
Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups

Max Neunhöffer

University of St Andrews

GAC 2010, Allahabad

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.

Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.
Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.
Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.
Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.
Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Permutation Groups
Let Σn be the group of all permutations of {1,2, . . . ,n},
the symmetric group on n points.
Let An be the alternating group on n points, i.e. the even
permutations.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).

Definition (Permutation group)
A permutation group on n points is a subgroup of Σn.

Theorem
Every finite group is isomorphic to a subgroup of some
symmetric group Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

GAP examples

see other window

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}.

Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S|

and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.

F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.

If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Orbits and stabiliser cosets
Theorem (Orbit-Stabiliser)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.

Fact
We can read off in which S-coset g lies by looking at xg.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.

1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G

2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1

3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Idea

Let G ≤ Σn, that is, G acts on {1,2, . . . ,n}.
1 i := 1,S0 := G
2 Take orbit xiSi−1 with |xiSi−1| > 1
3 Compute xiSi−1 and Si := StabSi−1(xi)

4 This “controls” the cosets Si \ Si−1

5 If Si 6= {1} then i := i + 1 and go to step 2

=⇒ This computes

G = S0 > S1 > S2 > · · · > Sk = {1}

with the orbits Oi := xiSi−1 and lengths `i := |xiSi−1|.

All groups are given by generators.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

The group order

Recall H \G := {Hg | g ∈ G} and [G : H] := |H \G|.

Use inductively:

Theorem (Lagrange)
Let H < G then |G| = [G : H] · |H|.

Since we know all orbit lengths, we know the indices
[Si−1 : Si] = |Si−1|/|Si |.

Fact
We know the group order

|G| = [S0 : S1] · [S1 : S2] · · · [Sk−1 : Sk]
`1 · `2 · · · `k

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

The group order

Recall H \G := {Hg | g ∈ G} and [G : H] := |H \G|.

Use inductively:

Theorem (Lagrange)
Let H < G then |G| = [G : H] · |H|.

Since we know all orbit lengths, we know the indices
[Si−1 : Si] = |Si−1|/|Si |.

Fact
We know the group order

|G| = [S0 : S1] · [S1 : S2] · · · [Sk−1 : Sk]
`1 · `2 · · · `k

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

The group order

Recall H \G := {Hg | g ∈ G} and [G : H] := |H \G|.

Use inductively:

Theorem (Lagrange)
Let H < G then |G| = [G : H] · |H|.

Since we know all orbit lengths, we know the indices
[Si−1 : Si] = |Si−1|/|Si |.

Fact
We know the group order

|G| = [S0 : S1] · [S1 : S2] · · · [Sk−1 : Sk]
`1 · `2 · · · `k

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

The group order

Recall H \G := {Hg | g ∈ G} and [G : H] := |H \G|.

Use inductively:

Theorem (Lagrange)
Let H < G then |G| = [G : H] · |H|.

Since we know all orbit lengths, we know the indices
[Si−1 : Si] = |Si−1|/|Si |.

Fact
We know the group order

|G| = [S0 : S1] · [S1 : S2] · · · [Sk−1 : Sk]
`1 · `2 · · · `k

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Transversals

Even better, the Orbit-Stabiliser-Algorithm provides the
Schreier tree and thus words in the generators to reach
the orbit points.

These words form transversals: We have elements t(i)j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

Si−1 =

`i⋃
j=1

Si t
(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabiliser chain allows us to read off these
numbers!

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Transversals

Even better, the Orbit-Stabiliser-Algorithm provides the
Schreier tree and thus words in the generators to reach
the orbit points.
These words form transversals: We have elements t(i)j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

Si−1 =

`i⋃
j=1

Si t
(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabiliser chain allows us to read off these
numbers!

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Transversals

Even better, the Orbit-Stabiliser-Algorithm provides the
Schreier tree and thus words in the generators to reach
the orbit points.
These words form transversals: We have elements t(i)j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

Si−1 =

`i⋃
j=1

Si t
(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabiliser chain allows us to read off these
numbers!

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Transversals

Even better, the Orbit-Stabiliser-Algorithm provides the
Schreier tree and thus words in the generators to reach
the orbit points.
These words form transversals: We have elements t(i)j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

Si−1 =

`i⋃
j=1

Si t
(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabiliser chain allows us to read off these
numbers!

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.

Now
g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.

We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.

This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Sifting

Assume g ∈ G, thus:

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in S1, they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g1 := gt(1)j1

−1
= t(k)jk

· t(k−1)
jk−1

· · · t(2)j2

fixes x1 and thus lies in S1.
We can now compute x2g1 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,

if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,

or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G: then we proved that g /∈ G,
if x1g = x1t(1)j for some 1 ≤ j ≤ `1, then:

since t(1)j ∈ G and x1gt(1)j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)j
−1
∈ S1.

=⇒ Inductively, we test membership in the stabiliser.

Theorem (Stabiliser chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabiliser chain
for G with its orbits and Schreier trees, we can sift it, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)jk
· t(k−1)

jk−1
· · · t(1)j1

.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.
The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .
A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.

The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .
A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.
The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .

A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.
The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .
A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Base and strong generators

Let G ≤ Σn and G = S0 > S1 > · · · > Sk = {1} be a
stabiliser chain. Let S be the set of all generators of all
the Si for 0 ≤ i < k .

Definition (Base and strong generators)
The points x1, x2, . . . , xk together are called a base for G,
since the only element g ∈ G fixing them all is the identity.
The set S is called a set of strong generators for G, since
〈S ∩ Si〉 = Si for 0 ≤ i ≤ k .
A stabiliser chain provides a base and a strong
generating set.

Fact
The sifting procedure expresses a g ∈ G as a product of
the strong generators S.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

How to compute a stabiliser chain

Theorem (Schreier-Sims)
Let G = 〈T 〉 ≤ Σn. A base and strong generating set for
G can be computed in time bounded by

C · (n2 log3 |G|+ |T |n2 log |G|)

for some constant C > 0.

Theorem (Babai, Cooperman, Finkelstein, Seress)
Let G = 〈T 〉 ≤ Σn and d an arbitrary constant. A guess
for a strong generating set for G can be computed in time
bounded by

C · (n log n log4 |G|+ |T |n log |G|)
for some constant C > 0 with error probability ≤ 1/nd .

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

How to compute a stabiliser chain

Theorem (Schreier-Sims)
Let G = 〈T 〉 ≤ Σn. A base and strong generating set for
G can be computed in time bounded by

C · (n2 log3 |G|+ |T |n2 log |G|)

for some constant C > 0.

Theorem (Babai, Cooperman, Finkelstein, Seress)
Let G = 〈T 〉 ≤ Σn and d an arbitrary constant. A guess
for a strong generating set for G can be computed in time
bounded by

C · (n log n log4 |G|+ |T |n log |G|)
for some constant C > 0 with error probability ≤ 1/nd .

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,
closure and normal closure,
a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,

images under homomorphisms,
pointwise stabilisers,
closure and normal closure,
a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,

pointwise stabilisers,
closure and normal closure,
a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,

closure and normal closure,
a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,
closure and normal closure,

a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,
closure and normal closure,
a composition series,

the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Nearly linear time

For 〈T 〉 = G ≤ Σn the following can be computed in time
less than C · n · |T | · logc |G| for some constants C and c:

a base and strong generating set,
images under homomorphisms,
pointwise stabilisers,
closure and normal closure,
a composition series,
the center C(G) of G.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:

centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),

centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,

setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},

the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,

a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,

the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Slower algorithms

For 〈T 〉 = G ≤ Σn the following can be computed:
centraliser in Σn (still polynomial time),
centraliser CG(g) of an element g ∈ G,
setwise stabiliser in G of a set M ⊆ {1,2, . . . ,n},
the intersection of two such groups,
a conjugating element g ∈ G with ag = b for a,b ∈ G,
the normaliser in Σn.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Large base
One problem with stabiliser chains is Σn itself:

Fact
The smallest base for Σn itself contains n − 1 points.
Not surprising, since log |G| = log(n!) ≈ n log n − n.

Thus, time n log |T | logc |G| becomes n(c+1) logc n log |T |.

Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Example
All permutation representations of all finite simple groups
except the alternating groups form a family of small-base
groups.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Large base
One problem with stabiliser chains is Σn itself:

Fact
The smallest base for Σn itself contains n − 1 points.
Not surprising, since log |G| = log(n!) ≈ n log n − n.

Thus, time n log |T | logc |G| becomes n(c+1) logc n log |T |.

Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Example
All permutation representations of all finite simple groups
except the alternating groups form a family of small-base
groups.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Large base
One problem with stabiliser chains is Σn itself:

Fact
The smallest base for Σn itself contains n − 1 points.
Not surprising, since log |G| = log(n!) ≈ n log n − n.

Thus, time n log |T | logc |G| becomes n(c+1) logc n log |T |.

Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Example
All permutation representations of all finite simple groups
except the alternating groups form a family of small-base
groups.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Large base
One problem with stabiliser chains is Σn itself:

Fact
The smallest base for Σn itself contains n − 1 points.
Not surprising, since log |G| = log(n!) ≈ n log n − n.

Thus, time n log |T | logc |G| becomes n(c+1) logc n log |T |.

Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Example
All permutation representations of all finite simple groups
except the alternating groups form a family of small-base
groups.

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

The End

Permutation
Groups

Max Neunhöffer

Introduction

GAP examples

Background

Stabiliser Chains
Idea

Order

Transversals

Membership test

Computing
StabChains

Available
algorithms
Nearly linear time

Worse

A problem

Bibliography

G. Butler.
Fundamental algorithms for permutation groups,
volume 559 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1991.

Ákos Seress.
Permutation group algorithms, volume 152 of
Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003.

	Introduction
	GAP examples
	Background
	Stabiliser Chains
	Idea
	Order
	Transversals
	Membership test

	Computing StabChains
	Available algorithms
	Nearly linear time
	Worse
	A problem

