $J_z < -1/2$, polarized FM state (provable)



- ▶ Converging DMRG challenging near $J_z = -0.5$
- ► FM, start with two domains
- ► AFM, multiple initial states to get to lowest energies...

ntro : Three Colouring solutions

1 Toblem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite *XXZ*

Are colourings vis-à-vis triangles special?

- ▶ Main Message till now: $XXZ0 + \delta J_z$ IMP to Kagome
- How to exploit this insight?

Recent work with H. Changlani

- ► More generally, are triangles and 3c's any special?
- 4c's and (non-XXZ) parent Hamiltonian written down..
- Recall XXZ0 sits at QCP between FM and non-FM
- ► Same true for classical Heisenberg model via Luttinger-Tisza analysis
- For bipartite XXZ, Luttinger-Tisza rather gives $J_z = -1$ between FM and AFM
- And indeed, it is an exactly solvable QCP as well!
- ► Second message: Exact solvability at FM/AFM for XXZ magnets more general

Intro: Three Colouring solutions

Localized Magnons

RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Details of bipartite XXZ solution

 $\blacktriangleright \ \, \textit{H}_{\textit{XXZ}1} = \textstyle \sum_{\langle i,j \rangle \in \mathsf{bipartite}} \left(S_i^{\mathsf{X}} S_j^{\mathsf{X}} + S_i^{\mathsf{y}} S_j^{\mathsf{y}} - \mathbf{1} S_i^{\mathsf{z}} S_j^{\mathsf{z}} \right)$

Solution is a "two-colouring" now

▶ $|2c\rangle = P_{S_z} \left(\prod_{i \in \mathbf{A}} \otimes |\bullet\rangle \prod_{j \in \mathbf{B}} \otimes |\bullet\rangle\right)$ (Néel state in XY plane)

- ▶ Unique solution due to bipartiteness in each S_z sector
- ▶ Choose $| \bullet \rangle = | \uparrow \rangle + | \downarrow \rangle, | \bullet \rangle = | \uparrow \rangle | \downarrow \rangle$
- \blacktriangleright Solution proof again similar starting with a bond instead of \triangle
- ► Exact correlators using 2c version of 3c mat elem formulas computable thanks to finite solutions

(L_x, L_y) PBC/OBC	$\frac{E_{\mid C \mid}}{\# ext{-bonds}}$	$\frac{E_{ED}}{\text{\#-bonds}}$	$(L_xL_y + 1)$	$\#_{ED}$	$(\frac{\langle \hat{\mathbf{S}}_{i}^{z} \hat{\mathbf{S}}_{j}^{z} \rangle_{ C\rangle}}{(-\frac{1}{4} \frac{1}{L_{x}L_{y}-1})}$	$\langle \hat{\mathbf{S}}_{i}^{z} \hat{\mathbf{S}}_{j}^{z} \rangle_{ED}$	$\epsilon_{ij} \langle \hat{\mathbf{S}}_{i}^{x} \hat{\mathbf{S}}_{j}^{x} \rangle_{ C\rangle}$ $\left(\frac{1}{8} \frac{L_{x}L_{y}}{L_{x}L_{y}-1}\right)$	$\epsilon_{ij} \langle \hat{\mathbf{S}}_i^x \hat{\mathbf{S}}_j^x \rangle_{ED}$
(2,2)/(4,1)	-0.25	-0.2500000	5	5	-1/12	-0.0833333	1/6	0.166666
(4,2)	-0.25	-0.2500000	9	9	-1/28	-0.0357143	1/7	0.142857
(6,2)	-0.25	-0.2500000	13	13	-1/44	-0.0227273	3/22	0.136364
(4,4)	-0.25	-0.2500000	17	_				
(6,6)	-0.25	-0.2500000	37	_				

sums of powers of cosines, Ramanujan J, J. Integer sequences Intro: Three Colouring solutions

1 Toblem Statement

Localized Magnons

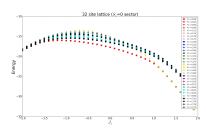
Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Adiabaticity to XXZ1

► Adiabaticity studies on...



- Contrast with Kagome adiabaticity
- Another contrast: hidden "SU(2) symmetry" H_{XXZ1} has GS: $\{|\uparrow\uparrow\rangle,|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle,-|\downarrow\downarrow\rangle\}$ w/h E=0 and ES: $|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle$ w/h E=1 H_{XXX} has GS: $|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle$ w/h E=0 and ES: $\{|\uparrow\uparrow\rangle,|\downarrow\downarrow\rangle,|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle\}$ w/h E=1
- ► Thus, UV/IR duality at operator level
- lacktriangle For wavefunctions, get a -1 phase for $|\downarrow\rangle_{\cal B}$

Intro : Three Colouring solutions

Problem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

Conclusion

Intro: Three Colouring solutions

Adiabaticity to AAZ

. . .

- Details in arXiv:1808.08633
- ▶ RCLs as exact solutions in high mag sectors for $J_z > -1/2$
- Applicability in zero mag sector?
- 3c's may provide useful variational ansatz (eg Capponi et al PRB (2013)) similar to RVBs
- Adiabaticity to XXZ0 in high AND zero mag sectors
- Exactly solvable critical point between AFM and FM XXZ bipartite magnets (with Changlani, manuscript in prep)
- ► Adiabaticity to *XXZ*1 in bipartite? SEEMS SO. Similar to triangular lattice
- General statement: Physics of Heisenberg XXX emerge from XXZ0/1 points
- However, Resonances/RCL special to Kagome

Open Issues

Intro : Three Colouring solutions

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Conclusion

Some Open issues:

- ► Pert theory near *XXZ*0
- Few particles on top of closely-packed RCLs?
- ► Can increasing density melt close-packing of RCLs?
- 3c map of non-flat band states? (technical)
- How to write highly entangled states as 3c wavefunctions?
 (Note: we can write down ordered states as 3/2c's)

Acknowledgements

ntro : Three Colouring

roblem Statement

Localized Magnons

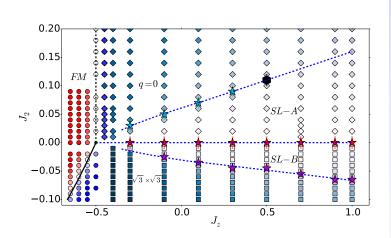
Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

Bipartite XXZ

- ► Thank you!
- ► IRCC, IIT Bombay for support

Extra slides 1



from Changlani PRL (2018)

Intro: Three Colouring solutions

Froblem Statement

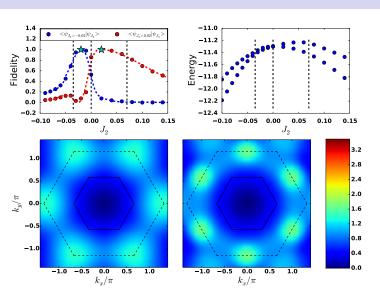
Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to A7

Bipartite XXZ

Extra slides 2



Intro: Three Colouring solutions

Problem Statement

Localized Magnons

Mapping to 3c's and the RCL wavefunction

Adiabaticity to XXZ0

3ipartite XX.

Conclusion

from Changlani PRL (2018)