Numerical approaches to frustrated magnets

Arnab Sen (IACS, Kolkata) The 2nd Asia Pacific Workshop on Quantum Magnetism

29 November-07 December, 2018

Various Methods

Various powerful methods exist but each with own advantages and limitations

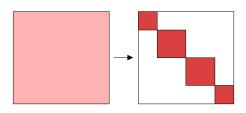
- Monte Carlo methods (Classical Monte Carlo, Quantum Monte Carlo)
- Exact Diagonalization
- Density Matrix Renormalization Group (DMRG) methods
- Series expansion techniques
- Variational wavefunctions
- ...

Exact Diagonalization

 $\frac{H|\psi\rangle = E|\psi\rangle}{}$, Many-body (local) Hamiltonian on a (finite) lattice \Rightarrow (Sparse) Matrix Eigenvalue Problem

- Can use sophisticated black-box program packages for matrix diagonalization, e.g., LAPACK (Linear Algebra PACKage)
- With eigenstates available, any static or dynamic quantity may be computed
- However, exponential increase of the basis size with number of spins N ($M = 2^N$ states for a S = 1/2 system)
- Full diagonalization limited to matrices of size $\sim 10^4$ (gives $N \approx 20$ for S = 1/2 spins)
- ullet effort to diagonalize $\sim M^3$
- Insights can be gleaned from (small) finite-sized systems in many cases
- Testing the correctness of other methods

Symmetries in ED



- States need to be represented on the computer
- Simple example: S = 1/2 sites $|\uparrow\uparrow\downarrow\uparrow\downarrow\rangle \rightarrow [11010]$ (let's say S_i^z)
- $H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$ with periodic boundary condition (PBC)
- Symmetries: total spin S^2 , total S^z , momentum k
- Symmetry resolved eigenstates very useful ⇒ dispersion of excitations, symmetry breaking in thermodynamic limit, locating critical point, · · ·

Examples: m_z conservation

- $m_z = \sum_{i=1}^N S_i^z$
- Blocks correspond to fixed m_z
- No matrix elemnt of H between states of different m_z
- Number of states in a block of $m_z = N_{\uparrow} N_{\downarrow}$ equals $\frac{N!}{N_{\uparrow}!N_{\downarrow}!}$, Largest block for $m_z = 0$
- For N = 24, largest block has 1352078 states (compare to $2^{24} = 16777216$)
- Other symmetries can further split the blocks but more complicated (translational symmetry next)

Momentum conserving states

- We need to construct $|n\rangle$ s.t. $T|n\rangle = e^{ik}|n\rangle$ where $k = \frac{2\pi m}{N}$, $m = 0, 1, \dots, N-1$
- Choose a representative state $|a\rangle$.

Then
$$|a(k)\rangle = \frac{1}{\sqrt{N_a}} \sum_{r=0}^{N-1} e^{-ikr} T^r |a\rangle$$

• If $|a\rangle$ and $|b\rangle$ are both representative states, then $T^r|a\rangle \neq |b\rangle$

$$[0011] \rightarrow [1001] \rightarrow [1100] \rightarrow [0110]$$

$$\hbox{\tt [0101]} \to \hbox{\tt [1010]} \to \hbox{\tt [0101]} \to \hbox{\tt [1010]}$$

- If $T^R|a\rangle = |a\rangle$ for some R < N, then only $kR = 2n\pi$ allowed
- $N_a = N^2/R_a$

Reduction in block size using symmetries

• $k = 0, m_z = 0$ is largest block

Reflection symmetry (parity)

$$P|S_1^z, S_2^z, \cdots, S_n^z\rangle = |S_N^z, \cdots, S_2^z, S_1^z\rangle$$
 $(p = \pm 1)$, Note $[P, T] \neq 0$.
However $[P, T] = 0$ if $k = 0, \pi$ since $k = -k$ here

Spin inversion symmetry

$$Z|S_1^z,S_2^z,\cdots,S_n^z\rangle=|-S_1^z,-S_2^z,\cdots,-S_N^z\rangle$$
 $(z=\pm 1)$, can use to further reduce $m_z=0$ block

N	(+1, +1)	(+1, -1)	(-1, +1)	(-1, -1)
8	7	1	0	2
12	35	15	9	21
16	257	183	158	212
20	2518	2234	2136	2364
24	28968	27854	27482	28416
28	361270	356876	355458	359256
32	4707969	4690551	4685150	4700500

Lanczos Algorithm I

$$egin{aligned} & H^{\Lambda}|\Psi_{0}
angle &= \sum_{n=0}^{M-1} c_{n}E_{n}^{\Lambda}|\Psi_{n}
angle = \ & c_{\max}E_{\max}^{\Lambda}\left(|\Psi_{\max}
angle + \sum_{n
eq \max}rac{c_{n}}{c_{\max}}\left(rac{E_{n}}{E_{\max}}
ight)^{\Lambda}|\Psi_{n}
angle
ight), ext{ use } (H-c) \ & ext{where } c>0 ext{ to ensure } |E_{0}-c|>|E_{M-1}-c| \end{aligned}$$

Power method can be readily improved by using not only $H^{\Lambda}|\Psi_0\rangle$ but all $H^m|\Psi_0\rangle$ from $m=0,\cdots,\Lambda$

For details, Lecture notes by Sandvik, arXiv:1101.3281

Lanczos Algorithm II

- Pick a random state $|\Psi_0\rangle$
- Construct $|\Psi_1\rangle = H|\Psi_0\rangle \frac{\langle \Psi_0|H|\Psi_0\rangle}{\langle \Psi_0|\Psi_0\rangle}|\Psi_0\rangle$
- Then construct $|\Psi_{n+1}\rangle = H|\Psi_n\rangle a_n|\Psi_n\rangle b_n^2|\Psi_{n-1}\rangle$, where $a_n = \frac{\langle \Psi_n|H|\Psi_n\rangle}{\langle \Psi_n|\Psi_n\rangle}$, $b_n^2 = \frac{\langle \Psi_n|\Psi_n\rangle}{\langle \Psi_{n-1}|\Psi_{n-1}\rangle}$
- Diagonalize the matrix given by H equals

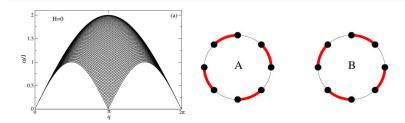
$$\begin{pmatrix} a_0 & b_1 & 0 & 0 & \cdots \\ b_1 & a_1 & b_2 & 0 & \cdots \\ 0 & b_2 & a_2 & b_3 & \cdots \\ 0 & 0 & b_3 & a_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 If ground state energy not converged to desired accuracy, proceed to step 3 by increasing n by 1

Due to finite-precision arithmetic, orthogonality between $|\Psi_n\rangle$ quickly lost. Need to use improved algorithms based on re-orthogonalization of the states

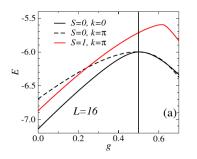
Quantum phase transition in Majumdar-Ghosh model

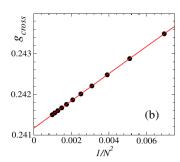
$$H = J_1 \sum_{i=1}^{N} \vec{S}_i \cdot \vec{S}_{i+1} + J_2 \sum_{i=1}^{N} \vec{S}_i \cdot \vec{S}_{i+2}, g_c \approx 0.2411$$



- At g=1/2, degenerate ground states at k=0 and $k=\pi$ respectively (Majumdar and Ghosh (1969)) $|\psi(0)\rangle = (|\psi_A\rangle + |\psi_B\rangle)/\sqrt{2}, |\psi(\pi)\rangle = (|\psi_A\rangle |\psi_B\rangle)/\sqrt{2}$
- For $g < g_c$, lowest excitation S = 1 at $k = \pi$ with gap $\sim 1/N$
- For $g > g_c$, lowest excitation S = 0 at $k = \pi$ with gap $\sim \exp(-N)$

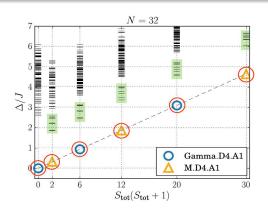
Locating the critical point





- Lecture notes by Sandvik, arXiv:1101.3281
- Fitting to polynomial with leading $1/N^2$ based on $8 \le N \le 32$ gives $g_c = 0.2411674(2)$.

Detecting Spontaneous Symmetry Breaking



- Finite size manifestation of continuous symmetry breaking
- Tower of states s.t. gap scales as 1/N
- Even (odd) S at $\mathbf{k} = (0,0)[(\pi,\pi)]$ $(S \ll \sqrt{N})$
- Gap for the Goldstone modes scale as 1/L
- Review by Wietek, Schuler, Läuchli, arXiv:1704.08622

Monte Carlo methods

- Devise random walk in the space of congifurations $(C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \cdots)$ [Markov process]
- ullet $P(C_n o C_m)$ depends only on C_n and C_m .

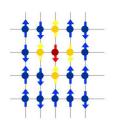
 $P(C_n \to C_m) = g(C_n \to C_m)A(C_n \to C_m)$ where $g(C_n \to C_m) =$ Given state C_n , the probability that the algorithm generates a state C_m and $A(C_n \to C_m) =$ acceptance probability of this event

- Condition of ergodicity
- Condition of detailed balance

$$p(C_n)P(C_n o C_m) = p(C_m)P(C_m o C_n)$$
 where $p(C_n) = \exp(-\beta E(C_n))/Z$

• $\langle \mathcal{O} \rangle \approx \frac{1}{N_{\text{MCS}}} \sum_{n} \mathcal{O}(C_n)$ —simple arithmetic average over the visited states

Metropolis sampling (1953)

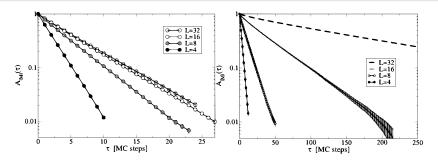


•
$$g(C_n \to C_m) = 1/N$$
 and $A(C_n \to C_m) = \min[1, \exp(-\beta(E(C_m) - E(C_n)))]$

essential to use good pseudo-random-number generator e.g. Mersenne Twister (period $2^{19937} - 1$) \Rightarrow see Monte Carlo simulations: Hidden errors from "good" random number generators, by Ferrenberg, Landau, Wang (1992)

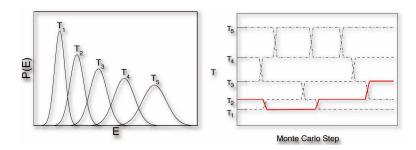
 1 Monte Carlo step equals N attempts to flip randomly selected spins

Autocorrelations



- Need to find statistical error on $\langle \mathcal{O} \rangle \approx \frac{1}{N_{\text{MCS}}} \sum_n \mathcal{O}(C_n)$ (binning, bootstrap, jacknife etc, see Peter Young, arXiv:1210.3781)
- $\bullet \ \textit{A}_{\mathcal{O}}(\tau) = \frac{\langle \mathcal{O}_{\textit{k}} \mathcal{O}_{\textit{k}+\tau} \rangle \langle \mathcal{O}_{\textit{k}} \rangle^2}{\langle \mathcal{O}_{\textit{k}}^2 \rangle \langle \mathcal{O}_{\textit{k}} \rangle^2} \sim \exp(-\tau/\tau_{\mathcal{O}})$
- Critical slowing down near T_c , $\tau_C \sim L^z$ here $z \approx 2$
- Can be avoided using cluster algorithms (e.g., see Wolff (1989)) [simulate ~ 1024² spins for the 2D Ising model in the critical regime]

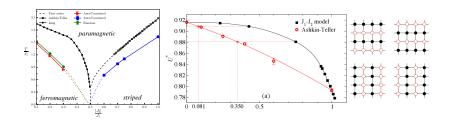
Parallel tempering



- Configurations at a given T can also be valid configurations (with reasonable probability) also at "slightly" higher or lower T
- Exchange T for M replicas of the system, each with its own temperature.

$$P(\beta_i \to \beta_j) = min\{1, \exp[(\beta_i - \beta_j)(E_i - E_j)]\}$$

J_1 - J_2 Ising model on square lattice



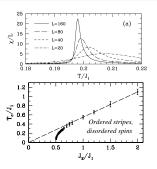
• Striped OP $m_x + i m_y$ where $m_{x/y} = \frac{1}{N} \sum_{i=1}^{N} \sigma_i (-1)^{x_i/y_i}$

Binder cumulant
$$U = 2\left(1 - \frac{1}{2}\frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}\right)$$

- AT model $H = -\sum_{\langle ij \rangle} (\sigma_i \sigma_j + \tau_i \tau_j + K \sigma_i \sigma_j \tau_i \tau_j)$
- $\langle \sigma \tau \rangle \neq$ 0 AND $\langle \sigma \rangle = \pm \langle \tau \rangle$, OP = $m_{\sigma} + i m_{\tau}$

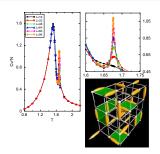
Jin, Sen, Sandvik, PRL (2012), Jin, Sen, Guo, Sandvik, PRB (2013), Kunwar, Sen, Vojta, Narayanan, PRB (2018)

J_1 - J_2 Heisenberg model on square lattice



- $\bullet \ H = J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle ik \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_k$
- At finite but low T (and for $J_2/J_1 > 1/2$), two collinear structures are selected due to order by disorder
- Non-trivial discrete degrees of freedom $\sigma_{\alpha} = \frac{(\mathbf{S}_i \mathbf{S}_k)(\mathbf{S}_j \mathbf{S}_l)}{|(\mathbf{S}_i \mathbf{S}_k)(\mathbf{S}_j \mathbf{S}_l)|}$ where (i, j, k, l) are the corners with diagonal (i, k) and (j, l) *P. Chandra et al., PRL (1989), Weber et al., PRL (2003)*

Interacting dimers in 3D



- Classical closed packed dimers in 3D, interactions favour parallel dimers on any elementary square plaquette
- Efficient non-local worm updates where $L \sim 100$ (linear dimension)
- Unconventional (Non-Landau) phase transition between dimer crystal and Coulomb phase as a function of T Alet et al., PRL (2006), Sreejith, Powell, Nahum, arXiv:1803.11218

Quantum Monte Carlo

- For quantum systems, we have $Z = \text{Tr} \exp(-\beta H)$
- $\langle \mathcal{O} \rangle = \frac{1}{Z} \text{Tr}[\mathcal{O} \exp(-\beta H)]$
- Need to find mapping to an effective "classical" problem in order to perform Monte Carlo simulations
- Will discuss Stochastic Series Expansion (SSE) method for spin systems
- Big issues: The mapping can give "probabilities" which are negative which leads to the notorious sign problem. Often happens for frustrated spin systems
- For details, Lecture notes by Sandvik, arXiv:1101.3281

Basic steps

- Choose a basis $|\alpha\rangle$ (e.g. S_i^z)
- Write $H = -\sum_t \sum_a H_{t,a}$ where indices t, a refer to operator "types" and "lattice units"
- $H_{t,a}|\alpha_1\rangle \sim |\alpha_2\rangle$ (no branching)
- $\langle \alpha_2 | H_{t,a} | \alpha_1 \rangle > 0$ (positivity of weights)

Using these, we get

$$Z = \sum_{\{\alpha,n,S_n\}} \frac{\beta^n}{n!} \langle \alpha | \prod_{i=1}^n H_{t_i,a_i} | \alpha \rangle = \sum_{\{\alpha,n,S_n\}} W(\alpha,S_n)$$

$$\langle A \rangle = \frac{1}{Z} \sum_{\{\alpha, n, S_n\}} \frac{\beta^n}{n!} \langle \alpha | A \prod_{i=1}^n H_{t_i, a_i} | \alpha \rangle = \frac{\sum_{\{\alpha, n, S_n\}} A(\alpha, S_n) W(\alpha, S_n)}{\sum_{\{\alpha, n, S_n\}} W(\alpha, S_n)}$$

- S_n denotes the operator string $S_n = [t_1, a_1], [t_2, a_2], \cdots, [t_n, a_n]$ of length n
- Need to importance sample S_n , the basis state $|\alpha\rangle$, and the expansion power n according to $W(\alpha, S_n)$ AND find $A(\alpha, S_n)$ for operators

An example

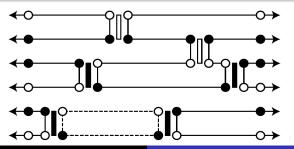
• We also define $H_{0,0} = I$ and work with a fixed operator string of length M where $M > n_{\text{max}}$. Then

$$Z = \sum_{\alpha} \sum_{S_M} \frac{\beta^n (M-n)!}{M!} \prod_{i=1}^M \langle \alpha_{i-1} | H_{t_i, a_i} | \alpha_i \rangle$$

- $H = \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = \sum_{\langle ij \rangle} S_i^z S_j^z + \frac{1}{2} (S_i^+ S_j^- + S_i^- S_j^+)$
- $H_{1,a} = \frac{1}{4} S_i^z S_j^z$, $H_{2,a} = \frac{1}{2} (S_i^+ S_j^- + S_i^- S_j^+)$

$$\langle \uparrow \downarrow | H_{1,a} | \uparrow \downarrow \rangle = \langle \downarrow \uparrow | H_{1,a} | \downarrow \uparrow \rangle = \frac{1}{2}$$

$$\langle \uparrow \downarrow | H_{2,a} | \downarrow \uparrow \rangle = \langle \downarrow \uparrow | H_{1,a} | \uparrow \downarrow \rangle = \frac{1}{2}$$



Sign problem

- Take (e.g.) antiferromagnet on kagome lattice
- Cannot do basis transformation to make matrix elements of H_{2,a} positive
- Possible solution– $\langle A \rangle = rac{\sum_i A_i \rho_i}{\sum_i \rho_i}$, sample with $|p_i|$ instead
- $\bullet \ \langle A \rangle = \frac{\sum_{i} A_{i} sign(p_{i})|p_{i}| / \sum_{i} |p_{i}|}{\sum_{i} sign(p_{i})|p_{i}| / \sum_{i} |p_{i}|} = \frac{\langle A sign \rangle_{|p|}}{\langle sign \rangle_{|p|}}$
- $\bullet \ \langle sign \rangle_{|\rho|} = \frac{\sum_{i} \rho_{i}}{\sum_{i} |\rho_{i}|} = \frac{Z}{Z_{|\rho|}} = \exp(-\beta V(f f_{|\rho|}))$

$$\frac{\Delta sign}{\langle sign \rangle} pprox rac{\exp(eta V(f-f_{|p|}))}{\sqrt{N_{MCS}}}$$
 (NP hard) Troyer and Wiese, PRL (2005)

Diagonal update

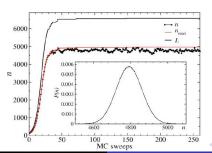
- $W(\alpha, M) = \left(\frac{\beta}{2}\right)^n \frac{(M-n)!}{M!}$
- Diagonal update: $[0,0]_p \leftrightarrow [1,b]_p$
- $P_{select}(0 \rightarrow 1) = 1/N_b$ and $P_{select}(1 \rightarrow 0) = 1$

$$P_{accept}([0,0] o [1,b]) = \min \left[\frac{\beta N_b}{2(M-n)}, 1 \right]$$

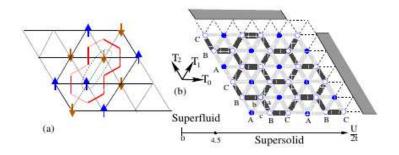
 $P_{accept}([1,b] o [0,0]) = \min \left[\frac{2(M-n+1)}{\beta N_b}, 1 \right]$

Some operators

- \bullet $|\alpha(p)\rangle \sim \prod_{i=1}^{p} |\alpha(0)\rangle$ where $|\alpha(n)| = |\alpha(0)\rangle$
- If A diagonal in the chosen basis, $A(\alpha, S_n) = a(\alpha)$ and $A = \langle \frac{1}{n} \sum_{p=0}^{n-1} a[\alpha(p)] \rangle$
- ullet $\langle H_{t,a} \rangle = rac{\dot{N}_{t,a}}{eta}
 ightarrow E = -rac{\langle n \rangle}{eta}$
- Specific heat $C = \langle n^2 \rangle \langle n \rangle^2 \langle n \rangle$
- For finite *L* and high β , narrow *n* distribution with $\langle n \rangle \propto N\beta$, $\sigma_n \propto \sqrt{N\beta}$



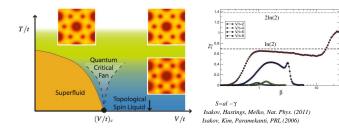
Triangular lattice supersolid at half filling



- $H = \sum_{\langle ij \rangle} [U(n_i 1/2)(n_j 1/2) t(b_i^{\dagger}b_j + b_ib_j^{\dagger})] \mu \sum_i n_i$
- Using SSE method, a supersolid beyond $U/2t \approx 4.5$ was established
- S = 1/2 XXZ model with antiferromagnetic $S_i^z S_j^z$ and ferromagnetic transverse couplings on the triangular lattice

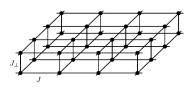
Wessel and Troyer, PRL (2005), Heidarian and Damle, PRL (2005), Melko et al., PRL (2005)

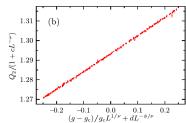
Z_2 liquid on the kagome lattice



- $\bullet \ H = -J_{\perp} \sum_{\bigcirc} [(S_{\bigcirc}^{\mathsf{x}})^2 + (S_{\bigcirc}^{\mathsf{y}})^2 3] + J_{\mathsf{z}} \sum_{\bigcirc} (S_{\bigcirc}^{\mathsf{z}})^2,$ $J_{\mathsf{z}}, J_{\perp} > 0$
- $H_b = -t \sum_{(i,j)} (b_i^{\dagger} b_j + \text{H.c.}) + V \sum_{\bigcirc} (n_{\bigcirc})^2 \mu \sum_i n_i$ where $t = J_{\perp} > 0$, $V = J_z > 0$, $\mu = 12J_z$. Hopping term connects only first, second and third neighbors.
- (Continuous) SF-I transition at $(V/t)_c \approx 19.8$
- Insulating state at half-filling either conventional state with broken lattice symmetry or must have topological order

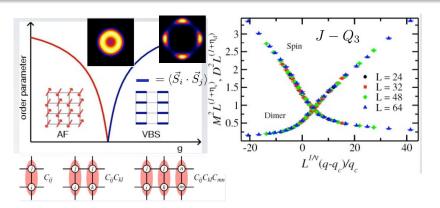
Conventional quantum criticality in S = 1/2Heisenberg bilayers





- $\bullet \ H = J \sum_{\langle i,j \rangle} (\mathbf{S}_{1i} \cdot \mathbf{S}_{1j} + \mathbf{S}_{2i} \cdot \mathbf{S}_{2j}) + J_{\perp} \sum_{i} \mathbf{S}_{1i} \cdot \mathbf{S}_{2i}$
- Néel phase at small g, (trivial) paramagnet at large g
- $g_c = 2.52180(3)$, $\nu = 0.715(2)$ (same universality as the 3D classical Heisenberg model) Wang, Beach, Sandvik, PRB (2006)

Unconventional quantum criticality in the J-Q model



- $C_{ij} = \frac{1}{4} \mathbf{S}_i \cdot \mathbf{S}_j$ $H = -J \sum_{\langle ij \rangle} C_{ij} - Q \sum_{\langle ijkl \rangle} C_{ij} C_{kl}$ (Sandvik, PRL (2007))
- Néel-VBS transition, $\eta_s = 0.33(2)$, $\eta_d = 0.20(2)$, $\nu = 0.69(2)$ Large $\eta!$
- Emergent U(1) symmetry of the dimer fluctuations near critical point