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Randomisation
Let R be the real numbers and R≥0 := {x ∈ R | x ≥ 0}.

Definition (Probability distribution)
Let E be a finite set. A probability distribution is a map
P : E → R≥0 with ∑

E∈E
P(E) = 1.

We call the elements of E events and P(E) the probability
of the event E .

If P(E) is the same for all E ∈ E then we call P uniformly
distributed.

We think of an experiment in which exactly one of the
events can happen and P(E) says, how likely it is that E
happens.

Question
Is random behaviour possible at all?
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Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f ) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.
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Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.
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How to create random numbers?
One usually is content with pseudo-random sequences of
numbers.

Example
Let a,b,m ∈ N and choose X0 ∈ {0,1, . . . ,m − 1}
arbitrarily. Define then inductively

Xi := (a · Xi−1 + b) mod m ∈ {0,1, . . . ,m − 1}.

Call X0 the seed and treat the sequence Xi as random
numbers in the range {0,1, . . . ,m − 1}.

This is not a very good method, but easy to explain.
A good method is the so-called Mersenne-Twister by
Matsumoto and Nishimura with a period of 219937 − 1 and
good distribution properties. This is used in GAP.

We assume that we can produce
uniformly distributed random numbers!
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Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].

We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [ ] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.
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Why does this work?
Lemma (Uniform distribution)

If g ∈ G is uniformly distributed, then gt−1
j in the above

algorithm is uniformly distributed in S.

Proof: The map g 7→ gt−1
j is a bijection between the coset

Stj and S. �

To make the algorithm work, we need to know what N
ought to be. We need results of the following type:

Theorem (Holt, Roney-Dougal 2010?)
Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.
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Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.
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Product replacement I
We maintain a list [T1,T2, . . . ,Tk ] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.
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2 after that, do one step per random element and use
the returned element.
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Product replacement II
Theorem
Let G be a finite group. If [T1, . . . ,Tk ] is initialised with an
arbitrary generating set of G and A is initialised with any
group element in G, then, for N →∞, the distribution of A
after N steps converges to the uniform distribution on G.

Attention!
It is unknown, how big N has to be to observe a
“reasonably good” uniform distribution.
Adjacent elements in the random sequence are by no
means guaranteed to be independent.

However: a miracle
Already from N = 100 on the sequence of random
elements seems to be very good as a random sequence
of independent uniformly distributed elements in G.
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An accelerator

We maintain a list [T0, . . . ,Tk ] of group elements that
together generate G and one additional element A.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and A := A · Ti .

5 Return the new A.

(Note that after the change the new list still generates G!)

Experimental evidence suggests that this mixes faster.
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Multiple accumulators
We maintain a list [T0, . . . ,Tk ] of group elements that
together generate G an integer m and ` additional
elements A1, . . . ,A`. Initialise m := 1.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and Am := Am · Ti and

m := (m + 1) mod `.
5 Return the new Am.

(Note that after the change the new list still generates G!)

This should produce sequences in which adjacent
elements are more independent.
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Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser
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Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x ]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).
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The End
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