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Each year in the United States, 5% to 20% of the population gets the flu and  

36,000 die  

 

2012: Total new and relapse cases of TB – 12,89,836; Total cases notified-14,67,585 

Infectious diseases are big problems in India and 

worldwide, for people of  

all ages, as well as for livestock. 

2005: More than 130,000 cases of cholera occur 

worldwide 

 

2006: More than 350,000 cases of gonorrhea are 

reported in the United States 

 

2007: 33.2 million people worldwide have HIV 

infections 

Infectious Diseases Are Big Problems 

Source: World Health Organization (http://www.who.int/en/) 

2000-2012: On an average 2% of the entire population of India 

tested positive for Malaria   



Malaria - the world’s most 

important tropical parasitic disease 

- causing serious threats to human 

communities in recent times (seems to 

be on a come-back mode) 

Caused by the parasite Plasmodium: 

Plasmodium falciparum, P. vivax, P. 

malariae and P. ovale and the vector 

(Anopheles mosquitoes) 

Global Statistics  
 40% of the world's population is at risk  

 300-500 million new cases/year  

 1.5-2.7 million deaths/year  

 Malaria is endemic to over 100 countries 

and territories  

 More than 90% of all cases are in sub-

Saharan Africa  

WHO Report, 2010) 



Malaria Map India (WHO Report, 2010) 

 Malaria is also one of the major epidemics observed in India. 

 Prevalent in all parts of the country 

 PF cases: A constant high from 1993 except the period between 1995 and 1999 

THE STATE OF MALARIA IN INDIA FROM 1961 TO 2006 



Defining Epidemiology 

“The study of the distribution and 

determinants of health related 

states and events in populations, 

and the application of this study 

to control health problems.” 

John M Last  

Dictionary of Epidemiology 

 

Basic Triad of Descriptive Epidemiology  

THE THREE ESSENTIAL CHARACTERISTICS OF DISEASE 

WE LOOK FOR:   

 PERSON 

 PLACE 

 TIME 





Definitions 

Latent period (): The period from the point of infection to the beginning of 

the state of infectiousness during which the infected individuals stay in the 

Exposed  class. 

Incubation period: The period from the point of infection to the 

appearance of symptoms of disease 

Asymptomatic: In some infections, symptoms never appear in the 

individual and are called asymptomatic infection.  

Clinical immunity: The immunity, which reduces the probability of clinical 

disease, is called Clinical immunity.  

Anti-parasite immunity: The immunity, which is responsible for clearance 

of parasite is called Anti-parasite immunity. 

Effectiveness of treatment (): The ratio of the duration of infection for the 

untreated and treated sensitive parasites. 



Entomological Inoculation Rate  

(EIR):   

 

Rate of infectious bites per person is 

termed as Entomological inoculation 

rate. 

 

Vectorial Capacity (C):  

 

All the information (vector density 

relative to host, biting rate, life 

expectancy etc.) about the vector 

populations is incorporated through 

vectorial capacity, which is defined as a 

measurement of efficiency of vector 

borne disease transmission.    

Vector borne Diseases 

Malaria, Leishmania etc. 



Research in Infectious Diseases 

Descriptive Analytic  Experimental Theoretic 

Models can provide an explicit framework to develop and describe an 

understanding of infectious disease transmission dynamics 
 

 Theoretical Approaches - population dynamics, behavior of 

disease transmissions, features of the infectious agents, and 

connections with other social and environmental factors.  

Two broad methods in modeling  

 – Mathematical modeling and Data based / Statistical modeling 

• Mathematical models for smallpox – 1760 Bernouilli  

• Hamer - discrete-time model for the spread of measles in 1906.  

• Ross (1911) - transmissions of  malaria between human beings and  

                         mosquitoes. (Second Nobel Prize in Medicine) 

• Kermack and McKendrick -SIR (susceptible–infective–recovered)   

   & SIS compartmental model, in 1926 - outbreak of Black Death in  

   London, and the outbreak of plague  in Mumbai .  

Sir Ronald Ross 





•The concept of thresholds established the fundamentals of the theory of 

epidemic dynamics. 

• More intensive studies on epidemic dynamics took place after the middle of the 

20th century.  

• A landmark publication is the book by Bailey (first edition in 1957; second edition 

in 1975)  

• More developments and progresses - during the past 20 years.  

• Massive mathematical models have been formulated and developed to study 

various infectious diseases, ranging from more theoretic to  

general ones [Waltman (1974); Burnett and White (1974); Hoppensteadt 

(1975); Frauenthal (1980); Anderson and May (1982); Evans (1982); Webb 

(1985); Kranz (1990); Busenberg and Cooke (1993); Capasso (1993); Isham 

and Medley (1996); Daley and Gani (1999); Diekman and Heesterbeek (2000)]  

more specific ones e.g. measles, malaria, tuberculosis, sexually transmitted 

diseases (STD), or AID/HIV [Hethcote and Yorke (1984); Hethcote (2000); 

Hyman and Stanley (1988); Brauer and Castillo-Chavez (2001); Brauer et al. 

(2008)]. 



Massive diverse progress in malaria research  

  - yet the tools and methods used to measure the intensity of its 

transmission are still not standardized  

 

Even in the maximum cases one does not take into account different 

factors like ecological, demographic, and socioeconomic differences 

across populations [Hay et al., 2000, 2005; Robert et al., 2003; Kelly-Hope 

& McKenzie, 2009]  

 

• Transmission intensity of malaria is highly variable and 

significantly correlated with monthly rainfall and daily 

temperature variation. 

 

• Indicate the need for consideration of an appropriate 

climatic variation term in explaining malaria dynamics in 

different geographical locations.  

Challenges……. 



 From the long term (more than one year) prevalence pattern of 

malaria, it is observed that along with the monthly variation of 

malaria cases there appears another long term year wise trend on the 

pattern.  

 

Malaria cases continuously rise for few years, reaches to peak 

values, and subsequently come down to its normal variation.  

 

Effect of other external factors different than environmental 

fluctuations  
 

Resurgence in construction activities and water logging in 

construction sites, lead to increase in malaria cases, whereas 

number of cases may decrease due to mass vaccination policy or 

pesticide spray so as to control the situation in that place.  

Challenges……. 

Even the effects of different factors are known, but how they are 

influencing the disease prevalence is an important problem  

- for better understanding and future predictions 



Most control strategies of Malaria currently are based on African data (e.g., 

age-structure of infection, gender difference in infection, etc), whereas, the 

disease dynamics may be different in other countries like, India  

 

Major challenge:   

 To develop a universal approach to ascertain the detailed 

understanding of the components of the disease under 

the effect of environmental and social variations, so that 

realistic outcome can lead to clear and reliable predictions 

towards the control 

Challenges……. 



• Account for bias and 

random error to find 

correlations that may 

imply causality. 

• Often the first step to 

assessing relationships. 

• Systems Approach: 

Explicitly model multiple 

mechanisms to 

understand their 

interactions. 

Statistical Models Dynamic Models 

By developing dynamic models in a probabilistic framework 

we can account for dependence, random error, and bias 

while linking patterns at multiple scales. 

• Links observed 

relationships at different 

scales. 



Evolution and grouping of different types of malaria models 

Mandal, Sarkar, Sinha, Malaria Journal, 2011 



Data-based statistical modeling on the available disease 

prevalence data for different categorizations: 

 

An integrative approach that uses the past data to predict the 

future trend 

 
Applicability of such models becomes important while assessing their 

numerical outputs, estimating parameters, and predicting future values 

from past observations.  

A combined mathematical-statistical approach (the Liverpool Malaria 

model), that uses the dynamic transmission models of the  SIRS-type 

framework and statistical methods for correlating environmental 

dependencies, was developed recently to successfully forecast the evolution 

of malaria epidemiology in western Africa [Gaudart et al., 2009; Ermert  et al., 2011]. 

Biostatistical Analyses 



Data collection is mostly restricted to short time scales (months to 

few years)  
 

Recently researchers have used elaborate time series analysis 

models to show seasonality pattern in malaria incidence, and the 

Monte-Carlo Markov Chain methods with Bayesian techniques of 

a-priori probability assignment, to estimate the risk factors.  

[Briet et al, 2008; Abellana et al, 2008; Cancre et al, 2000] 

 

Drawbacks: Suitability of these models being fitted into the incidence 

pattern of the disease is questionable.  

 

For instance, discontinuity is observed in the time series at high 

temporal resolution while studying extensive dataset for 

elucidating climatic role in the transmission of malaria in Africa 

and Europe. [Kuhn et al, 2002] 

Few other problems….. 



Time stratified model 
 

Modelling long-term patterns in the 

outcome data by spliting the study period 

into intervals and estimate for each interval 

 - simply including an indicator variable for 

each time interval in the Poisson model.  
 

Pros: easy to understand, captures main 

long-term patterns quite well. 
 

Cons: potentially large number of model 

parameters; implicitly assumes 

biologically implausible jumps in risk 

between adjacent time intervals. 

Different types of Statistical Models For Long-term Study 

Periodic functions 
 

Fitting Fourier terms in the Poisson model  

- pairs of sine / cosine functions of time with 

an underlying period reflecting the full 

seasonal cycle (i.e. calendar year)  
 

Pros: models long-term patterns 

smoothly, relatively few parameters. 
 

Cons: mathematically complex; Can 

capture very regular seasonal patterns; 

modelled seasonal pattern is always 

forced to be the same from one year to 

the next (may not reflect the data well).  

Flexible spline functions 
Fit a spline function of time 

- Essentially a number of different polynomial (most commonly cubic) curves that are 

joined smoothly end-to-end to cover the full period.  
 

Pros: models long-term patterns smoothly; can capture seasonal patterns that vary 

from one year to the next; and capture long-term non-seasonal trends in the data. 

Cons: more mathematically complex than the other methods 

Residual variation around the long-term pattern 



 Exposure-outcome associations and confounding 

 

 Confounding by other time-varying factors 

 

 Allowing for delayed exposure effects 

 

 Model checking and sensitivity analysis 

 

 Precision and power considerations 

 Non-linearity 

 Investigation of effect modifiers 

 Analysis of data from multiple locations 

Separate analysis by location (e.g. specific cities) can increase 

power and provide information on heterogeneity and adaptation to 

environmental exposures 



Regression Methods Time Series Analysis 

 Linear 

 Without Transformation of Variables 

 With Transformation of Variables 
 

 Non-Linear 

          Polynomial        (Ruru & Barrios, 2003) 

          Logistic regression modeling 

           (spatial mapping of malaria, MARA Project) 

          Binary logistic regression modeling 

                      (Ye et al., BMC Public Health 2007) 

  Monte-Carlo Markov chain methods 

   ARIMA   (Briet et al., Malaria J, 2008) 

  Auto Regressive Conditionally         

    Heteroskedastic models (ARCH) 

  Random Walk model 

Poisson regression model 

(Uses both Probability and Regression 

approach, Ruru & Barrios, 2003) 

Data Based Analysis 

Probability Non-Probability 

Stepwise Regression Method with Transformation  

           (Modelling & Forecasting malaria incidence in Kolkata, India, Ecol. Modelling, 2004) 

Multi-step Polynomial Regression without Transformation 

           (Modeling and Forecasting malaria incidence in Chennai, PLoS ONE, 2009) 

Response Surface and Model Reduction 

       (Modeling and Forecasting malaria in two cities: Mangalore & Chennai, Malaria Journal,2011) 



Objective 

To see, how the environmental factors and previous disease 

incidence influencing the incidence of Malaria? 

To predict future incidence of the disease – Using simple statistical 

modelling techniques 

Malaria control – need for models 

To understand the causative factors, degree of influence and disease 

transmission dynamics over a horizon 

 

Variability due to different environmental factors (temperature, humidity, 

rainfall etc.) on the disease dynamics cannot be ignored. 

 Earlier works concentrated on inducing linearity between variables - fitting a 

general linear model to different influential factors 
 

 Those who have considered non-linear models, have predefined the functional 

form of the model before getting into the dynamics between the variables  



Proposed suitable statistical model to study the pattern followed 

by Malaria cases (or SPR values) and/or deaths over the years and 

eventually predict the course of the disease – Kolkata & Chennai 

 J. Chattopadhyay, R.R. Sarkar, S, Chaki and S, Bhattacharya (2004) Ecological Modelling 

 A stepwise regression model with Transformation  

 - environmental factors along with a socio-economic factor based on 

the available data from Kolkata Municipal Corporation (KMC) 
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Proposed Regression Model
 Compared this model with the basic 

malaria model by introducing 

environmental stochasticity.  

 

 Predictions could be useful to 

design proper control strategy 



Problem? 

Completely based on linear regression after transformation of variables 

Unable to capture the non-linear relationships between the 

Environmental and Social Factors influencing the disease dynamics 

With no a-priori assumption of independent variables and not  

presuming about the nature of the dependent variable –whether 

discrete or continuous 



We developed a non-linear multistep regression methodology  to 

model and forecast malaria incidence in Chennai City, India 

Three types of data:  

i) Longer (January 2002 to January 2005 ) time series data of Slide Positivity 

Rates (SPR) for two types of malaria P. vivax and P. falciparum;  

(ii) Shorter time series data (deaths due to Plasmodium vivax) of one year 

(January –December 2006); 

(iii) Spatial data (zonal distribution of P. vivax deaths) for the city  

Along with Climatic factors, Population and previous incidence of the disease. 

Zones of Chennai Corp. 

C.Chatterjee & R.R.Sarkar,  

PLoS ONE, 4(3): e4726. 2009 

Straight line with white squares - observed values of SPR;  

Dashed line with black circles – predicted values from Model.  

Error bars are of 95% confidence intervals of the predicted response.  

Black ellipses - forecasted values of SPR (autoregressive forecasts)  

Black square – observed SPR value for January, 2005. 

 Log (SPR) = - 19.708 + 15.007*log 

(Max.Temp) -  1.05*log (Max.Temp)4 + 

2.963E-28* (Population)4   + 4.517*(SPR-

at-lag-one) - 9740.329*(SPR-at-lag-one)4 

+ 86473.283* (SPR-at-lag-one)5 + 3.687E- 

02*(Minimum Humidity) - 3.14E-04* 

(Minimum Humidity)2.  
 

(Model proposed  on 34 Time points  

 – Forecast for 3 time points) 



Our method introduces successively higher powers of the chosen 

independent variables  

Leads to a complex model that does not ensure a trade-off between the 

number and numerical order of terms and, the goodness of fit of the model 

Problem Again? 

Method was too much area specific, unable to capture -  

considerably different levels of disease severity, population density, rainfalls 

and vegetation patterns in different regions 



A Tale of Two Cities 

Epidemiological study of Malaria prevalence 

  Used the statistical technique of Response Surface Method (RSM) for the 

first time to study any epidemiological data 

 

  Proposed a new model reduction technique in combination with RSM to 

refine the model - provides a simpler structure and gives better fit 

Study the relationships between malaria incidence and climatic and non-

climatic factors –  

          

Prevalence data for three to five years from two cities in southern India from 

two different climatic zones (varying strengths of disease prevalence and 

environmental conditions) 

Sayantani Basu Roy, Ram Rup Sarkar and Somdatta Sinha, Malaria Journal 2011, 10:301 



Preliminary Data and some features 

Several differences in demographic and climatic factors.  

• Chennai – Tropical Wet & Dry;  Mangalore – Tropical Wet 

• Mangalore has less population (398,745) as compared to Chennai (5.6 million, third 

largest city) - 2001 census of India  

• Urban area in Mangalore had 32 recognised slums, and nearly 22,000 migrant 

labours lived in slums within the city limits,  

 whereas, Chennai has the fourth largest population of slum dwellers among 

major cities in India, with about 820,000 people (18.6% of its population) living in slum 

conditions 

Similarities: 

• Both are endemic for malaria since few 

decades, though Chennai has lower 

endemicity. 

• Victims of rapid industrialization,   

construction activities  

- problem of mosquito breeding in man-made 

clear water sources like wells, overhead tanks, 

sumps, cisterns as well as other defective and 

illegal drainage systems.  



Malaria incidence and climate data 

Malaria cases 

Humidity 

Humidity 

Temperature Temperature 

Rainfall 
Rainfall Population 

(a, b) Chennai                                 (c, d) Mangalore 



Data 

        CHENNAI: 
 

 No. of blood slides examined (denoted, A),  

 No. of malaria cases (denoted, M) from Jan. 

2002 – Dec. ’04  [monthly figures] 
 

     Slide Positivity Rate values or SPR ( = M/A) : 

Dependent variable 

Average Temperature, Average Humidity, Rainfall, 

Population        Independent variables 

 

 

 

           MANGALORE: 
 

 No. of P. falciparum and P. vivax cases from 

Jan. 2003– Dec. ’07  [monthly figures] 

           

      Total Malaria cases or TMC : Dependent 

variable 

 

Average Temperature,  Average Humidity, Rainfall         

 Independent variables 
 

 

 

 

 If the percentage of parasitaemia values are 2-3% or above, then they are 

considered to be positive slides for thin blood smear films.  

The total malaria cases include both symptomatic and asymptomatic cases.  

Temporal scale of SPR is obtained from the no. of blood smears collected every month by the 

Corporation of the city of Chennai.  

Total number lies in the range of 16306-63717 depending on the seasons, and the number of 

cases tested positive are in the range of 1184-4275.  

Climate variables: data from daily weather sources - averaged to ensure compatibility 

with the other variables (SPR, TMC) at the monthly scale. 



 Exposure-outcome associations and confounding 

 

 Confounding by other time-varying factors 

 

 Allowing for delayed exposure effects 

 

 Model checking and sensitivity analysis 

 

 Precision and power considerations 

 Non-linearity 

 Investigation of effect modifiers 

 Analysis of data from multiple locations 

Separate analysis by location (e.g. specific cities) can increase 

power and provide information on heterogeneity and adaptation to 

environmental exposures 



Statistical Methods used in our Study 

 Data organisation and Preliminary analysis 

 Autocorrelation function 

 Correlation and Residual plots 

 Model development using Response Surface Method  

 Model Reduction Process 

 Model Validation and Forecast 

 Confidence Intervals 

 Akaike’s Information Criterion (AIC) 

 Prediction Intervals in Forecasting Method 

 Collinearity Analysis 



Significant autocorrelation values at lag one (95% ). 

>> SPR / TMC values as well as the Average Temperature at time lag one 

considered as additional independent variables in our model. 

Preliminary Statistical Analysis 
I. Autocorrelation function (ACF): 

Measure of whether a variable is related with its  

own values as a function of a time difference 

      

      

      

      

 

 

 

 

a) SPR values of Chennai     b) TMC of Mangalore  

from January 2002 to December 2004;        from January 2003 to December 2007,  

   all at Lags 1 through 11. The lines are for 95% confidence limits.  



       Lag↓ ACF1 LB1 p1 ACF2 LB2 p2 

-1 0.613681 14.34421 0.000152 0.819723 38.96123 0.0001 

-2 0.387528 20.23755 0.00004 0.535942 55.90804 0.0001 

-3 0.285586 23.53816 0.000031 0.260731 59.99051 0.0266 

-4 0.284155 26.91116 0.0205 0.013578 60.00178 0.0052 

-5 0.147157 27.84595 0.1671 -0.14507 61.31252 0.2084 

-6 0.115245 28.43903 0.3014 -0.18232 63.42165 0.8515 

-7 -0.01087 28.44449 0.9142 -0.12218 64.38713 0.5598 

-8 -0.19157 30.20476 0.1287 -0.0451 64.52124 0.0231 

-9 -0.45511 40.52099 0.0003 0.083952 64.99529 0.0142 

-10 -0.37242 47.70555 0.0043 0.31126 71.6446 0.9259 

-11 -0.25344 51.17141 0.0516 0.503997 89.44137 0.0002 

Ljung-Box Statistic:  

 This statistic gives the significance of autocorrelation at different lags, cumulatively. 

 

Ljung-Box statistic for SPR values of Chennai and TMC values of Mangalore with p-values at 

95% level of significance    

High correlations were observed between SPR and SPR-at-lag-one, and TMC and TMC-at-

lag-one.  

 

For other combinations of independent and dependent variables, where correlation was 

found to be low, non-linearity was confirmed by residual plots 



Apart from SPR and SPR-1, and also, TMC and TMC-1, the correlation values of the other 

variables are not very significant, though they are known to be influential factors.  

 

One possible reason for this is due to use of linear correlation measure to capture the 

relationship between dependent and independent variables.  

Residual plots for the dependent variable, SPR values 

of Chennai with the independent variables:  

(a) SPR.-at-lag-one:SPR-1; (b) Average Temperature:T; 

(c) Population:P;  (d) Rainfall:R; and (e) Average 

Temperature-at-lag-one:T-1 

Residual plots for the dependent variable, 

TMC values of Mangalore with the 

independent variables:  

(a) Average Temperature:T; (b) Rainfall:R; (c) 

TMC-at-lag-one:TMC-1; and (d) Average 

Temperature-at-lag-one:T-1  



 Introduced by Box & Wilson in 1951 

 An experimental optimization procedure 

 Easy to apply 

Response surface method ~ a regression outlook 

• Technically RSM is applied to study the measured yield or output of a system as 

it varies in response to the changing levels of one or more physical input 

variables.  

• In Dynamic Network analysis, RSM was found useful for sensitivity analysis of 

various DNA measures for different random errors. 

• RSM is a sequential combination of  statistical experimental design, regression 

modeling and optimization methods.  

• RSM approach is a global approximation method which is ideally suited for 

solving problems with a relatively noisy response, where a gradient based 

method would lead to a local optimum instead of a global one.  



 Dependent variable: Y        Slide Positivity Rates (SPR) values / TMC 

 

 Independent variables: X1, X2, X3, … , Xn       

       SPR/TMC-at-lag-one, Average Temperature, Rainfall, Population, Average 

Temperature-at-lag-one 

 

 First Order Model: 

 

 Second Order Model:  

RSM… the approach 

 When the experimenter is relative closed to the optimum, the second-order 

model is used to approximate the response. 

 

 We find the stationary point. Subsequently we find the maximum response, 

minimum response or saddle point. 

 We determine whether the stationary point is a point of maximum or minimum 

response or a saddle point.  
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The Model: 

** xs is the stationary point 

If the second order model is found to be suitable then we resort to canonical analysis 

where we claim that if all the Eigen values of the matrix B are positive 

(negative), then the quadratic surface has minimum (maximum) at the stationary 

point.  

However if Eigen values are of both signs, then it is a saddle point. 

Canonical Analysis  



 (Error bars show the 95% confidence intervals) 

The observed data and the model fit for Initial model using RSM 

R2 = 91.53% 

R2 = 84.61% 

SPR = 115.25 - 3.53(SPR-1) - 4.78´10-03T  

 – 5.51´10-05P + 6.75´10-03R  

 + 3.64´10-1T-1 + 10.07(SPR-1)
2  

 – 3.61´10-04T2 + 6.52´10-12P2  

 – 3.48´10-07R2 – 1.63´10-03(T-1)
2  

 – 8.35´10-02SPR-1 T – 3.48´10-07SPR-1P  

 + 1.09´10-03SPR-1R + 8.83´10-02SPR-1T-1  

 + 1.41´10-08T P + 2.34´10-05T R  

 + 4.18´10-04T (T-1) – 1.57´10-09P R  

 –  6.65´10-08P (T-1) – 2.02´10-05R (T-1).  

TMC =  6995.79 – 1087.87T  

 + 4.03R – 1.44TMC-1+  

 516.88(T-1) + 40.03T2  

 – 1.9´10-4R2 – 2.1´10-4(TMC-1)
2 

 + 6.08(T-1)
2  +  5.68´10-2T R  

 – 5.64´10-2 TMC-1T – 35.24TT-1 

 – 2.6´10-04 TMC-1 R 

 - 1.59´10-1R (T-1)  

 + 1.67´10-1TMC-1 T-1.  



Model Reduction Process:  

  Implemented to derive a simpler 

model with fewer but important terms,  

  Ensuring efficiency (coefficient of 

determination) similar to that obtained 

in the initial model fitting through RSM. 

  A simple but useful approach, and 

has no underlying assumption 

except that the contribution of a term 

in the model is directly proportional to 

its order of magnitude. 

  At each step of the model 

reduction, it is ensured that the 

predictions remain within the 

confidence limits that minimize 

error variance.  

 Presence of more terms renders the 

model complicated  

 Decrease its efficiency statistically as 

more parameters are estimated from 

limited data. 

Flowchart for model development using Response 

Surface Method and Model Reduction process 



Model Reduction Steps for the Second Order Response 

Surface model for Chennai  & Mangalore 

X1: SPR-at-lag-one or SPR-1; X2: Average temperature or T; X3: Population or 

P; X4: Rainfall or R; X5: Average Temperature-at-lag-one or T-1 

X1: Average Temperature or T; X2: Rainfall or 

R; X3: TMC-at-lag-one or TMC-1;  

X4: Average Temperature-at-lag-one or T-1 

Remove: If the change in R2  is in the second or better, in the third place of decimal; 
 

When for both choices available, the change is in the second or third place of decimal, 

choose the one that is reducing the R2 less.  



SPR =  75.96 – 20.40(SPR-1) - 1.31´10-01T  

            – 3.71´10-05P + 5.30´10-1(T-1)  

                   + 8.474(SPR-1)
2 – 1.07´10-04T2  

 + 4.46´10-12P2 – 1.21´10-03(T-1)
2  

 + 4.4´10-06SPR-1 P + 3.28´10-08T P  

 + 2.56´10-05T R + 2.402´10-04T (T-1)  

 – 1.62´10-10P R – 1.04´10-07P (T-1).  

Removes six terms from the initial 

model (about 30% reduction in 

coefficients) compromising only less 

than 2% decrease in the value of R2. 

     TMC  =  9800.71 – 1077.33T + 3.43R – 2.30TMC-1  

  + 348.61(T-1) + 18.64T2  – 2.2´10-4(TMC-1)
2  

 + 9.958(T-1)
2  – 4.378T (T-1) – 1.1004R (T-1)  

 + 1.40´10-1 TMC-1T-1.  

Reduces the number of terms from 15 to 

11 (~27% reduction),  

and hardly reduces the R2  

from 84.61% to 84.28% (only by 0.4%). 

R2 = 89.75% 

R2 = 84.28 % 

Confidence Intervals 

Tested each estimated value of the data points used for fitting the model (both for the optimized 

and reduced models) - lies within the 95% confidence intervals (Gauss Markov Theorem) 



To assess the linear accuracy, homoscedasticity and to observe the differences after 

removing lower order variables,  

Residual plots for the initial and reduced models have been plotted for both SPR and 

TMC values 

Residual plots.  

For the dependent variable, SPR values 

of Chennai from January 2002 to 

December 2004:  

(a) Initial model; (b) Model after 

Reduction;  

For response variable, TMC values of 

Mangalore from January 2003 to 

December 2007:  

(c) Initial model; and (d) Model after 

Reduction  

There is slight compression of the residual cloud from the initial to the 

reduced model for SPR (Figure (a), (b)) as well as TMC (Figure (c), (d)).  

  

The spread in general is uniform on either side of the x-axis which indicate 

homoscedasticity.  



Collinearity Analysis 

 

For least square regression approach, it is imperative for the residuals to be able to 

adhere to the assumption of constant variance (homoscedasticity).  

 

Two different measures are considered, namely, the Variance Inflation Factor and 

Breusch-Pagan test , for analyzing this property shared between different cofactors 

in the models  

  - ascertains that there is no significant evidence that the assumptions 

underlying the fitting and estimation methods are violated. 

 The homoscedastic null hypothesis is not rejected at 99% level of significance.  

 

 This reinstates that the residuals show no erratic behavior as a function of the 

value of the responses.  

 

 It can be assumed that there is no significant level of heteroscedasticity.  

 

 Provides a comprehensive reason for the use of our model fitting approach for the 

available data.   



The values of VIFs in our case clearly indicate that there are no 

values beyond 5, which shows the absence of multi-collinearity.  

 

Hence, we can conclude that the chosen independent variables in 

both data, do not lead to violation of the assumption of constant 

variance of the residuals. 



Chennai Mangalore 

Initial Second Order Model 3827.692 3812.048 

Reduced Second Order Model 3410.028 3359.722 

 This statistic measures the appropriateness of forecasts of the estimated statistical 

models and selects the better model from the given models 

 

Lower the AIC, the better the model 

 where, k: no. of parameters; n: no. of observations 

     and, ϵi : residual for ith observation . 

Akaike’s Information Criterion (AIC)  



Incidence values (SPR or TMC) have been predicted for those time points that have 

not been used for the purpose of fitting the model (remaining 20% time points) 

Predicted and Observed values 

 Model incorporates auto-regressive terms (SPR-at-lag-one for SPR values, TMC-at-lag one 

for TMC values),  

 Prediction ensures that each estimated response serves as an input for the subsequent 

estimate, in addition to reliable climate forecasts and/or population projections. 

 This feature leads to training the data on hitherto unforeseen terrain, making it more 

conducive to unknown data. 

(R2 = 0.8975) 
 

Predicted SPR values for Chennai from 

June 2004 to October 2004   

(R2 = 0.8428) 
 

Predicted Total Malaria cases’ values for 

Mangalore from February 2007 to December 2007   

Chi-square goodness of fit is also found to be highly statistically significant (p-value < < 0.001) 

Model predictions show initial decay in the total 

malaria cases from February to May, then an upward 

trend till August, and finally decreasing again till 

December - following the pattern of rainfall 

distribution of that region 

Predictions do not show any clear 

trend for the disease to decrease - 

show more monthly periodic 

variations.  



 A combination of statistical modelling approach (the RSM) and a simple model 

reduction method is applied to describe the incidence of malaria in two 

geographically, ecologically and demographically different cities in India  

  Chennai, Tamil Nadu and Mangalore, Karnataka 

 Two types of epidemiological data - Slide Positivity Rates (SPR) values of malaria 

for Chennai and Total Malaria cases (TMC) for Mangalore - shows the applicability of 

the algorithm to different measures of incidence of malaria.  

 Analyses of the data using the RSM approach not only capture the essential 

dynamics of the disease incidence, but also show the influence of different climatic 

and non-climatic factors.  

 Results show the autoregressive nature of forecasting in the long-range time 

series study, where Rainfall, one-lag SPR and Temperature at lag one - values 

play an influential role and can be useful for better prediction 

 Some interesting effects of the climatic factors on the disease dynamics  

Summary  

Sayantani Basu Roy, Ram Rup Sarkar and Somdatta Sinha: Malaria Journal 2011, 10:301 



Malaria cases 

Humidity 

Temperature 

Rainfall 
Population 

Chennai 

SPR = 75.96 – 20.40(SPR-1) - 1.31´10-01T – 3.71´10-05P  

          + 5.30´10-1(T-1)  + 8.474(SPR-1)
2 – 1.07´10-04T2  

          + 4.46´10-12P2 – 1.21´10-03(T-1)
2 + 4.4´10-06SPR-1 P + 3.28´10-08T P 

+ 2.56´10-05T R + 2.402´10-04T (T-1) – 1.62´10-10P R – 1.04´10-07P (T-1).  

 Complex influence of environmental variables on 

the epidemiological status of the region 
 

 Variation in SPR (original data) values do not follow 

exactly the rainfall distribution in this region, which 

clearly has two peaks every year due to North-East and 

South-West monsoons.  
 

 The ups and downs of the SPR values follow the 

temperature distribution broadly.  
 

 Pattern is also captured by the RSM model, which 

shows more dependence of SPR values on 

temperature, either through direct presence of linear 

and higher order terms, or through interactions with 

other associated factors including rainfall - more cross 

interaction terms in Chennai  

Chennai being in the tropical wet-dry climatic 

region shows sustained prevalence of malaria 

through-out the year with less periodic 

variations: Variations in the SPR values are 

associated with more cross interaction terms. 



 TMC follows a cyclic pattern each year with 

gradual increase leading to the peak during June - 

August, followed by a gradual decrease, quite similar 

to the rainfall distribution in this region due to the 

direct influence of the Arabian Sea branch of the 

South-West monsoon.  

 

 This specific trend is mimicked by the RSM model 

using the model reduction technique.  

 

  Model equation shows direct dependence on 

rainfall term and captures the essential dynamics 

of the disease along with other factors 

 - presence of more direct terms (linear or higher-order) 

and less cross interaction terms.  

TMC = 9800.71 – 1077.33T + 3.43R – 2.30TMC-1 + 348.61(T-1) + 18.64T2  – 

2.2´10-4(TMC-1)
2 + 9.958(T-1)

2  – 4.378T (T-1) – 1.1004R (T-1) + 1.40´10-1 TMC-1T-1.  

Malaria cases 

Humidity 

Temperature 

Rainfall 

Mangalore 

Mangalore is in tropical dry climatic region - shows 

more periodic variations in TMC values following 

the climatic changes in the region: Observed to be 

directly influencing the model formulation. 



 RSM has been used for the first time in epidemiological studies 

 Second Order model given by the RSM approach, in spite of not having terms higher 

than degree 2, still represents the temporal variations of both datasets very well. 

Summary 

 Major challenge is to gain the detailed understanding of the diff. environmental factors, 

prev. incidence of the disease and their influence on the prevalence pattern, a reduced 

model with fewer terms was helpful for reliable predictions. 

 Model predictions capture the climatic variations, mainly rainfall and temperature, for both the 

regions and resembles well with the observed disease incidence.  

 This approach leads to detection of the most crucial environmental factors influencing 

the transmission of the disease while offering a coherent and integrated understanding 

of the disease process in any area.  

 The major advantage is –  

 No prior assumptions about the disease or knowledge of parameters required - 

Only the previous occurrence of the disease and suitable climatic factors are required 

to feed into the method;  

 Gives a simple, but highly predictive model for malaria incidence without 

compromising on the proportion of variation represented 

 May be useful for adopting better strategy not only to control malaria but for other 

infectious diseases, if suitable climatic information and disease prevalence data are 

available 



Few Questions….. 

What about the spread of infection within a population? 

 

Population structure & Age groups? 

 

Different types of infections – asymptomatic or symptomatic? 

 

Host immunity? 

Need for a model which can capture the Interactions between different 

general and local processes  for understanding disease prevalence 

pattern 
 

• Dependence on age and immunity of the human host 

• Continued presence of asymptomatic infections 

• Regulation of the host-vector interactions 

     And  

  Variations of temperature and rainfall in a particular region  



Evolution and grouping of different types of malaria models 

S.Mandal, R.R.Sarkar, S.Sinha, Malaria Journal, 2011 



Immunity functions 

Human immunity is considered to act in two ways: (i) reduces the 

probability (η) of clinical disease, and (ii) regulate the rate of removal of 

parasites (ρ). 
 

Clinical immunity ( Ic(a, t) ) [some level of maternal immunity inherited by the new born 

( Im ), which decays exponentially with a half life dm but simultaneously accumulates some 

immunity ( If ), which is determined by the force of infection and this also decays exponentially 

with mean life de] 

 

Parasite immunity ( Ip(a, t) ) [responsible for clearance of parasite and develops / 

matures relatively in latter age of life through a delay phase (JA). The immunity level in delay 

phase (JA) accumulates through force of infection, matures in parasite immunity (IA(a, t)) at a 

rate (1/dl), and decays exponentially with mean life dA]  

Different important assumptions in our model 

Ic (a, t) =  Im (a, t) + If (a, t) 

Response of the clinical 

immunity η  

Recovery rate from detectable parasite (ρ) is assumed to be a 

saturating increasing function of the immunity level IA(a, t): 



Development of the parasite in host (human) and vector (mosquito) 
 

 The rate (σ) at which proportion of individuals in the susceptible class (Sh) 

transfer to the exposed class (Eh), on receiving inoculation from infected 

mosquito, depends both on the number of infectious bites, and its ability to 

produce infection in the human host.  

If m is the density of mosquitoes per human, α, the biting rate, and b, the 

maximum probability of inoculation in a human upon the infectious 

bite of a mosquito, which is age-dependent, then  

     

 
 

where, a is the age of the human host and a0 is a constant represents the 

age at which half the total increase in exposure is achieved.  
 

 Individuals remain in the exposed class (Eh) for a mean duration 1/γ (time taken 

for transformation of sporozoite into merozoite inside human liver). 
 

 Sporogony period of parasite in mosquito gut varies on the species of the 

parasite. The parasite extrinsic latent period of the parasite, in mosquito is 

considered as  (Delay Factor).  
 

The probability of mosquito survival during the extrinsic latent period: 



Asymptomatic Infections 
 

 Depending on the immunity of the human host, some proportion (η) of the 

exposed class produces symptomatic disease and the rest produce 

asymptomatic disease  

 

 Also, population in asymptomatic class may transfer to symptomatic 

class, through re-infection, at a rate ησ.  

 

 Asymptomatic individuals, by clearing parasites, can become susceptible 

again at a rate ρ. 

 

 Susceptible mosquitoes become infected on biting symptomatic or 

asymptomatic patients. 

Variations in temperature and rainfall of a particular geographical region 



For simplicity, Birth rate and death rate 

(µh for human and µm for mosquito) are 

considered such that the total population 

remains constant and is normalised to one. 

Transmission of 

disease from 

mosquito to 

human is shown 

by red dotted line 

 

The transmission 

from human to 

mosquito is 

shown by blue 

dotted line.  

 

Arrows indicate 

transition among 

compartments 

S.Mandal, S. Sinha, and 

R R Sarkar* (2013): 

Bulletin of Mathematical 

Biology 75: 2499-2528, 



The Malaria Transmission Model 

Human 

[at age “a”]  

Mosquito 

Initial conditions: Defined in the seven dimensional variable space 

 
 

where Sh(0) > 0, Eh (0)≥ 0, IhS (0)≥ 0, IhA (0) ≥ 0 and Sm(0) > 0, Em (0)≥ 0, Im (0)≥ 0  C([- , 0]); C([- , 0], R7
0+) 

is the space of continuous functions and is a mapping from [- , 0] to R7
0+ (R7

0+ = {( Sh, Eh, IhS, IhA, Sm, Em, Im) 

 7 | Sh, Sm > 0; Eh, IhS, IhA, Em, Im ≥ 0}). 



Positivity and Boundedness   

We observe that the right-hand-side of the equations are smooth functions of the 

variables (Sh, Eh, IhS, IhA, Sm, Em, Im) and the parameters, as long as these quantities 

are non-negative, hence local existence and uniqueness properties hold in R7
+. 

 

For constant age, if Sh > 0, then dSh/dt ≥0 for IhS ≥ 0, IhA ≥ 0, Im ≥ 0.  Hence Sh > 0, 

∀t. It is also true for the other variables Eh, IhS, IhA, Sm, Em and Im in the space C+. 

Theoretical Study 

Proposition 1: All the solutions which initiate in R7
+ are uniformly bounded. 

Lemma 1: The system has exactly one unique equilibrium point E0
*
 = (Sh

*, Eh
*, IhS

*, 

IhA
*; Sm

*, Em
*, Im

*) = (1, 0, 0, 0; 1, 0, 0), which is disease free. 

Lemma 2: The endemic equilibrium point (E* = (Sh
*, Eh

*, IhS
*, IhA

*; Sm
*, Em

*, Im
*) ) of 

the model exists for R0 > 1 and it is unique.  

Persistence of disease in a community is determined by the parameter R0 – the 

basic reproduction number.  

 

R0 is defined as the number of secondary infections that one infectious individual 

would create in a susceptible population over the duration of the infectious period. 



In the mathematical theory of epidemics this is calculated as the dominant eigen value r(K) of 

the next-generation operator, K (Diekmann et al. 1990; Dietz 1993; Heffernan et al. 2005).  

 

For the transmission model (2.7), R0 can be calculated as 

         

where F is a matrix reflecting the rate at which new infections arise, and V is a matrix reflecting 

the rate at which individuals enter or leave the infection classes. 

OR 



Stability of the system around the disease free equilibrium point (E0
*) 

Theorem 1: For  = 0, the system is stable around the disease free equilibrium 

point E0
* if the following conditions hold true: 

Stability of the system around the endemic equilibrium point (E*) 

Theorem 2: For  = 0, the system around the endemic equilibrium point E* is stable 

if the following conditions hold true: 

Theorem 3:  The necessary and sufficient conditions for the system to be locally 

asymptotically stable around the steady state (E* ) for all  > 0 are: 

(i) real part of all roots of ∆ (λ, 0) = 0 is negative 

(ii) for all real ω0 and  ≥ 0, ∆ (iω0, ) ≠ 0. 



Numerical Simulation   

Time course and effect of parameter variation in disease transmission 

Positive endemic equilibrium point (Sh*, Eh*, IhS*, IhA*; Sm*, Em*, Im*) = (0.265, 0.206, 0.476, 

0.052; 0.470, 0.265, 0.265) for constant age a = 2 year and m = 3.  
 

In this case the basic reproduction rate (R0) is 6.93.  
 

For a =20 years, the endemic equilibrium point is (0.198, 0.200, 0.178, 0.422; 0.665, 0.168, 

0.167) and the value of R0 is 3.37 which is also >1.   
 

Numerically simulation of the time course showed that these equilibrium points are always 

stable, satisfying our analytical result for R0 > 1.  



Simulation result of the model: variation of Susceptible (continuous), Exposed (dot-

dashed), Symptomatic (dotted) and Asymptomatic (dashed) compartments of human 

population over time, for (a) a =2 year and (b) a =20 year.  

 Symptomatic cases are higher among lower aged individuals whereas asymptomatic cases are 

higher in higher aged persons.  

 After few months from the 

onset of infection all the 

compartments in human host 

reach their equilibrium levels, 

and remain stable.  

 But the time taken to reach the 

equilibrium levels for 2 years 

aged individuals is much longer 

(about 8 months) compared to 

20 years aged people (about 5 

months).  

Age-prevalence pattern of human infection 

 Fig. (c) shows the age dependency of symptomatic infection 

of human host, which reaches a maximum level for 3 years 

aged children.  

 For higher aged people the prevalence is reduced and after a 

certain age (here a >20 years) it remains constant.  

  Acquired immunity of human, which grows with age and 

reaches to a saturation level after certain age  

 - Successfully describes the time course and age dependency 

of infection of malaria in human (Dietz et al. 1974, WHO). 



(a) Temporal dynamics of Susceptible (continuous), Exposed (dot-dashed) and Infected (dotted) compartments of 

mosquito population for  m=3. (b) Change of equilibrium level of Infected mosquito with delay and mortality rate (for α = 

244.55/year). (c) Change of equilibrium level of Infected mosquito population with biting rate and mortality rate (for  = 0.019 year) 

 Prevalence pattern of mosquito population at each compartment, (S, E, I) supports our 

analytical observations, the dynamics is asymptotically stable for R0 > 1.  

 With changes of mosquito mortality rate (µm) from 20/year to 100/year, the proportion of 

infected mosquito reduces rapidly.  

 Similar phenomenon is observed for the delay factor (), which is the time required for the 

parasite to develop in mosquito gut.  

 The  varies with temperature, as well as, the species of the parasite. Increase in delay 

period decreases the equilibrium population density of infected mosquitos.   

 As the biting rate (α) of mosquito increases from 100/year to 400/year the proportion of 

infected mosquito also increases.   

Mosquito dynamics 



Effect of delay on symptomatic disease cases in human population for age  

(a) 1 year and (b) 20 years. µm= 0.1/day.   

Effect on host dynamics due to variation of latent period & mortality of mosquito 

Sporogony period of parasite in mosquito gut depends on type of parasite species and with temperature. 

Generally this period varies from 5 to 15 days (Anderson and May 1991; Koella 1991), and considered 

as a delay factor () in the model.  

 As the delay period increases, time to 

reach the saturation levels also 

increases.  

 An increase in the delay-period induces 

a reduction in the level of saturation in 

symptomatic cases for lower aged 

individuals but shows opposite behavior 

for higher-aged people.  

 The prevalence level varies widely for different 

mosquito mortality rates - the increase in mosquito 

mortality reduces the symptomatic cases in human 

populations.  

 For very high mortality rate of mosquito (e.g. for 

µm= 0.3/day), the disease may even get eradicated 

from the population.   

(c) Effect of different mosquito mortality rates on human disease 

prevalence in 2 years aged individuals for τ  = 0.019 year. The inset 

shows magnification of the plot for the early time points as prevalence is 

very low for high mosquito mortality rate. 



Symptomatic disease prevalence in human population for different mosquito densities: for (a) 1 years (b) 3 years and (c) 

20 years aged population; (µm= 0.1/day,  =0.019 year). For lower age (say for 1 year) and for low mosquito density the 

prevalence is very low as shown in the inset of figure (a). 

 Equilibrium level of symptomatic disease prevalence for 1 year aged population increases as 

the mosquito density increases. Same behavior for age 3 years up to certain level of mosquito 

density - a reduction of equilibrium level when mosquito density ‘m ’ changes from 5 to 10.  

 For higher aged people (say, for 20 years), the equilibrium level of symptomatic infection 

reduces more for higher mosquito density -  due to the acquired immunity, which develops in 

adults with more infected mosquito bites. 

 After the onset of the disease, the prevalence grows rapidly and the rate of infection increases as 

mosquito density increases, irrespective of the age of the human.  

 Saturation level of infected human varies with mosquito density differently for different aged people.  

 For higher aged people saturation level reduces to a lower value for higher mosquito density.    

Effect on host dynamics due to change in mosquito density 



 Analytical and numerical study - it is clear that this transmission model can be used 

to observe the effect of different mosquito related factors in malaria prevalence.  

 Successfully describes the age prevalence pattern of malaria in humans.  

Summary 

Based on the outcomes of the model, suitable control strategies can be 

adopted for reducing malaria prevalence.  

Question: Does it support real life scenario? 

 Several predictions can be made from the model with respect to changes in 

different human and mosquito specific parameters in regulating the disease 

  Basic reproduction number decreases with increase in delay-period for young 

persons. e.g. for age 2 years, R0 = 11.13 in case of no delay and 3.42 when delay is 

0.04 year (15 days). R0 becomes < 1, if delay is more than 0.072 year (26 days).  

 Rate of mosquito mortality has a huge impact on disease transmission process. 

   Very high mortality rate of mosquito (e.g. for µm= 0.3/day), the disease may even 

get eradicated from the population - By different prevention method one can 

increase the mortality rate of mosquito through which the disease transmission can be 

controlled (Briet 2002; Killeen et al. 2011).  

 Changes in mosquito birth/death rates, density, biting rates, etc. can be achieved 

by killing mosquitoes through spraying insecticide, through genetically modified (GM) 

mosquitoes, which are resistant to parasites, or by using insecticide treated bed nets 

(ITN) or mosquito repellent.  



Testing the model with malaria prevalence data 

 Normally, the natural mortality rate and the latent period in mosquito are considered 

constant for a specific parasite and mosquito species, and for the particular malaria 

endemic area.  

 Variation in mosquito density with respect to human population is quite different 

during different seasons in the year - may underlie the seasonal pattern of malaria 

prevalence observed in reality.  

 To capture the actual seasonal pattern of malaria, there is a need to study variation of 

mosquito density (the mosquito density (m), which is considered as constant over 

time is not at all constant)  

 Malaria prevalence data from different regions in India and for different time periods is 

shown to generally follow a bimodal shape in a year (Dev et al. 2004, 2010; Malaria Site)  

    – WHY?  

This pattern takes such forms due to the effects of seasonal variation of mosquito 

density, which may be due to the rainfall pattern (specifically in tropical regions).  
 

The major reasons behind the time variation of mosquito density  
 

• Direct or indirect influence of environmental changes as, rainfall pattern 

directly affect the larval development of mosquito in stagnant water,  

• Relative humidity influence the life spans of mosquito (get shorten if humidity is 

below 50 percent or above 80 percent) etc.  

(Russell et al. 1963; Pampana 1969; Sharma and Bos 2003; Bhattacharjee et al. 2006). 



Malaria cases in West Garo Hill district, Meghalaya, India 

 Anopheles minimus is the predominant species of mosquito 

for spreading malaria.  

 P. falciparum and P. vivax cause malaria,  but P. falciparum 

is the dominant (>82%) species and solely responsible 

for each malaria-attributable death case.  

 Entomological parameters: Mosquito biting rate (α, varies 

from 2 to 4/person/night); infection status of collected 

mosquitoes (Im is 2.27%) by detection of sporozoites in their 

salivary glands, etc..  - Dev et al. 2010 

Observed diseased cases and rainfall 

pattern (in mm) for the year 2006.  

o Malaria transmission was perennial and persistent, with 

seasonal peak during May-July -months of high rainfall. 

o Second peak appears in the month of September. 

o Disease prevalence shows two peaks in July and October . 

Variations in mosquito density, m, a time dependent periodic 

function is proposed : 

t : time of the year, θ1 = 0.1, and θ2 = 0.175 effectively determine the peak 

position of mosquito density in that year - estimated from the prevalence pattern. 

Model result and observed data 

Excellent goodness of fit.  

Establishes the capability of our model to explain the realistic 

disease prevalence pattern with minimal changes. 

S.Mandal, S.Sinha, RR. Sarkar* (2013): Bull. of Math.Biology 75: 2499-2528 



Proportion of observed (dotted line) and simulated (solid line) malaria cases for One 

year in different regions – Short Time Series 
Error bas represent the standard deviation of ten model simulations. Bar plots in first three figures represent the rainfall (in 

mm) of the respective year but for Mpumalanga (figure D) bar plot represents the average rainfall pattern. 

Kamrup (1988) Chennai (2002) 

Mangalore (2005) Mpumalanga (2001), South Africa 
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Model simulation and prediction of malaria in Mangalore and Mpumalanga – Long time 

Series 

In each figure error bars represent the standard deviation of ten model simulations  

Mangalore (2003-2006) 

Prediction : Mangalore (2007) 

Mpumalanga (200-2003), South Africa 

Prediction: Mpumalanga (2004) 
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 Statistical & Mathematical Modelling of malaria transmission across a range 

of environmental conditions, including climate change, is an important and 

emerging research area. 

 Models that incorporate the essentials of host-vector interaction, proper clinical 

population subdivisions for disease transmission, analyse the effect of 

seasonal forcing, rainfall, correlation between different variables and 

parameter changes, and also describe real data sets, promise to be useful for 

real world implications, and may help us to understand hitherto unknown 

scenario. 

 A new model of malaria transmission is proposed considering realistic 

immunity factors of hosts (clinical and parasite) and mosquito dynamics 

under environmental variations.  

 Model is formulated dividing human population into different easily 

detectable epidemiological compartments and considering age-dependent 

immunity of human host. 

 From the analytical and numerical results, we observe that several mosquito related 

parameters like mosquito birth/death rate, mosquito density, delay period of 

parasite development in mosquito gut etc. are involved in the expression of 

endemic equilibrium point of model - these parameters can also be used for 

controlling the endemic level of the disease. 

Conclusion 
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Introduction of the effect of seasonal changes on mosquito population 

(mosquito density) -  capability of predicting malaria prevalence in a real 

situation (data) 

By estimating the appropriate function for time variation of mosquito density, the 

deterministic model proposed can successfully predict the prevalence pattern of 

any region.  

Confers the model with wide applicability to different epidemiological 

situations -- an important approach in epidemiological modeling studies  

Serve two purposes: 

The general model can give important insights about real processes that 

contribute to disease transmission (parameter dependencies and age prevalence), 

and predict possible ways to control the outbreak of malaria;  

and  

Depending on the requirements one can use this model for specific purposes 

to model real disease prevalence data successfully 



Thank you!  

Mosquitoes don’t follow models 
 but Human intervention 
is needed for control………… 
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