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Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.

Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.
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Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}.

Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S|

and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.

F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.

If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.

1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.
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The group order

Recall H \G := {Hg | g ∈ G} and [G : H] := |H \G|.

Use inductively:

Theorem (Lagrange)
Let H < G then |G| = [G : H] · |H|.

Since we know all orbit lengths, we know the indices
[Si−1 : Si ] = |Si−1|/|Si |.

Fact
We know the group order

|G| = [S0 : S1] · [S1 : S2] · · · [Sk−1 : Sk ]
`1 · `2 · · · `k

.
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Transversals

Even better, the Orbit-Stabiliser-Algorithm provides the
Schreier tree and thus words in the generators to reach
the orbit points.

These words form transversals: We have elements t(i)j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

Si−1 =

`i⋃
j=1

Si t
(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabiliser chain allows us to read off these
numbers!
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Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.

Now
g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.

We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.

This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.



Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.
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A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.
The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .
A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.
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A problem

How to compute a stabiliser chain

Theorem (Schreier-Sims)
Let G = 〈T 〉 ≤ Σn. A base and strong generating set for
G can be computed in time bounded by

C · (n2 log3 |G|+ |T |n2 log |G|)

for some constant C > 0.

Theorem (Babai, Cooperman, Finkelstein, Seress)
Let G = 〈T 〉 ≤ Σn and d an arbitrary constant. A guess
for a strong generating set for G can be computed in time
bounded by

C · (n log n log4 |G|+ |T |n log |G|)
for some constant C > 0 with error probability ≤ 1/nd .
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A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,
closure and normal closure,
a composition series,
the center C(G) of G.
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A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:

centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.
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the intersection of two such groups,

a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.
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A problem

Large base
One problem with stabiliser chains is Σn itself:

Fact
The smallest base for Σn itself contains n − 1 points.
Not surprising, since log |G| = log(n!) ≈ n log n − n.

Thus, time n log |T | logc |G| becomes n(c+1) logc n log |T |.

Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Example
All permutation representations of all finite simple groups
except the alternating groups form a family of small-base
groups.
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