Nuclei in the upper *sd* shell and evolution of *sd-fp* shell gap

M. Saha Sarkar

Saha Institute of Nuclear Physics, Kolkata 700064, INDIA

Why study nuclei in the sd shell

has been studied since 1960s.

•mostly low spin states :observation of spherical as well as deformed states •experimental limitations in the sensitivity and efficiency of the detection system. •Shell model calculations limited by severe truncation.

- In the recent years, sophisticated techniques of gamma spectroscopy permitted •observation of high spin states of several nuclei.
 - •states of pure shell model characteristics coexisting with those with features of permanent deformation : Superdeformation in ⁴⁰Ca & ³⁶Ar,
 - Violation of Mirror Symmetry observed.
- •The nuclei in the neighbourhood of doubly closed ⁴⁰Ca are suitable for applications of spherical shell model calculations.

 The SD band provides an ideal opportunity to extend the microscopic description of collective rotation from the single-shell rotors like ²⁰Ne, ²⁴Mg, and ⁴⁸Cr to a case involving the cross-shell correlations characteristic of rotational motion in heavier nuclei.

 Indications of breaking of a shell closure (near N = 20) far from stability have been observed in ³¹Na, ³²Mg - in the "island of inversion".

8th November 2011

Gamma Spectroscopy in A~40 region

- The gamma spectroscopic studies of these light mass nuclei are very much different from those of the heavier ones.
- The light nuclei have **lower Coulomb barriers**, so the number of competing channels with evaporation of charge particles becomes very large with increasing excitation energy of the compound nucleus.
- As in most of the cases the structure of these nuclei are dominated by shell model states, these are low multiplicity experiments. Low level density.
 The valence space of the nucleons does not contain high spin orbitals (highest spin
 - The valence space of the nucleons **does not contain high spin orbitals** (highest spin orbital is 1f_{7/2}). So the angular momentum of the compound system is also restricted. The light masses of the reaction products in the fusion reaction also result in lower angular momentum.
 - The transition energies are usually very high (~ 2-3 MeV) where the efficiencies of the normal HPGe detectors fall o very sharply. As the spin increases, the energies of the transitions become higher implying lower detection efficiency and poorer resolution. In this respect the Clover detectors in their addback mode show excellent improvement over the normal detectors.

8th November 2011

ANUP11, Goa

8th November 2011

ANUP11, Goa

High spin structure of ³⁵Cl and the sd-fp shell gap, Ritesh Kshetri, M. SAHA SARKAR, Indrani Ray, P. Baneriee, S. Sarkar, Rajarshi Raut, A. Goswami, J. M. Chatterjee, S. Chattopadhyay, U. Datta Pramanik, A. Mukherjee, C. C. Dey, S. Bhattacharya, B. Dasmahapatra, Samit Bhowal, G. Gangopadhyay, P. Datta, H.C. Jain, R. K. Bhowmik, S. Muralithar, R. P. Singh, R. Kumar. Nucl. Phys. A 781 (2007) 277.

8th November 2011

8th November 2011

Sudatta Ray, I. Ray, Ritesh Kshetri, R. Raut, S. Ganguly, M. K. Pradhan, D. Kanjilal, Μ. Ray Basu, Α. Chakraborty, Krishichayan, A. Mukherjee, G. Ganguly, **S.S**. Ghugre, S. Bhattacharya, P. Banerjee, A. Goswami, A. Deo, S.Kumar, H. C. Jain, I.Mazumdar, R.Palit, S. Sarkar, M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 53 (2008) 353.

M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) I19 (http://www.symp np.org/proceeding s/index.php: electronic version only)

Manuscript under preparation

8th November 2011

Sudatta Ray, I. Ray, Ritesh Kshetri, R. Raut, S. Ganguly, M. K. Pradhan, D. Kanjilal, M. Ray Basu, A. Chakraborty, Krishichayan, A. Mukherjee, G. Ganguly, Ghugre, S.S. S. Bhattacharya, P. Banerjee, A. Goswami, A. Deo, S.Kumar, H. C. Jain, I.Mazumdar, R.Palit, S. Sarkar, M. SAHA SAPKAD Sarkar, M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 53 (2008) 353.

8th November 2011

8th November 2011

Salient features in the excitation spectrum of ³⁵Cl 2p 1/2 1f 5/2 2p 3/2 $28v+28\pi$ 1f 7/2³⁵CI (Z=17, N=18), with ¹⁶O core $20v+20\pi$ Valence protons: 9 valence neutrons: 10 1d 3/2 We found lowest positive sd 2s 1/2parity state at 1763 keV and 1d 5/2 most intense gamma from the 3163 7/2-518 lowest negative parity state at 2646 7/2+ 400 3163 keV. 1763\5/2 So inclusion of a negative 3163 parity orbital in the valence 1763 space is essential to explain the low energy spectrum also.

8th November 2011

Shell Model studies

In the shell model calculations of these nuclei, in particular for the negative parity states (even for the positive parity states of relatively higher spins), one needs a nuclear Hamiltonian over the *sd – fp* valence space.

The Hamiltonian thus consists of three parts, viz., *sd-* and *fp-*shell interactions and the cross-shell ones.

It consists of Wildenthal's matrix elements for the *sd* shell, Mcgrory's Hamiltonian for *fp* shell and modification of the Millner–Kurath interaction for the cross-shell components.

Limitations

•For the positive parity states, $0 \hbar \omega$ excitation has been considered, i.e only the full *sd* shell has been used as the valence space.

• Low energy spectra reproduced quite accurately.

•But the energies for higher spin positive parity states beyond $9/2_{1}^{+}$ are predicted substantially higher than the experimental ones - insufficiency of the valence space. The nucleon excitations to the neighbouring *fp* shell are therefore essential.

Nucl. Phys. A 781 (2007) 277.

• Simplest way to get negative parity states: through 1 h ω excitation, i.e. only 1*p*–1*h*, *sd* \rightarrow *fp* excitations are allowed.

• The calculated energies of the negative parity levels are consistently higher compared to the experimental values

This was also observed by previous workers (A. Kangasmaki et al. Phys. Rev. C 58 (1998) 699; A. Kangasmaki et al., Phys. Rev. C 55 (1997) 1697; P. Mason, et al., Phys. Rev. C 71 (2005) 014316; M. Ionescu-Bujor, et al., Phys. Rev. C 73 (2006) 024310) where the predictions for negative parity states with accuracy better than 500–600 keV were found to be difficult.

This was attributed to the overestimation of the *sd*-*fp* gap in the corresponding interaction.

8th November 2011

The nuclei near stability and the sd-fp shell gap

To improve the agreement for the negative parity states and high spin positive parities, we have depressed the single particle energies (SPES) of $1f_{7/2}$ and $2p_{3/2}$ so that the first negative party state is reproduced.

Dramatic improvement of results indicate :

•excitations to *fp* shell essential to reproduce even the positive parity higher spin states.

•The *sd-fp* shell gap has to be decreased to reproduce both positive and negative parity levels.

Similar observation for ³⁰P, ³⁶Cl, ³⁷Ar ...

R. Kshetri et al. Nucl. Phys. A 781 (2007) 277.

Approaching the "island of inversion": ³⁴P P. C. Bender et al., PHYSICAL REVIEW C 80, 014302 (2009)

Cross-shell excitations in ³⁰Al and ³⁰Si at high spin D. Steppenbeck et al., Nuclear Physics A 847 (2010) 149–167

The recently-developed WBP-a Hamiltonian was also used to calculate the negative-parity states by allowing 1p–1h excitations within a model space incorporating the *sd* shell with the 0*f*7/2 and 1*p*3/2 orbitals. In this modified interaction, the energies of the two *fp*-shell orbits were reduced by 1.8 and 0.5 MeV to better reproduce level energies in neutron-rich phosphorous isotopes.

Recently,

High-spin structure of ³⁷Cl, intruder excitations, and the *sd-fp* shell gap by M. Ionescu-Bujor et al. PHYSICAL REVIEW C 80, 034314 (2009)

indicated that the shell gap between the *sd* and *fp* shells produced by the

•*sdfp* interaction is somewhat underestimated, need for increasing the sd-fp gap

•while this is overestimated for SDPF-M interaction. need for decreasing the sd-fp gap

The choices of single-particle energies

- The single-particle energies SPE's are determined so as (SET A) SDPF-M, sdpfmw..
 - to reproduce the neutron separation energies and the one particle spectra of ¹⁷O (sd shell) and ⁴¹Ca (fp shell)
 - Over predicted energies of negative parity states indicating that the $d_{3/2}$ - $f_{7/2}$ gap produced may be too large
 - SET A modification:
 - reduction of spes of *fp* orbitals improves results for high spin positive parity and low spin negative parity states drama<u>tically.</u>
- The *sdfp* effective interaction takes ²⁸Si as a core, and the single-particle energies (SET B) are chosen in order to reproduce the
 - single-particle states in ²⁹Si.

- calculated energies are systematically smaller than the experimental energies indicated that the shell gap between the *sd* and *fp* shells produced by the *sdfp* interaction is somewhat underestimated,
- SET B modification:
 - increasing the $f_{7/2}$ and $p_{3/2}$ single-particle energies. M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) 119

8th November 2011

ANUP11, Goa

•Thus the *sd* – *fp* shell gap appears to evolve as a function of proton number.

(http://www.sympnp.org/proceedings /index.php: electronic version only)

M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) 119 (http://www.sympnp.org/proceedings /index.php: electronic version only)

•If the intruder spes are estimated from ${}^{41}Ca$ spectra with respect to ${}^{16}O$ core, this gap needs to be reduced for reproduction of ${}^{30}P$, 35 , ${}^{36}Cl$ and ${}^{37}Ar$ spectra. B.E (${}^{41}Ca - {}^{40}Ca$) = -8.36 MeV gives the s.p. energy of $f_{7/2}$ state w.r.to ${}^{40}Ca$ as the inert core.

•On the other hand, if one takes ${}^{28}Si$ as a core and chooses the spes in order to reproduce the single-particle states in ${}^{29}Si$, it is found that the *sd-fp* gap thus obtained needs a small increase to reproduce the experimental data for ${}^{37}CI$.

•Thus the *sd – fp* shell gap appears to evolve as a function of proton number.

•An alternative solution could be to change the matrix elements of the effective interaction that connect the *sd* with the *fp* shell. Usually the single-particle energies (spes) used in these Hamiltonians are devoid of the influence of the cross-shell interactions and have to be re-adjusted to reproduce the observed energy spectra. Computational limitations due to large dimensionality problem lead to the truncation of the model space. This may also require an readjustment of the spes.

•This may have direct relevance to the island inversion observed for neutron rich isotopes in this mass region.

8th November 2011

The curves are labeled by the j^p values of the states of the odd-A nuclei and not by the quantum numbers (nlj) of the expected singleparticle orbits. This choice is governed by the fact that the spectroscopic factor of the first j state does not always exhaust the sum rule arising from the j orbit. *O. Sorlin, M. G. Porquet / Progress in Particle and Nuclear Physics 61 (2008) 602–673.*

Note that the state may arise from a neutron/ proton intruder orbital – working in JT space

8th November 2011

The nuclei in the neighborhood of doubly closed ⁴⁰Ca usually exhibit characteristics of single particle excitation. This feature is suitable for applications of spherical shell model calculation in the sd shell.

The spectroscopy of several nuclei in the mass region revealed deformed states (even Superdeformation) at low excitation energies, indicating that the nuclei near the closed shell with Z=20 can easily lose spherical shape.

8th November 2011

Indication of deformation in ³⁵CI

²⁸Si(¹²C,pα)³⁵Cl experimental spectra from different detectors angle generated by putting gates on the 3163 keV transition in ³⁵Cl show the six shifted peaks from around 900 keV to

3000keV.

The lifetimes of the corresponding states must be shorter than the characteristic stopping time of ³⁵Cl recoils in gold (Au) backing.

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K.
Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K.
Bhowmik, S. Sarkar, M. SAHA SARKAR, Proc. DAE-BRNS
Symp. Nucl. Phys. (India) 55 (2010) 4.

Do they form a deformed band?

They belong to a single band.

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, M. SAHA
SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) 4.

They have E(2) multipolarity.

Having very short life time due to large quadrupole moments.

Theory (Particle Rotor Model)

Theoretical calculations using a version of the Particle-Rotor Model (PRM), where experimental energies of the core can be directly given as inputs, have been done. The SD band of ³⁶Ar are used as **core energies**.

 $^{35}_{17}\text{Cl}_{18} \Rightarrow ^{36}_{18}\text{Ar}_{18} + 1 \text{ proton hole}$

- ${}^{35}_{17}Cl_{18}$ with 17 protons $-\pi$ Fermi level lies near the
 - low Ω orbitals of $f_{7/2}$ for the prolate option
 - $\lambda = 48.0 \text{ MeV}, \Delta = 1.7 \text{ MeV}$
- ✓ $\mu = 0.520, \kappa = 0.073, \delta = 0.45,$
 - Attenuation coefficient = 1.00

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) 4.

Particle-rotor model calculations of superdeformed bands in A=150 and 190 regions, M. Saha Sarkar, Phys. Rev. C 60, 064309 (1999).

Level structure of ³⁵Cl:

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, M. SAHA SARKAR, Proc. DAE-BRNS Symp. Nucl. Phys. (India) 55 (2010) 4.

8th November 2011

ANUP11, Goa

2912 keV gate

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, **M. SAHA SARKAR**, Manuscript under preparation

Excitation energy (E) relative to a rigid rotor energy E_{RLD}

8th November 2011

Variation of Moments of Inertia

$J^{(1)} = \hbar^2(2I+1) / E\gamma$

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, **M. SAHA SARKAR**, Manuscript under preparation

8th November 2011

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, **M. SAHA SARKAR**, Manuscript under preparation

8th November 2011

Deformed states in ³⁵Cl

Shell Model studies

Wavefunctions

Abhijit Bisoi, S. Ray, M. Roy Basu, D. Kanjilal, Somnath Nag, K. Selva Kumar, A. Goswami, N. Madhavan, S. Muralithar, R. K. Bhowmik, S. Sarkar, **M. SAHA SARKAR**, Manuscript under preparation

8th November 2011

ANUP11, Goa

7/2-

(fp-3)

Students: Abhijit Bisoi (Ph.D Student), SINP, Kolkata Sudatta Ray (Post-Doc), SINP, Kolkata Moumita Roy Basu (Ph.D Student)

Collaborators: S. Sarkar, BESU SINP, TIFR, IUAC ...

8th November 2011

THANK YOU