Individual and population approaches to cell
surface receptor motion

D\a‘niel Co_ombs
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Natural Context: Immune cell patrol

Top view

» Molecular signatures of infection are .
presented on the surface of dendritic

cells. i j
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Visualizing receptor mobility

Single B cell receptors (BCR) ;
labelled on
B cells stimulated with LPS
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Biological questions:

DB cell receptor (BCR) mobility dramatically decreases after BCR
signaling (the BCR “controls its own mobility”)

» BCR mobility control is dependent on Syk kinase

» What happens in LPS-activated cells when we inhibit Syk?
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Visualizing receptor mobility

BCR labelled on
B cells stimulated with LPS

with Syk inhibitor
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4 Biological questions:

> Bcell receptor (BCR) mobility dramatically decreases after
BCR signaling (the BCR “controls its own mobility”)

» BCR mobility control is dependent on Syk kinase

>  What happens in LPS-activated cells when we inhibit Syk?
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Puri and Gold, 2012



Receptor mobility is tightly integrated
with detection, signaling and response
of (immune) cells




Making experiments quantitative:
measuring and classifying cell
receptor motion

» Three examples from work at UBC:

. Improving protocols for Fluorescence



Fluorescence Recovery after
Photobleaching (FRAP)
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Membrane protein FRAP
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Qualitative version: assess recovery rate and
immobile fraction

M (1 — e_t/'r)

Intensity

T is context-dependent

:Ilmmobile Fraction

mobile Fraction




"Quantitative” FRAP analysis:

4 Effectively averaging over many thousands of
molecules : central limit theorem : diffusion

approximation
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» Choice of geometry: simplicity vs accuracy
» infinite plane, ID vs 2D
» spherical geometry



Typlcal geometrles flat ceIIs

pbstbleach (t-O)

P One-dimensional empirical
approximation in common use
(approximates |-D Fourier
series well).

monitoring

region - P Is that a good idea!?




lypical geometries: round

Bleached area ¢ IR bleached region

l': monitori

» Small, round cells:
» a vertical section is bleached

» Can we use the |ID formula?



Potential sources of error in fit for
D and M:

|. Using ID or 2D approximation instead of solution to
diffusion problem on sphere (or relevant geometry)

2. Time to bleach should be short compared to
characteristic recovery time - violated for large regions




D Diffusion on sphere solution using special functions
converges slowly and is slow to compute.

» Finite difference solution too slow for fitting

P 2D infinite plane solution (Fourier Transform):
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Theoretical testing for small cells:

» Fix parameters D and M
» Compare output of 1-D and 2-D models with full

numerics (round cell spherical geometry)
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Theoretical testing for small cells:

P Simulate FRAP on a sphere using a high-
resolution finite difference scheme

D Fit approximate models (1-D and 2-D)

4 Compare fit parameters to actuals




Testing noise effect:

Simulate FRAP (small bleach region)
P Add 15% Gaussian noise

> Fit approximate models (1-D and 2-D)

4 Compare fit parameters to actuals

» 1-D model is highly
sensitive to noise

Recommendations:
» Keep bleach spot small

» Maintain SNR<I15%
I-ogw(D) (um? /s) >Flt beSt geometry mOdeI




Application: Signaling control of T cell receptor mobility

Bleached area
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cytos keleton interaction can be
quantified by careful fitting
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Signaling control of T Cell Receptor mobility
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* TCR mobility is reduced by
synapse formation and signaling

* Sustained calcium signaling
following TCR binding may be the
signal for global, actin-dependent
TCR mobility reduction.



Subsequent and ongoing work:

4 Making confocal FRAP a quantitative tool.....

P Can FRAP measure kinetics for particles that bind and slow
down, then unbind and speed up!?

» Fluorescent tags are photo-unstable and there is a background
bleaching effect.

4 Typically handled by fitting exponential decay parameter.

4 Optimize just a few FRAP acquisition times to estimate
parameters!?



Making experiments quantitative: measuring
and classifying cell receptor motion

» Three examples from work at UBC:
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Recovery of adhesion receptors at muscle-
tendon junction in fruit fly embryos




Muscle-tendon junction in drosophila

Adhesion
molecules

(B -integrins)

Extracellular
matrix

» Breakdance (BRK) temperature-sensitive mutant
» high force on junctions at 37C

» Para temperature-sensitive mutant
»low force on junctions at 37C

» Concurrent integrin mutants



This data had a
clear message
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This data was
problematic...
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integrins

‘ » Biological hypothesis about
SLASMA £ 000000000000000 ( D00000900000000000( | receptor recycling

MEMBRANE

»simple mathematical model

VESICLE 4 ﬁt for kendo and kexo
dP
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» Biological hypothesis about receptor recycling

» Simple mathematical model fit for kendo and kexo

» New hypotheses:
» detailed description of endo/exo rates for integrin
mutants under high/low force conditions
» propose integrin residues that control endo/exo

» Ongoing work: FRAP studies of intracellular integrin
binding partners to elucidate these ideas.



Making experiments quantitative:
measuring and classifying cell receptor
motion

» Three examples from work at UBC:
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Single-Particle Tracking

® Directly observe mobility of individual tagged
biomolecules with high resolution.




Single particle tracking (SPT)

® Step I: Identify “particles”.

® Step 2: Connect particles from frame to frame.



What can we say about the motion!?

Some are fast
And some are slow
Some are high
And some are low

)',.‘ .

Not one of them is like another. 57 two fish
Don’ t ask us‘why. W * red fish

Go ask your mother. ] bluefish




P Goal: given well-defined models for particle behaviour,
compute the relative likelihood of each model and
correlate with biological control variables

4 |deally, combine motion model with tracking algorithm



Mean-square-displacement (MSD) analysis

> Plot the average square
displacement against time
(sliding window)

P Linear is indicative of Brownian
diffusion
P sublinear: confined
4 superlinear: directed

WEL (e

Pure diffusion in maximum likelihood framework:




» Fora single track, MSD analysis does not give good
confidence.

4 average over all your data

P But what if particle behaviour changes within one track!?
) very interesting insight into particle behaviour
P can we probe protein interactions using SPT?



SPT study of LFA-1 on T cells

Chris Cairo,

e Dodo Das

//
actin  —
cytoskeleton

LFA-1
T binding partner

cytoD
* Conformational changes modulate interaction with the

actin cytoskeleton

* Controls T lymphocyte adhesion and migration



SPT study of LFA-1 on T cells
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» this analysis captures an equilibrium distribution
» do particles undergo transitions from fast to slow?



Dynamic two-state analysis
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» Suppose: LFA-1 binds and unbinds from the cytoskeleton,

» Forms a Hidden Markov model

» require transition rates slower than imaging frame-rate
»but fast enough to find transitions in dataset.



We evaluate the likelihood of observing O = 01,0,,...,0),

L(O{D1,Dy,pa1,p12}) = D gybg, (01) X Pgygbg, (02) X ...
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[simulated data]

Dmacro distribution versus 2-state HMM parameter estimates
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» Precise estimates of the diffusion coefficients (D, , D, )

» Generally worse estimates of transition probabilities (p,, , p,,)

» If D,~ D,, cleanly reduces to |-state model with undetermined transition probs.
P Statistical test correctly selects |-state vs 2-state model.



Cytoskeleton and cell activation alter LFA-1 mobility

P12
D, 2D,

P2

» Labeled with ICAM-1 on |-
0.081 0.015 0.062 micron beads

» Cyto-D inhibits cytoskeleton
0.088 0.019 25 3.9 0.076 » PMA “activates’ cells

» Diffusivities in micron?/s

» Transition rates in Hertz

I 0.057 0.008 23 34 0.035




Detecting spatial variability

» Break tracks into fast/slow segments
» Find possible transient confinement zones

B state 1 - fast
I state 2 - slow
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SPT Two-State Analysis

» Likelihood-based method to detect transient changes in mobility within
single trajectories.

» suggesting and quantifying biological models

» Parameter measurement: interactions of LFA-1 with actin cytoskeleton

» Segmentation of tracks into component states - inference of spatial
heterogeneity.




Challenges for SPT analysts:

4 Optimizing and automating particle detection and tracking

4 Designing algorithms to infer defined physical models of
motion

» free diffusion
»  multistate diffusion
» confined motion (de Vries)




Summary

P Modern microscopic imaging opens a
window on the protein-level functioning of
healthy and diseased cells.

4 Modeling and parameter estlmatlon essential
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