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Introduction
Let IF be a field and F9*9 the set of d x d-matrices.

Definition (F-algebra, matrix algebra)

An [F-algebra is a ring A with identity together with a ring
homomorphism . : F — C(.A) into the centre of A.
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Introduction
Let IF be a field and F9*9 the set of d x d-matrices.

Definition (F-algebra, matrix algebra)
An [F-algebra is a ring A with identity together with a ring
homomorphism . : F — C(.A) into the centre of A.

An F-subspace A of F9*9 with 1 € A which is closed
under matrix multiplication is called a matrix algebra.
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Linear Algebra

5 An [F-algebra is a ring A with identity together with a ring
o homomorphism ¢ : F — C(.A) into the centre of A.
el An F-subspace A of F9*9 with 1 € A which is closed
Chop under matrix multiplication is called a matrix algebra.
Sty For a subset M C A we denote by (M), the
intersection of all subalgebras in A containing M, the
algebra generated by M.
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Definition (F-algebra, matrix algebra)

An [F-algebra is a ring A with identity together with a ring
homomorphism . : F — C(.A) into the centre of A.
el An F-subspace A of F9*9 with 1 € A which is closed
Chop under matrix multiplication is called a matrix algebra.
Sty For a subset M C A we denote by (M), the
intersection of all subalgebras in A containing M, the
algebra generated by M.

Linear Algebra

Definition (Right .A-module)

Let A be an F-algebra. An F-vector space V with a
bilinear map 1 : V x A — V is called a right .A-module, if
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Introduction
Let IF be a field and F9*9 the set of d x d-matrices.

Definition (F-algebra, matrix algebra)

An [F-algebra is a ring A with identity together with a ring
homomorphism . : F — C(.A) into the centre of A.

An F-subspace A of F9*9 with 1 € A which is closed
under matrix multiplication is called a matrix algebra.
For a subset M C A we denote by (M), the
intersection of all subalgebras in A containing M, the
algebra generated by M.

Definition (Right .A-module)

Let A be an F-algebra. An F-vector space V with a
bilinear map 1 : V x A — V is called a right .A-module, if

@ u(v,14)=vforallveVand
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Introduction
Let IF be a field and F9*9 the set of d x d-matrices.

Definition (F-algebra, matrix algebra)

An [F-algebra is a ring A with identity together with a ring
homomorphism . : F — C(.A) into the centre of A.

An F-subspace A of F9*9 with 1 € A which is closed
under matrix multiplication is called a matrix algebra.
For a subset M C A we denote by (M), the
intersection of all subalgebras in A containing M, the
algebra generated by M.

Definition (Right .A-module)

Let A be an F-algebra. An F-vector space V with a
bilinear map 1 : V x A — V is called a right .A-module, if

@ u(v,14)=vforallveVand
@ u(p(v,X),Y)=u(v,XY)forallve Vand X,Y € A.
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A-modules

Example (Natural module)

If A <F9%9 s a matrix algebra, then V := F'*% is a right
A-module with p(v, X) := v - X. Itis called the natural
module.
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A-modules

Example (Natural module)

If A <F9%9 s a matrix algebra, then V := F'*% is a right
A-module with p(v, X) := v - X. Itis called the natural
module.

Definition (Submodules and quotient modules)

Let V be an .A-module. An A-submodule is an
A-invariant subspace W < V, thatis, WA = W.
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A-modules

Example (Natural module)

If A <F9%9 s a matrix algebra, then V := F'*% is a right
A-module with p(v, X) := v - X. Itis called the natural
module.

Definition (Submodules and quotient modules)

Let V be an A-module. An A-submodule is an
A-invariant subspace W < V, thatis, WA = W.

If W < V is a submodule, then the quotient space V/W
is an A-module with (v + W)X = vX + W.
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A-modules

Example (Natural module)

If A <F9%9 s a matrix algebra, then V := F'*% is a right
A-module with p(v, X) := v - X. Itis called the natural
module.

Definition (Submodules and quotient modules)

Let V be an .A-module. An A-submodule is an
A-invariant subspace W < V, thatis, WA = W.

If W < V is a submodule, then the quotient space V/W
is an A-module with (v + W)X = vX + W.

A module V is called irreducible if its only submodules
are {0} and V itself.
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A-modules

Example (Natural module)

If A <F9%9 s a matrix algebra, then V := F'*% is a right
A-module with p(v, X) := v - X. Itis called the natural
module.

Definition (Submodules and quotient modules)
Let V be an .A-module. An A-submodule is an
A-invariant subspace W < V, thatis, WA = W.

If W < V is a submodule, then the quotient space V/W
is an A-module with (v + W)X = vX + W.

A module V is called irreducible if its only submodules
are {0} and V itself.

A composition series for V is a chain of submodules

{0}: Vg+1 <Vi<Vi_1<---< V=V
such that all V;/V;, ¢ are irreducible.
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A-modules on the computer

Let V be an .A-module for the F-algebra

A= (A1, Adag -

Then each generator A; induces a linear map A;: V — V.
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A-modules on the computer

Let V be an .A-module for the F-algebra

A= (A1, Adag -

Then each generator A; induces a linear map A;: V — V.

To describe this situation to a computer, it is enough to
choose an F-basis (v4, ..., Vvy) of V and store one
d x d-matrix for each A;.
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Available methods from Linear Algebra

We can efficiently
@ compute in vector spaces and matrix algebras.
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Available methods from Linear Algebra

We can efficiently
@ compute in vector spaces and matrix algebras.

@ in particular multiply vectors with matrices and
matrices with matrices.
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Available methods from Linear Algebra

We can efficiently
@ compute in vector spaces and matrix algebras.

@ in particular multiply vectors with matrices and
matrices with matrices.

@ describe subspaces by bases.
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Available methods from Linear Algebra

We can efficiently
@ compute in vector spaces and matrix algebras.

@ in particular multiply vectors with matrices and
matrices with matrices.

@ describe subspaces by bases.
@ solve systems of linear equations.
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Available methods from Linear Algebra

We can efficiently
@ compute in vector spaces and matrix algebras.

@ in particular multiply vectors with matrices and
matrices with matrices.

@ describe subspaces by bases.
@ solve systems of linear equations.
@ compute kernels of matrices.
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Available methods from Linear Algebra

We can efficiently

compute in vector spaces and matrix algebras.

in particular multiply vectors with matrices and
matrices with matrices.

describe subspaces by bases.
solve systems of linear equations.
compute kernels of matrices.

compute sums and intersections of subspaces given
by bases.
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Available methods from Linear Algebra

We can efficiently

compute in vector spaces and matrix algebras.

in particular multiply vectors with matrices and
matrices with matrices.

describe subspaces by bases.
solve systems of linear equations.
compute kernels of matrices.

compute sums and intersections of subspaces given
by bases.

test membership of a vector in a subspace.
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Available methods from Linear Algebra

We can efficiently

compute in vector spaces and matrix algebras.

in particular multiply vectors with matrices and
matrices with matrices.

describe subspaces by bases.
solve systems of linear equations.
compute kernels of matrices.

compute sums and intersections of subspaces given
by bases.

test membership of a vector in a subspace.
transpose matrices.
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transpose matrices.
@ compute characteristic and minimal polynomials.
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@ test membership of a vector in a subspace.
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@ transpose matrices.
@ compute characteristic and minimal polynomials.

All these algorithms have time-complexity at most O(d?)
in the dimension d.
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
This has several advantages:
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
This has several advantages:

@ We save memory.
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
This has several advantages:

@ We save memory.

@ Since basic field operations are simple, quite often
the runtime is dominated by memory accesses.
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
This has several advantages:
@ We save memory.
@ Since basic field operations are simple, quite often
the runtime is dominated by memory accesses.
This saves time as well.
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Arithmetic over finite fields

For small finite fields we can store a field element using
only a few bits!
This has several advantages:

@ We save memory.

@ Since basic field operations are simple, quite often
the runtime is dominated by memory accesses.
This saves time as well.

@ We can execute several field operations using one
processor word operation.
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Arithmetic over finite fields

For small finite fields we can store a field element using

only a few bits!

This has several advantages:
@ We save memory.

@ Since basic field operations are simple, quite often
the runtime is dominated by memory accesses.
This saves time as well.

@ We can execute several field operations using one
processor word operation.

Example time and memory usage:

Operation Time Memory
cC | U cC | U
Mult. in F3°"**0 1 320 ms | 1335s | 2.3 MB | 152 MB
Add. in F,**7° 240ns | 209 us | 550B | 35kB
Mult. in F300°% [ 50 ms | 2140ms | 78kB | 2MB
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Spinning up
Assume we are given an A-module V = F'*? by matrices
Aq,..., A € Fa*d,
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Spinning up
Assume we are given an A-module V = F'*? by matrices
Af, ... A, e Fdxd,

Problem (Module generated by a vector)
Given 0 # v € V, find a basis for
VA = {vX| X e A}
:= Intersection of all A-submodules containing v

v

Solution: the

@ Initialise B :=[v] and j := 1
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Spinning up
Assume we are given an A-module V = F'*? by matrices
Af, ... A, e Fdxd,

Problem (Module generated by a vector)
Given 0 # v € V, find a basis for
VA = {vX| X e A}
:= Intersection of all A-submodules containing v

v

Solution: the

@ Initialise B :=[v] and j := 1
@ While i < Length(B) do
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@ Initialise B:=[v]and i :=1
@ While i < Length(B) do
Q For j from 1 to k do
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Norton’s Criterion V.A e {VX ’ X = A}

onee := Intersection of all A-submodules containing v

Overview

v

@ Initialise B:=[v]and i :=1

@ While i < Length(B) do

Q For j from 1 to k do

(%) If y .= B[i] - A; ¢ (B)p then
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T Given 0 # v € V, find a basis for
Norton’s Criterion V.A e {VX ’ X c A}
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:= Intersection of all A-submodules containing v

Overview

v

@ Initialise B:=[v]and i := 1

Q@ While i < Length(B) do

Q For j from 1 to k do

(4 If y := Bi] - A; ¢ (B)g then

Q Append y to the end of B
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Spinning up
Assume we are given an A-module V = F'*? by matrices
Af, ... A, e Fdxd,

Problem (Module generated by a vector)
Given 0 # v € V, find a basis for
VA = {vX| X e A}
:= Intersection of all A-submodules containing v

v

@ Initialise B:=[v]and i := 1

Q@ While i < Length(B) do

Q For j from 1 to k do

(4 If y := Bi] - A; ¢ (B)g then

Q Append y to the end of B
o Seti:=i+1
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@ Forallv c ker B! holds vA! #+ V.
© The natural module V := F'*9 s jrreducible.
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Norton’s irreducibility criterion

Let A= (As, ..., Ay < F9*9 be a matrix algebra and
B € Aasingular element. Let A" := (Al,... ’A;(>A|g'

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA+ V.
@ Forallv c ker B! holds vA! #+ V.
© The natural module V := F'*9 js jrreducible.

Proof: Assume that @ and @ do not hold, so there is an
invariant subspace 0 < W < V, say of dimension e.
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Norton’s irreducibility criterion

Let A= (Ay, ..., Ay < F9*9 be a matrix algebra and
B € Aasingular element. Let A" := (Al,... ’A;(>A|g'

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA+ V.
@ Forallv c ker B! holds vA! #+ V.
© The natural module V := F'*9 js jrreducible.

Proof: Assume that @ and @ do not hold, so there is an
invariant subspace 0 < W < V, say of dimension e.
We can now choose a basis (wjy, ..., we) of W and

extend it to a basis (wy, ..., We, vq,...,Vq_e) Of V and
write all matrices with respect to this basis.
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Norton’s irreducibility criterion

Let A= (Ay, ..., Ay < F9*9 be a matrix algebra and

B € Aasingular element. Let A" := (A],..., Al) ..

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA+ V.
@ Forallv c ker B! holds vA! #+ V.
© The natural module V := F'*9 js jrreducible.

Proof: Assume that @ and @ do not hold, so there is an
invariant subspace 0 < W < V, say of dimension e.

We can now choose a basis (wjy, ..., we) of W and
extend it to a basis (wy, ..., We, vq,...,Vq_e) Of V and
write all matrices with respect to this basis.

Let T:= (wy,...,We, Vq,...,Vq_e) and B’ := TBT .
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ' looks like this:

B = M
I

N

0 ] . where M € Fé%¢ N ¢ F(d—€)x(d-e)
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ' looks like this:
B = [ M I?I ] , Where M € Fé*¢ N ¢ Fld—e)x(d—e),
k

Since @ does not hold, ker BN W = {0}.
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ' looks like this:
B = [ M I?I ] , Where M € Fé*¢ N ¢ Fld—e)x(d—e),
k

Since @ does not hold, ker BN W = {0}.
Thus M has full rank e.
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ! looks like this:
0 ] . where M € Fé%¢ N ¢ F(d—€)x(d-e)

M
r_
B_[* N

Since @ does not hold, ker BN W = {0}.
Thus M has full rank e.
lfrank B' =: r < d,thenrank N =r—e < d — e.
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ! looks like this:
0 ] . where M € Fé%¢ N ¢ F(d—€)x(d-e)

M
r_
B_[* N

Since @ does not hold, ker BN W = {0}.

Thus M has full rank e.

lfrank B' =: r < d,thenrank N =r—e < d — e.
Thus dimp(kerN) =d —r =d — e —rank N.
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Proof of Norton’s criterion

Theorem (Norton)

At least one of the following holds:
@ Thereisa0 # v c kerBsuchthatvA # V.
@ Forallv c ker Bt holds v At £ V.
© The natural module V = F'*? js irreducible.

Proof cont'd: Now, B’ = TBT ' looks like this:
B = [ M I?I ] , Where M € Fé*¢ N ¢ Fld—e)x(d—e),
k

Since @ does not hold, ker BN W = {0}.

Thus M has full rank e.

lfrank B' =: r < d,thenrank N =r—e < d — e.

Thus dimp(kerN) =d —r =d — e —rank N.

Now consider B = (T))~'B!T!:

ker B! is contained in an (T.AT~1)!-invariant subspace.
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@ Forallv c ker Bt holds v At £ V.

© The natural module V = F'*? js irreducible.
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e Proof cont'd: Now, B = TBT~" looks like this:
0 ] . where M € Fé%¢ N ¢ F(d—€)x(d-e)

M
r_
B_[* N

Since @ does not hold, ker BN W = {0}.

Thus M has full rank e.

lfrank B' =: r < d,thenrank N =r—e < d — e.

Thus dimp(kerN) =d —r =d — e —rank N.

Now consider B = (T))~'B!T!:

ker B! is contained in an (T.AT~1)!-invariant subspace.
Thus ker B! is contained in an Al-invariant subspace. B
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
© Compute ker B
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
© Compute ker B
© Spinup all 0 # v € kerB
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
© Compute ker B
© Spinup all 0 # v € kerB
Q If some vA < V, we found a submodule, goto @
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
© Compute ker B
© Spinup all 0 # v € kerB
Q If some vA < V, we found a submodule, goto @
© Otherwise spinup one 0 # v € ker B! under A!
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Assume we are given an A-module V = F'*9 by matrices
Ay, ... A € FIx9,

“Chopping” means computing a composition series.

The MeatAxe basically does the following:

A basic step of “Chop”
@ Find an element B € A with small, non-trivial kernel
© Compute ker B
© Spinup all 0 # v € kerB
Q If some vA < V, we found a submodule, goto @
© Otherwise spinup one 0 # v € ker B! under A!
Q If vA! = V, we have proved V to be irreducible, stop
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i “Chopping” means computing a composition series.
The MeatAxe basically does the following:

Norton’s Criterion

A basic step of “Chop”

Chop
G @ Find an element B € A with small, non-trivial kernel

© Compute ker B

© Spinup all 0 # v € kerB

Q If some vA < V, we found a submodule, goto @

© Otherwise spinup one 0 # v € ker B! under A!

Q If vA! = V, we have proved V to be irreducible, stop

@ |0 < W < Vs invariant, compute action on W and
V /W and recurse (with smaller dimensions!)
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The result of “Chop” is a composition series
{0}: V4+1 <Vi<Vi1<---<Vi=V

such that all V;/Vj, are irreducible.
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The result of “Chop” is a composition series
{0}: Vg+1 <Vi<Vi1<---<Vi=V

such that all V;/Vj, are irreducible.

Actually, we find a base change T € F9<9 such that all
matrices TA; T~ for 1 < i < k look like this:

M? o0 ... 0

AT = °© M,
P 0
e x o MO

and the matrices Mj(” describe the action of A on V;/V,_ 4.
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The result of “Chop” is a composition series
{0}: V4+1 <Vi<Vi1<---<Vi=V

such that all V;/Vj, are irreducible.

Actually, we find a base change T € F9<9 such that all
matrices TA; T~ for 1 < i < k look like this:

M? o0 ... 0
AT = °© M,
. 0
* * M1(')

and the matrices Mj(” describe the action of A on V;/V,_ 4.

A more detailed analysis shows that the MeatAxe can
identify isomorphism types of irreducible modules.
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Ay, ..., A € F9x9,
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The MeatAxe can do the following for you:

@ Compute a composition series.

@ Find homomorphism spaces from an irreducible
module to another one.
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Overview over available algorithms

Assume we are given an A-module V = F'*9 by matrices
Aq,... A € FIx9,
The MeatAxe can do the following for you:

@ Compute a composition series.

@ Find homomorphism spaces from an irreducible
module to another one.

@ Identify the isomorphism type of irreducible modules.
@ Compute the socle and radical series.
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Assume we are given an A-module V = F'*9 by matrices
Aq,... A € FIx9,
The MeatAxe can do the following for you:

@ Compute a composition series.

@ Find homomorphism spaces from an irreducible
module to another one.

@ Identify the isomorphism type of irreducible modules.
@ Compute the socle and radical series.
@ Compute the submodule lattice.
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Overview over available algorithms

Assume we are given an A-module V = F'*9 by matrices
Aq,... A € FIx9,
The MeatAxe can do the following for you:

@ Compute a composition series.

@ Find homomorphism spaces from an irreducible
module to another one.

@ Identify the isomorphism type of irreducible modules.
@ Compute the socle and radical series.
@ Compute the submodule lattice.

@ Compute homomorphism spaces between arbitrary
modules.
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Overview over available algorithms

Assume we are given an A-module V = F'*9 by matrices
Aq,... A € FIx9,
The MeatAxe can do the following for you:

@ Compute a composition series.

@ Find homomorphism spaces from an irreducible
module to another one.

@ Identify the isomorphism type of irreducible modules.
@ Compute the socle and radical series.
@ Compute the submodule lattice.

@ Compute homomorphism spaces between arbitrary
modules.

@ Compute cohomology groups.
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@ Compute the socle and radical series.
@ Compute the submodule lattice.

@ Compute homomorphism spaces between arbitrary
modules.

@ Compute cohomology groups.
@ Compute condensed modules.
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