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Coombs “lab” at UBC 
•  Immune (B and T) cell signaling 

–  Surface receptor motion (afternoon talk) 
–  Spatial localization of receptors and signaling proteins 
–  Parameter measurement and model building 
 

•  Virus dynamics, epidemiology and viral evolution 
–  HIV modeling: evolution and transmission  
–  Multiscale modeling of within- and between- host systems 

•  We collaborate with experimentalists at UBC and elsewhere and 
also do our own fluorescence microscopy on B cells. 
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Topics for today 

1.   Background on HIV epidemiology and biology 

2.  Within-host mathematical models of HIV infection 

3.  Introduction to branching process models 

4.  Case studies: early and treated infection 



HIV as a global epidemic 



HIV as a global epidemic 

Canada: ~70,000 HIV+ (2009)
   ~2,500 diagnoses/yr

BC: ~400 diagnoses/yr

Vancouver+: ~250 diagnoses/yr
[~50% MSM, ~25% IDU, ~25% HET]

Vancouver: ~6000 living with HIV (1.2%)

Someone is infected in Canada every 3 hours 



HIV as a global epidemic 

India: 
~2 million HIV+ 
Maharashtra ~0.5% 

Image: WHO 



History of HIV/AIDS 

•  Phylogenetics indicate simian-human transfer around 1900s 

•  First retroactively confirmed case – 1959 

•  Awareness of AIDS (hemophiliacs, MSM) in the USA – 1980 

•  Virus isolated and named – 1983 

•  Fear 

•  First treatment approved – 1987 



Within-host HIV 

•  Transmission via sex or 
blood contact 

•  Virus infects CD4+ immune 
cells 
•  Helper T cells 
•  Macrophages 

•  Systemic infection (virus 
detectable in blood) in 10 
days 



Within-host HIV 

•  Systemic 
infection (virus 
detectable in 
blood) in 10 
days 

•  Peak viremia 
21-28 days 

•  Decline in virus, 
“set point” 

•  Progression to 
AIDS ~10yr 



ART (anti-retroviral therapy) 

•  Successful ART since mid-1990s 
•  Reduces virus in blood to undetectable levels 
•  Not curative 
•  Immune system rebounds, mortality reduced 

•  Side-effects 
•  Cost 



Trends in Annual Rates of Death due to the 9 Leading 
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HIV Lifecycle and Drug actions 



Treatment reduces transmissibility 

Julio Montaner, 
BC Centre for Excellence in HIV/AIDS 

 
•  2008 Swiss statement 



Post-exposure and Pre-
Exposure Prophylaxis 

(PEP and PrEP) 

•  Prospective treatment BEFORE detectable infection 

•  PEP – prescribed for healthcare workers since 1990s 
•  now also prescribed for non-occupational exposure 

•  PrEP – a daily pill to prevent infection 
•  44% protection in MSM study (92% for those who 

provably took the pills) 
•  Similar results for heterosexuals, IDUs 
•  Long-term effects on epidemic unknown 



World AIDS day 2014:  Only 3 in 10 people in 
the USA with HIV have virus in check (CDC) 

(13% of 18-24yo) 



PNAS, Dec 1 2014 



Summary: 

•  HIV infects and depletes CD4+ T cells; development to 
AIDS ~10yr 

•  One person has been cured, ever (same as Rabies) 

•  Continuing transmission worldwide 

•  Modern treatment options (ART) 
•  Restore normal life expectancy 
•  Reduce new infections 
•  Not curative 

•  Vaccine development slow 
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Topics for today 

1.  Background on HIV epidemiology and biology 

2.   Within-host mathematical models of HIV infection 

3.  Introduction to branching process models 

4.  Case studies: early and treated infection 



“Standard” ODE model of HIV infection 

€ 

dT
dt

= λ − kVT − dT

dT *
dt

= kVT −µT *

dV
dt

= pT *−cV

T(t) = # of uninfected T cells 
T*(t) = # of infected T cells  
V(t) = # of free virus 
λ  = target cell production rate 
d = background T cell death rate  
µ = infected cell death rate 
k = mass-action infectivity 
c = clearance rate of virions  
p = production rate of virions 



“Standard” ODE model of HIV infection 

€ 

dT
dt

= λ − kVT − dT

dT *
dt

= kVT −µT *

dV
dt

= pT *−cV

•  Successful deterministic models of untreated infection  
•  Biological parameters can be fit 
•  Hypotheses can be made interpreting the parameters 
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Linear Analysis of the Standard Model 
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The uninfected and infected steady states exchange 
local stability when the basic reproductive number R0 
crosses one.  
 
 
 
We can also (using Lyapunov functions) show that this 
condition controls global stability. 

R0 =
�pk

dµc

�pk

dµc
> 1
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•  Infected st.st. can be a spiral 
point or a stable node, 
depending on parameters 



Nature, 1995 



Patients treated with experimental HIV protease inhibitor  
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dT
dt

= λ − kVT − dT

dT *
dt

= kVT −µT *

dV
dt

= pT *−cV

•  Assume st.st. pre-treatment and that 
T* turnover is slower than V 
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= kVT −µT *

dV
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= pT *−cV

•  Assume st.st. pre-treatment and that 
T* turnover is slower than V 



•  If drug is perfect then p=0 and the 
slope of the log data is c 

•  Imperfect drug: c > slope 

•  Model+data tells us that viral half-
life in-vivo is short. 

•  Virus must turn over rapidly 
•  Lots of production and clearance 
•  Many mutants, immune escape 
•  This was a big change in 1995! 



Science, 1996 



•  Data taken every day! 

•  This drug makes all new 
viruses non-infectious, but 
still detected in assay. 

•  Pre-treatment: assume V, 
T and T* at steady state. 

•  Post-treatment: 



Eigenvalues –c, -c and –µ  



Eigenvalues –c, -c and –µ  

Fit c, µ, V(0) to data  



•  Proved that massive ongoing cycle of replication and clearance of HIV 
accounts for loss of CD4 T cells 

•  Showed that 
•  Any effective antiviral should work within a few days 
•  HIV generates escape mutants very fast (mutates every base daily 

or thereabouts) 

•  “The failure of the current generation of  antiviral agents, when used as 
monotherapy, is the inievitable consequence of the dynamics of HIV 
replication. Effective treatment must instead force the virus to mutate 
simultaneously at multiple positions by means of a combination of 
multiple, potent antiretroviral agents.” 

1996 
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Summary 

€ 

dT
dt

= λ − kVT − dT

dT *
dt

= kVT −µT *

dV
dt

= pT *−cV

•  The standard model has been used in hundreds 
(thousands?) of disease studies. 

•  Hepatitis C, influenza, measles, … 
•  Major success of mathematical biology  
•  Extended to include different target cells, 

multiple strains, changes over time,… 

Main Criticism: 
The infection is controlled only by loss of target cells – no immune system 
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Topics for today 

1.  Background on HIV epidemiology and biology 

2.  Within-host mathematical models of HIV infection 

3.   Introduction to branching process models 

4.  Case studies: early and treated infection 



Why use a stochastic model? 

•  Differential equation models describe the averaged 
behaviour of the system : 
–  Apply to many players (cells, viruses in a human) 
–  Apply to frequent events among the players 

 
•  Stochastic effects are very important when 

numbers are small. 
–  Apply when there are few players 
–  Apply when rare events are important 

•  Me and the casino 
•  Panda reproduction 



Stochastic events in HIV infection 
INITIAL INFECTION: 
•  Even riskiest sex or blood contact infects <2% of the time 

–  Blood transfusion ~80% 
•  Most developed infections show a single founder strain 

–  Suggests that the events of infection are intrinsically random 
 
TREATED INFECTION: 
•  On successful treatment, viral load is very low (5-50 copies/ml of 

blood) 
•  Viral blips are observed:  

–  infrequent episodes of detectable but low viral load 



Understanding a simpler birth-death process 

•  A population N(t) of cells that divide at rate b and die at 
rate d:  

•  ODE: 

•  Soln:  

•  Population becomes infinite if b > d  
•  Population goes extinct (in infinite time) if b < d  
•  How do we say “98% chance of extinction”? 

b 

d 
cell 



Probabilistic interpretation 

•  Interpret d and b as the rates at which events happen 

•  We say that birth and death events are “exponentially distributed” or “are 
drawn from a Poisson process” 

•  Birth and death events are independent 

 

 

b 

d 

   
d d d d 

b b b 

 0  1 2 3 4 



Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 10 simulations 
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Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 100 simulations 
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Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 100 simulations 
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ZOOM IN! 



Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 100 simulations 
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ZOOM IN! Extinct at t=100: 62 
Alive at t=100: 38 



Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 1000 simulations 

Extinct at t=100: 694 
Alive at t=100: 306 



Simulations of the birth-death process 

Set birth rate b=3/day; death rate d=2/day; make 10000 simulations 

Extinct at t=100: 694 
Alive at t=100: 306 

10000 simulations: 
Extinct at t=100: 6677 
Alive at t=100: 3323 



Probabilistic interpretation 

•  Interpret d and b as the rates at which events happen 

 
•  Define 
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How do the probabilities change in time? 

   
d(n+1)Δt dnΔt 

bnΔt b(n-1)Δt 

n-1 n n+1 

t = 0 t  = t  t = t+Δt 



How do the probabilities change in time? 

   
d(n+1)Δt dnΔt 

bnΔt b(n-1)Δt 

n-1 n n+1 

Take the limit: infinite system of differential equations 

t = 0 t  = t  t = t+Δt 



How do the probabilities change in time? 

   
d(n+1)Δt dnΔt 

bnΔt b(n-1)Δt 

n-1 n n+1 

This is called the Forward Kolmogorov (Master) equation 

t = 0 t  = t  t = t+Δt 



What we will do now is convert the 
infinite system of ODEs to a single 
PDE. 
 
First we need one useful tool: the 
probability generating function 



The Generating Function 

•  A very useful tool (think of it like a transform) 

•  A polynomial with the probabilities as coefficients 



The Generating Function 

•  A very useful tool (think of it like a transform) 

•  A polynomial with the probabilities as coefficients 



The Generating Function 

•  A very useful tool (think of it like a transform) 

•  A polynomial with the probabilities as coefficients 

•  So if we can calculate G we know a lot! 







This is a 1st-order linear PDE for G. 
We can solve via the method of characteristics (homework)! 



The backward formulation: 

   
d(n+1)Δt dnΔt 

bnΔt b(n-1)Δt 

n-1 n n+1 

t = 0 t  = Δt  t = t+Δt 

Again, infinite system of ODEs! How about the generating function? 



This is very different – an infinite system of ODE again! 
However, it allows for an elegant solution…. 



•  If we can assume that lineages are identical and 
independent, then we get a big simplification: 



•  If we can assume that lineages are identical and 
independent, then we get a big simplification: 

•  The Li are the individual lineages. There are n0 of them! 
 



•  If we can assume that lineages are identical and 
independent, then we get a big simplification: 

•  This step is valid because all the lineages are 
independent 



•  If we can assume that lineages are identical and 
independent, then we get a big simplification: 

•  This step requires all the lineages are identical 

•  G(n0,t,z) = (G(1,t,z))n0 



•  If we can assume that lineages are identical and 
independent, then we get a big simplification: 

•  Also I can do the chain rule: 





•  the backward equation for the generating function with 
n0=1: 

 
•  It’s a Riccati equation  (look it up!) with solution: 

This is the same solution you would get from method of 
characteristics for the forward (PDE)! 



Interpreting the generating function solution 

•  If b>d then σè∞ so pext = G(1,t,0) = (d/b) 

•  If b>d then σè0 so pext = G(1,t,0) = 1 

•  Notice that pext is a fixed point of the system governing G  

•  We can also find all probabilities by differentiating G(z). 



Simulations of the birth-death process 

Set birth rate b=3; death rate d=2; make 1000 simulations 

Extinct at t=100: 694 
Alive at t=100: 306 

10000 simulations: 
Extinct at t=100: 6677 
Alive at t=100: 3323 



Interpreting the generating function solution 

•  Mean: 



Interpreting the generating function solution 

•  Variance: 



What we do not know: 

•  Suppose we know the whole generating function. 
•  We know the probability of having N cells at time t 
 
•  However, we do not know anything about the paths. One 

way to get at this is to use simulation…. 
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How to simulate (Gillespie’s algorithm) 

(For the birth-death process with rates b and d) 
 

 Initialize t=0, N=N0, i=1. 
 

1.  Calculate the next event time ti 
2.  Choose which event (birth or death) happens at ti 
3.  Update: 

   i++, t=ti and either N++ or N--.   
4.  Go to step 1 (or stop if N=0) 



How to simulate (Gillespie’s algorithm) 

(For the birth-death process with rates b and d) 
 

 Initialize t=0, N=N0, i=1. 
 

1.  Calculate the next event time ti 
2.  Choose which event (birth or death) happens at ti 
3.  Update: 

   i++, t=ti and either N++ or N--.   
4.  Go to step 1 (or stop if N=0) 

Next event time: distribution of simultaneous exponential 
processes is exponential 



How to simulate (Gillespie’s algorithm) 

(For the birth-death process with rates b and d) 
 

 Initialize t=0, N=N0, i=1. 
 

1.  Calculate the next event time ti 
2.  Choose which event (birth or death) happens at ti 
3.  Update: 

   i++, t=ti and either N++ or N--.   
4.  Go to step 1 (or stop if N=0) 

Which event? Choose according to the event rates (propensities)! 
Pick a random number x uniformly on [0,1]  and choose: 
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Very efficient algorithm for simulation  
  (two random numbers per step) 

Easily expandable to more complicated cases 
 
But not an efficient way to sample rare events.  



Whew….! 
 
So far: 

 Birth-death process 
 Forward equation 
 Backward equation 
 Generating function 
 1st-order linear PDE (forward generating) 
 nonlinear ODE (backward generating) 
 Gillespie simulations 

 
The goal: multitype processes – inspired by HIV infection 
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HIV infection 
•  HIV virions infect target cells (primarily immune cells) 

•  infected cells produce more virions and die 
•  infection leads to loss of  immune function (AIDS) 

 



Therapy is effective 
�  Anti-retroviral therapy (ART) is extremely effective 

�  Reduces patient viral load to “undetectable” 
�  Allows rebound of  immune system 
�  Reduces onward transmission 
�  Early treatment decreases mortality and morbidity 

�  Prophylactic use (pre- and post- exposure) 

�  Long-term continuous use  
�  Side-effects can be serious 
�  Drug resistance and transmission of  drug resistance 
�  Cost (~$500/yr in 3rd world) 



What’s in this part: 
�  Two projects on treated infection 

1.  Viral load dynamics during long-term therapy 

2.  Early infection and risk reduction for prophylaxis 

� What are the problems? 
� Experiments are difficult during treatment 
�  Building the right models without knowledge 

� Parameterizing the models (I will not discuss this) 
�  Finding the right level of  speculation 



ART is not curative 
�  Viral load is very low (5-50 copies/ml of  blood) 

�  Virus remains, resurgent on drug failure 

�  Viral blips are observed:  
�  infrequent episodes of  detectable viral load 
�  but large-amplitude blips are associated with drug failure 

 

�  We need new models of  treated patients 
�  older deterministic models do not capture blips well 

 



What causes 
viral blips? 

�  Treatment non-adherence?  Marginal. 

�  Secondary infection?   Not always. 

�  Assay variation?    Sometimes. 

�  In any case, why is virus still present at all? 
� Where does the virus hide during ART? 

�   Virus that emerges during treatment interruption is 
very similar to pre-treatment.  
�  implies minimal ongoing viral replication. 

�   Treatment intensification does not further reduce 
viral load. 



Latently infected immune 
cell reservoir 

�  Size of  reservoir: ~1/106 cells 

� Mainly memory T cells but also others 

�  Seeded during pre-treatment period 

� Mean half-life t1/2= 44 months 
�  so >70 years to eradicate. (Siliciano 2005) 

 
� Hypothesis: viral blips are due to activation of 

latently infected cells. 



Latent cell reactivation model 

If  ε=1 (drugs are perfect): 

If  ε<1 (drugs are imperfect) then 
occasional rounds of  replication occur  



Latent cell reactivation model 

Eigenvalues of  linear system: δ = 0.1/day 
       c = 23/day 
       ρ - a - δL = 5 x 10-4 /day 

•  SLOW decay dominated by ρ - a - δL 



Master equation model 



So we can simulate: 
Gillespie algorithm simulations: 



However, the problem is: 
Blips are rare events. 

Time-consuming to study via direct simulation. 



Master equation model 

where  



Backwards Kolmogorov ODE 

Defining 

 

We can derive the backward Kolmogorov eqns: 
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Complex variables 

d

n

f(x)

dx

n

����
x=a

=
n!

2⇡i

I

C

f(z)

(z � a)n+1
dz

From definition of  generating function,  

Now apply Cauchy Integral Formula: 

Obtain stable algorithm for calculating probability distributions: 

P (V = v; t) =
1

v!

@vG
l̃,ñ,ṽ

@zv

����
x=y=1,z=0

P (V = v; t) =
1

2⇡i

Z 2⇡

0
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Transient viral extinction can occur: 

Latent cell times to extinction 
•  Previous estimate ~70yrs 

•  We allow for latent cell division - 
this reduces the mean time to 
extinction after fitting parameters 

•  clinical message remains 
depressing….. 



Viral blip probability (V>50) 



Blip durations 
The generating function approach does not yield dynamic information. 
So we resort back to Gillespie simulations of  the dynamics. 

•  repeat positive measurements within 
8-10 days could be due to rare 
fluctuations rather than drug resistance or 
pathology. 



Summary of  Latent Cell 
Model: 

•  Stochastic models are essential to study stochastic 
events in HIV. 

•  Robust numerical methods to find pgf; simulate 
dynamics. 

•  Refined view of  latent cell extinction in the presence of  
cell replication. 

•  It is possible that small blips are driven by stochastic 
reactivation of  latently infected cells. 

•  large blips must arise from other processes 
 



�  Two projects on treated infection 
1.  Viral load dynamics during long-term therapy 

2.  Early infection and risk reduction for prophylaxis 
 



Early events in HIV infection 
�  Per-act infection risks are very low  

�  [0.05% –  2%] 

�  Phylogenetic analyses support a strong evolutionary 
bottleneck at the time of  infection  

�  single founder strain hypothesis 

�  Vaccine trials have had limited success 
�  Why? 

�  Early infection is hard to study 
�  in animals and in humans 

�  Models of  early infection will be useful 
�  e.g. Pearson 2010, Yates 2011, others 



Post-exposure prophylaxis 
(PEP) 

�  Success in occupational exposure for 20 years 
�  Guidelines: high dose of  combination ART within 72 

hours of  exposure, continuing for 28 days 

�  Reduces incidence ~80% after needlestick 

�  Guidelines based on 1990s animal studies with AZT 

� Non-occupational PEP trials inconclusive 
�  Low adherence / completion rates 

 



Pre-exposure prophylaxis 
(PrEP) 

�  e.g: iPReX study (2007 – ) 
�  2,499 sexually active men who have sex with men 

�  11 sites in nine cities  
�  Brazil, Ecuador, Peru, South Africa, Thailand, USA 

�  daily tablet containing two antiretroviral drugs 

�  double-blind, randomized placebo study 

�  with drugs, ~44% fewer HIV infections than with 
placebo. ~90% protection in men whose blood 
samples contained blood 

�  no drug resistance noted 



Basic model of  early infection 

•  Target cells in excess. 

•  include delay between 
infection and production 
(eclipse phase) 
 
•  uninfectious viruses (W) 



dPn,m,v,w

dt
= [s(n+ 1)]Pn+1,m�1,v,w + [�(m+ 1)]Pn,m+1,v,w

+ [(1� (1� "PI)Q)pm]Pn,m,v,w�1 + [(1� "PI)Qpm]Pn,m,v�1,w

+ [c(w + 1)]Pn,m,v,w+1 + [c(v + 1)]Pn,m,v+1,w

+ [(1� "RT )kTu(v + 1)]Pn�1,m,v+1,w

� [sn+ �m+ (1� (1� "PI)Q)pm+ (1� "PI)Qpm

+cw + cv + (1� "RT )kTuv]Pn,m,v,w

Master equation formulation 
T ⇤1

s�! T ⇤2

T ⇤2
��! ;

T ⇤2
(1�✏RT)kTu��������! T ⇤1

. . .



Generating functions, etc 

+ 

Gñ,m̃,ṽ,w̃(x, y, z, r; t) =
1X

n=0

1X

m=0

1X

v=0

1X

w=0

Pñ,m̃,ṽ,w̃;n,m,v,wx

n
y

m
z

v
r

w

= 

dPñ,m̃,ṽ,w̃

dt
= sñPñ�1,m̃+1,ṽ,w̃ + �m̃Pñ,m̃�1,ṽ,w̃ + (1� (1� "PI)Q)pm̃Pñ,m̃,ṽ,w̃+1 + (1� "PI)Qpm̃Pñ,m̃,ṽ+1,w̃

+cw̃Pñ,m̃,ṽ,w̃�1 + cṽPñ,m̃,ṽ�1,w̃ + (1� "RT )kTuṽPñ+1,m̃,ṽ�1,w̃

� (sñ + �m̃ + (1� (1� "PI)Q)pm̃ + (1� "PI)Qpm̃ + cw̃ + cṽ + (1� "RT )kTuṽ) Pñ,m̃,ṽ,w̃

@Gñ,m̃,ṽ,w̃

@t

= sñGñ�1,m̃+1,ṽ,w̃ + �m̃Gñ,m̃�1,ṽ,w̃ + (1� (1� "PI)Q)pm̃Gñ,m̃,ṽ,w̃+1 + (1� "PI)Qpm̃Gñ,m̃,ṽ+1,w̃

+cw̃Gñ,m̃,ṽ,w̃�1 + cṽGñ,m̃,ṽ�1,w̃ + (1� "RT )kTuṽGñ+1,m̃,ṽ�1,w̃

� (sñ + �m̃ + (1� (1� "PI)Q)pm̃ + (1� "PI)Qpm̃ + cw̃ + cṽ + (1� "RT )kTuṽ) Gñ,m̃,ṽ,w̃

Gñ,m̃,ṽ,w̃(x, y, z, r; 0) = x

ñ
y

m̃
z

ṽ
r

w̃

(This is the Backward Chapman-Kolmogorov system of  equations) 



Extinction probabilities 
�  We're particularly interested in the probability that 

the infection goes extinct (patient is “cured”): 

 

 

�  This limit is a fixed point of  the ODE system.  
�  Can find this using algebra! 

q = lim
t!1

Pñ,m̃,ṽ,w̃;0,0,0,0(t)

q =
✓

�(c + (1� "RT )kTu)
pQ(1� "PI)kTu(1� "RT )

◆ñ+m̃ ✓
�(c + (1� "RT )kTu) + Qpc(1� "PI)

pQ(1� "PI)(c + (1� "RT )kTu)

◆ṽ

where ñ, m̃, ṽ are initial conditions.



Risk reduction for PrEP 
�  RTIs only (consistent with clinical trials). 

•  Higher risk reductions for 
higher inoculum sizes.  

•  High inoculum size 
forces a lower cell 
infection rate kT in order 
to get the same 0.3% 
risk without treatment  
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•  Predict excellent risk reductions for high RTI efficacy 
•  NB recent reports of low drug concentrations in tissue 



Risk reduction for PrEP 
�  Comparison of  RTI and PI drugs (monotherapy) 
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•  PIs work only once cells are infected 
•  Hence, PIs are less effective as PrEP monotherapy 
•  Combination approach even more effective  

•  (needed if  drugs are weak at infection site?) 



Viral population dynamics with PEP 
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RTI monotherapy starting at 12h post-exposure; efficacy = 0.9 (AZT) 
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Early initiation of  PEP is essential 

�  Start within 24h for 
50% risk reduction 

�  Clinical guideline: 
start no later than 
72h 

�  PI and RTI 
essentially equivalent 
for single-drug PEP 
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Duration of  PEP less important  
�  2 weeks ~ 4 weeks 

�  RTI better for 1 week single-drug 
PEP 

�  1990s animal studies:  
�  4-week PEP after 24h is effective  

�  10-day PEP is 50% effective 

�  3-day PEP is ineffective 

�  NB big inoculum size 0 1 2 3 4 5
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Drug efficacy=0.9 

•  Clinical guidelines call for multi-drug approach.  We agree. 
 
 2 weeks of  RTI+PI therapy started at 48h 

4 weeks of  RTI monotherapy started at 24h 
= 



Two-compartment model of  early infection 

�  Travel time for DC to lymph 2 days 

�  Lifetime of  DC in lymph 7 days  

�  DC infectibility and burst size smaller than T cell equivalents 

�  Other parameters are equal in both compartments 

�  Analysis is longer but same idea as basic model 
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Summary: 
•  Stochastic methods essential to study stochastic events 

 
•  One- and two- compartment models predict: 

•  small inoculum of  10 – 1000 virions 
•  consistent with few founder strains (1 or 2) 
 

•  PrEP predicted to be effective 
•  combination therapy needed if  drug efficacies are low 

•  PEP should be started within 24 – 36 hours of  exposure 
•  pointless after 100 hours of  exposure 
•  2 weeks may be as good as 4 weeks 

•  Need better parameter estimates and mechanistic insight 



Future directions: 
•  Latent cell reservoir in long-term therapy 

•  Characterize and destroy long-lived cells? 
•  Collaboration on SIV infection in macaques 

•  PrEP and PEP in the clinic? 
•  Potential for drug-resistance 
•  Variable drug efficacy and improved models 

•  link to population models; need practical expertise 

•  Modeling early infection without treatment 
•  Sparse experimental data 
•  Clues:   PEP, PrEP findings 

  HIV-test manufacturer data 
  Early – disease studies 

•  Modeling HIV vaccine 



Functional cure for SIV? 
�  Two macaques with SIV who were treated with 

strong, latent-infection-reducing therapy. 

�  Viral “blips” following the end of  treatment 
 
 

� Deterministic models do not capture blips well 
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