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Introduction
Let F be a field and Fd×d the set of d × d-matrices.

Definition (F-algebra, matrix algebra)
An F-algebra is a ring A with identity together with a ring
homomorphism ι : F→ C(A) into the centre of A.

An F-subspace A of Fd×d with 1 ∈ A which is closed
under matrix multiplication is called a matrix algebra.
For a subsetM⊆ A we denote by 〈M〉Alg the
intersection of all subalgebras in A containingM, the
algebra generated byM.

Definition (Right A-module)
Let A be an F-algebra. An F-vector space V with a
bilinear map µ : V ×A → V is called a right A-module, if

µ(v ,1A) = v for all v ∈ V and
µ(µ(v ,X ),Y ) = µ(v ,XY ) for all v ∈ V and X ,Y ∈ A.
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A-modules

Example (Natural module)

If A ≤ Fd×d is a matrix algebra, then V := F1×d is a right
A-module with µ(v ,X ) := v · X . It is called the natural
module.

Definition (Submodules and quotient modules)
Let V be an A-module. An A-submodule is an
A-invariant subspace W ≤ V , that is, WA = W .
If W ≤ V is a submodule, then the quotient space V/W
is an A-module with (v + W )X := vX + W .
A module V is called irreducible if its only submodules
are {0} and V itself.
A composition series for V is a chain of submodules

{0} = V`+1 < V` < V`−1 < · · · < V1 = V

such that all Vi/Vi+1 are irreducible.
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A-modules on the computer

Let V be an A-module for the F-algebra

A = 〈A1, . . . ,Ak 〉Alg .

Then each generator Ai induces a linear map Ai : V → V .

Fact
To describe this situation to a computer, it is enough to
choose an F-basis (v1, . . . , vd) of V and store one
d × d-matrix for each Ai .
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Available methods from Linear Algebra

We can efficiently
compute in vector spaces and matrix algebras.

in particular multiply vectors with matrices and
matrices with matrices.
describe subspaces by bases.
solve systems of linear equations.
compute kernels of matrices.
compute sums and intersections of subspaces given
by bases.
test membership of a vector in a subspace.
transpose matrices.
compute characteristic and minimal polynomials.

All these algorithms have time-complexity at most O(d3)
in the dimension d .
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Overview

Arithmetic over finite fields
For small finite fields we can store a field element using
only a few bits!

This has several advantages:
We save memory.
Since basic field operations are simple, quite often
the runtime is dominated by memory accesses.
This saves time as well.
We can execute several field operations using one
processor word operation.

Example time and memory usage:
Operation Time Memory

C U C U
Mult. in F4370×4370

2 320 ms 1335 s 2.3 MB 152 MB
Add. in F1×4370

2 240 ns 209 µs 550 B 35 kB
Mult. in F500×500

3 50 ms 2140 ms 78 kB 2 MB
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Spinning up
Assume we are given an A-module V = F1×d by matrices
A1, . . . ,Ak ∈ Fd×d .

Problem (Module generated by a vector)
Given 0 6= v ∈ V, find a basis for

vA := {vX | X ∈ A}
:= intersection of all A-submodules containing v

Solution: the spinning up procedure
1 Initialise B := [v ] and i := 1
2 While i ≤ Length(B) do
3 For j from 1 to k do
4 If y := B[i] · Aj /∈ 〈B〉F then
5 Append y to the end of B
6 Set i := i + 1
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2 While i ≤ Length(B) do
3 For j from 1 to k do

4 If y := B[i] · Aj /∈ 〈B〉F then
5 Append y to the end of B
6 Set i := i + 1
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Norton’s irreducibility criterion

Let A = 〈A1, . . . ,Ak 〉Alg ≤ Fd×d be a matrix algebra and
B ∈ A a singular element. Let At :=

〈
At

1, . . . ,A
t
k

〉
Alg.

Theorem (Norton)
At least one of the following holds:

1 There is a 0 6= v ∈ ker B such that vA 6= V.
2 For all v ∈ ker Bt holds vAt 6= V.
3 The natural module V := F1×d is irreducible.

Proof: Assume that 1 and 3 do not hold, so there is an
invariant subspace 0 < W < V , say of dimension e.
We can now choose a basis (w1, . . . ,we) of W and
extend it to a basis (w1, . . . ,we, v1, . . . , vd−e) of V and
write all matrices with respect to this basis.
Let T := (w1, . . . ,we, v1, . . . , vd−e) and B′ := TBT−1.
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Proof of Norton’s criterion

Theorem (Norton)
At least one of the following holds:

1 There is a 0 6= v ∈ ker B such that vA 6= V.
2 For all v ∈ ker Bt holds vAt 6= V.
3 The natural module V := F1×d is irreducible.

Proof cont’d: Now, B′ = TBT−1 looks like this:

B′ =
[

M 0
∗ N

]
, where M ∈ Fe×e,N ∈ F(d−e)×(d−e).

Since 1 does not hold, ker B ∩W = {0}.
Thus M has full rank e.
If rank B′ =: r < d , then rank N = r − e < d − e.
Thus dimF(ker N) = d − r = d − e − rank N.
Now consider B′t = (T t)−1BtT t :
ker B′t is contained in an (TAT−1)t -invariant subspace.
Thus ker Bt is contained in an At -invariant subspace. �
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Chopping modules I

Assume we are given an A-module V = F1×d by matrices
A1, . . . ,Ak ∈ Fd×d .

“Chopping” means computing a composition series.
The MeatAxe basically does the following:

A basic step of “Chop”
1 Find an element B ∈ A with small, non-trivial kernel
2 Compute ker B
3 Spinup all 0 6= v ∈ ker B
4 If some vA < V , we found a submodule, goto 7

5 Otherwise spinup one 0 6= v ∈ ker Bt under At

6 If vAt = V , we have proved V to be irreducible, stop
7 If 0 < W < V is invariant, compute action on W and

V/W and recurse (with smaller dimensions!)
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Chopping modules II

The result of “Chop” is a composition series

{0} = V`+1 < V` < V`−1 < · · · < V1 = V

such that all Vj/Vj+1 are irreducible.

Actually, we find a base change T ∈ Fd×d , such that all
matrices TAiT−1 for 1 ≤ i ≤ k look like this:

TAiT−1 =


M(i)

` 0 · · · 0

∗ M(i)
`−1

. . .
...

...
. . . . . . 0

∗ · · · ∗ M(i)
1


and the matrices M(i)

j describe the action of A on Vj/Vj+1.
A more detailed analysis shows that the MeatAxe can
identify isomorphism types of irreducible modules.
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Overview over available algorithms

Assume we are given an A-module V = F1×d by matrices
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