
Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomisation

Max Neunhöffer

University of St Andrews

GAC 2010, Allahabad

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomisation
Let R be the real numbers and R≥0 := {x ∈ R | x ≥ 0}.

Definition (Probability distribution)
Let E be a finite set. A probability distribution is a map
P : E → R≥0 with ∑

E∈E
P(E) = 1.

We call the elements of E events and P(E) the probability
of the event E .

If P(E) is the same for all E ∈ E then we call P uniformly
distributed.

We think of an experiment in which exactly one of the
events can happen and P(E) says, how likely it is that E
happens.

Question
Is random behaviour possible at all?

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomisation
Let R be the real numbers and R≥0 := {x ∈ R | x ≥ 0}.

Definition (Probability distribution)
Let E be a finite set. A probability distribution is a map
P : E → R≥0 with ∑

E∈E
P(E) = 1.

We call the elements of E events and P(E) the probability
of the event E .
If P(E) is the same for all E ∈ E then we call P uniformly
distributed.

We think of an experiment in which exactly one of the
events can happen and P(E) says, how likely it is that E
happens.

Question
Is random behaviour possible at all?

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomisation
Let R be the real numbers and R≥0 := {x ∈ R | x ≥ 0}.

Definition (Probability distribution)
Let E be a finite set. A probability distribution is a map
P : E → R≥0 with ∑

E∈E
P(E) = 1.

We call the elements of E events and P(E) the probability
of the event E .
If P(E) is the same for all E ∈ E then we call P uniformly
distributed.

We think of an experiment in which exactly one of the
events can happen and P(E) says, how likely it is that E
happens.

Question
Is random behaviour possible at all?

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomisation
Let R be the real numbers and R≥0 := {x ∈ R | x ≥ 0}.

Definition (Probability distribution)
Let E be a finite set. A probability distribution is a map
P : E → R≥0 with ∑

E∈E
P(E) = 1.

We call the elements of E events and P(E) the probability
of the event E .
If P(E) is the same for all E ∈ E then we call P uniformly
distributed.

We think of an experiment in which exactly one of the
events can happen and P(E) says, how likely it is that E
happens.

Question
Is random behaviour possible at all?

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

GAP examples

see other window

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Complexity of algorithms

To measure the efficiency of an algorithm, we consider
a class P of problems, that the algorithm can solve.

We assign to each P ∈ P its size g(P),

and prove an upper bound for the runtime L(P) of the
algorithm for P:

L(P) ≤ f (g(P))

for some function f .

The growth rate of f measures the complexity.

Definition
Let f : R+ → R+. We say that an algorithm has
complexity O(f) if there are constants C,D ∈ R+ such
that its runtime is bounded from above by C · f (x) for all
x ≥ D, where x is the problem size.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms

Definition (Monte Carlo algorithms)
A Monte Carlo algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it returns a wrong
result is at most ε.

Definition (Las Vegas algorithm)
A Las Vegas algorithm with error probability ε is an
algorithm, that is guaranteed to terminate after a finite
time, such that the probability that it fails is at most ε.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

How to create random numbers?
One usually is content with pseudo-random sequences of
numbers.

Example
Let a,b,m ∈ N and choose X0 ∈ {0,1, . . . ,m − 1}
arbitrarily. Define then inductively

Xi := (a · Xi−1 + b) mod m ∈ {0,1, . . . ,m − 1}.

Call X0 the seed and treat the sequence Xi as random
numbers in the range {0,1, . . . ,m − 1}.

This is not a very good method, but easy to explain.
A good method is the so-called Mersenne-Twister by
Matsumoto and Nishimura with a period of 219937 − 1 and
good distribution properties. This is used in GAP.

We assume that we can produce
uniformly distributed random numbers!

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

How to create random numbers?
One usually is content with pseudo-random sequences of
numbers.

Example
Let a,b,m ∈ N and choose X0 ∈ {0,1, . . . ,m − 1}
arbitrarily. Define then inductively

Xi := (a · Xi−1 + b) mod m ∈ {0,1, . . . ,m − 1}.

Call X0 the seed and treat the sequence Xi as random
numbers in the range {0,1, . . . ,m − 1}.

This is not a very good method, but easy to explain.

A good method is the so-called Mersenne-Twister by
Matsumoto and Nishimura with a period of 219937 − 1 and
good distribution properties. This is used in GAP.

We assume that we can produce
uniformly distributed random numbers!

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

How to create random numbers?
One usually is content with pseudo-random sequences of
numbers.

Example
Let a,b,m ∈ N and choose X0 ∈ {0,1, . . . ,m − 1}
arbitrarily. Define then inductively

Xi := (a · Xi−1 + b) mod m ∈ {0,1, . . . ,m − 1}.

Call X0 the seed and treat the sequence Xi as random
numbers in the range {0,1, . . . ,m − 1}.

This is not a very good method, but easy to explain.
A good method is the so-called Mersenne-Twister by
Matsumoto and Nishimura with a period of 219937 − 1 and
good distribution properties. This is used in GAP.

We assume that we can produce
uniformly distributed random numbers!

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

How to create random numbers?
One usually is content with pseudo-random sequences of
numbers.

Example
Let a,b,m ∈ N and choose X0 ∈ {0,1, . . . ,m − 1}
arbitrarily. Define then inductively

Xi := (a · Xi−1 + b) mod m ∈ {0,1, . . . ,m − 1}.

Call X0 the seed and treat the sequence Xi as random
numbers in the range {0,1, . . . ,m − 1}.

This is not a very good method, but easy to explain.
A good method is the so-called Mersenne-Twister by
Matsumoto and Nishimura with a period of 219937 − 1 and
good distribution properties. This is used in GAP.

We assume that we can produce
uniformly distributed random numbers!

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].

We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).

3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:

4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈

G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised stabiliser computation
Let 〈T 〉 = G ≤ Σn and x ∈ {1,2, . . . ,n}. We want to
compute generators for S := StabG(x), let k := [G : S].
We have seen the method using k · (|T | − 1) + 1 Schreier
generators.

Algorithm: Randomised stabiliser computation
Input: G = 〈T 〉 ≤ Σn, some N ∈ N.

1 Enumerate the orbit xG with a Schreier tree.
=⇒ This gives us a transversal {Ti | 1 ≤ i ≤ k}.

2 Initialise L := [] (empty list of generators for S).
3 For i in {1,2, . . . ,N} do:
4 Take a uniformly distributed random g ∈ G.
5 Find j with xg = xtj , this means gt−1

j ∈ S.

6 Append gt−1
j as generator for S to L.

Output: The list L.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Why does this work?
Lemma (Uniform distribution)

If g ∈ G is uniformly distributed, then gt−1
j in the above

algorithm is uniformly distributed in S.

Proof: The map g 7→ gt−1
j is a bijection between the coset

Stj and S. �

To make the algorithm work, we need to know what N
ought to be. We need results of the following type:

Theorem (Holt, Roney-Dougal 2010?)
Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Why does this work?
Lemma (Uniform distribution)

If g ∈ G is uniformly distributed, then gt−1
j in the above

algorithm is uniformly distributed in S.

Proof: The map g 7→ gt−1
j is a bijection between the coset

Stj and S. �

To make the algorithm work, we need to know what N
ought to be. We need results of the following type:

Theorem (Holt, Roney-Dougal 2010?)
Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Why does this work?
Lemma (Uniform distribution)

If g ∈ G is uniformly distributed, then gt−1
j in the above

algorithm is uniformly distributed in S.

Proof: The map g 7→ gt−1
j is a bijection between the coset

Stj and S. �

To make the algorithm work, we need to know what N
ought to be. We need results of the following type:

Theorem (Holt, Roney-Dougal 2010?)
Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Why does this work?
Lemma (Uniform distribution)

If g ∈ G is uniformly distributed, then gt−1
j in the above

algorithm is uniformly distributed in S.

Proof: The map g 7→ gt−1
j is a bijection between the coset

Stj and S. �

To make the algorithm work, we need to know what N
ought to be. We need results of the following type:

Theorem (Holt, Roney-Dougal 2010?)
Let 0 < δ < 1 and let t be such that ζ(t) ≤ 2− δ. Let
G ≤ Σn. If there is a primitive group Hk ≤ Σn and a chain
of normal subgroups G / H1 / H2 / · · · / Hk , and

N ≥ 3 log n + 2 log log n + t + 2,

then N independent uniformly distributed random
elements of G generate G with probability at least δ.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.

2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.

3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.

4 Ti := Ti · T e
j and A := A · Ti .

5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .

5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,

2 after that, do one step per random element and use
the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement I
We maintain a list [T1,T2, . . . ,Tk] of group elements that
together generate G and one additional element A.

One product replacement step
1 Pick a random i ∈ {1,2, . . . , k} distributed uniformly.
2 Pick a random j ∈ {1, . . . , k} \ {i} distributed unif.
3 Pick a random e ∈ {±1} distributed uniformly.
4 Ti := Ti · T e

j and A := A · Ti .
5 Return the new A.

(Note that after the change the new list still generates G!)

To produce a sequence of random elements in G,
1 first execute this a certain number of times,
2 after that, do one step per random element and use

the returned element.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement II
Theorem
Let G be a finite group. If [T1, . . . ,Tk] is initialised with an
arbitrary generating set of G and A is initialised with any
group element in G, then, for N →∞, the distribution of A
after N steps converges to the uniform distribution on G.

Attention!
It is unknown, how big N has to be to observe a
“reasonably good” uniform distribution.
Adjacent elements in the random sequence are by no
means guaranteed to be independent.

However: a miracle
Already from N = 100 on the sequence of random
elements seems to be very good as a random sequence
of independent uniformly distributed elements in G.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement II
Theorem
Let G be a finite group. If [T1, . . . ,Tk] is initialised with an
arbitrary generating set of G and A is initialised with any
group element in G, then, for N →∞, the distribution of A
after N steps converges to the uniform distribution on G.

Attention!
It is unknown, how big N has to be to observe a
“reasonably good” uniform distribution.
Adjacent elements in the random sequence are by no
means guaranteed to be independent.

However: a miracle
Already from N = 100 on the sequence of random
elements seems to be very good as a random sequence
of independent uniformly distributed elements in G.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Product replacement II
Theorem
Let G be a finite group. If [T1, . . . ,Tk] is initialised with an
arbitrary generating set of G and A is initialised with any
group element in G, then, for N →∞, the distribution of A
after N steps converges to the uniform distribution on G.

Attention!
It is unknown, how big N has to be to observe a
“reasonably good” uniform distribution.
Adjacent elements in the random sequence are by no
means guaranteed to be independent.

However: a miracle
Already from N = 100 on the sequence of random
elements seems to be very good as a random sequence
of independent uniformly distributed elements in G.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

An accelerator

We maintain a list [T0, . . . ,Tk] of group elements that
together generate G and one additional element A.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and A := A · Ti .

5 Return the new A.

(Note that after the change the new list still generates G!)

Experimental evidence suggests that this mixes faster.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

An accelerator

We maintain a list [T0, . . . ,Tk] of group elements that
together generate G and one additional element A.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and A := A · Ti .

5 Return the new A.

(Note that after the change the new list still generates G!)

Experimental evidence suggests that this mixes faster.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Multiple accumulators
We maintain a list [T0, . . . ,Tk] of group elements that
together generate G an integer m and ` additional
elements A1, . . . ,A`. Initialise m := 1.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and Am := Am · Ti and

m := (m + 1) mod `.
5 Return the new Am.

(Note that after the change the new list still generates G!)

This should produce sequences in which adjacent
elements are more independent.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Multiple accumulators
We maintain a list [T0, . . . ,Tk] of group elements that
together generate G an integer m and ` additional
elements A1, . . . ,A`. Initialise m := 1.

Algorithm: One product replacement step
1 Pick random i , j ∈ {1,2, . . . , k} distributed uniformly.
2 Pick random e, f ∈ {±1} distributed uniformly.
3 T0 := T0 · T e

j .

4 Ti := Ti · T f
0 and Am := Am · Ti and

m := (m + 1) mod `.
5 Return the new Am.

(Note that after the change the new list still generates G!)

This should produce sequences in which adjacent
elements are more independent.

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action

Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group

Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group

Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length

Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)

Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups

Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup

Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Randomised algorithms in practice

The following problems have good randomised
algorithms:

Computing the point stabiliser of a group action
Computing a stabiliser chain for a permutation group
Recognising the isomorphism type of a simple group
Estimating the orbit length
Group recognition — various problems (see talk
number 7)
Finding normal subgroups
Estimating the group order modulo a normal
subgroup
Computing generators for an involution centraliser

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)

if o is even then
append co/2 and (x−1yxy−1)o/2 to gens

else
append z := y · c(o−1)/2 to gens

until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens

until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .

And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . ,gk 〉 and an involution x ∈ G.
initialise gens := [x]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

The End

Randomisation

Max Neunhöffer

Introduction

GAP examples

Background
Complexity theory

Randomised algorithms

Random numbers

Computing
stabilisers

Product
replacement
Idea

Improvements

Applications

Involution
centralisers

Bibliography

John N. Bray.
An improved method for generating the centralizer of
an involution.
Arch. Math. (Basel), 74(4):241–245, 2000.

Frank Celler, Charles R. Leedham-Green, Scott H.
Murray, Alice C. Niemeyer, and E. A. O’Brien.
Generating random elements of a finite group.
Comm. Algebra, 23(13):4931–4948, 1995.

C. R. Leedham-Green and Scott H. Murray.
Variants of product replacement.
In Computational and statistical group theory (Las
Vegas, NV/Hoboken, NJ, 2001), volume 298 of
Contemp. Math., pages 97–104. Amer. Math. Soc.,
Providence, RI, 2002.

	Introduction
	GAP examples
	Background
	Complexity theory
	Randomised algorithms
	Random numbers

	Computing stabilisers
	Product replacement
	Idea
	Improvements

	Applications
	Involution centralisers

