

Anna Akhmanova

Cell Biology Utrecht University The Netherlands

A zoo at the tip: a dynamic protein network controls the fate of microtubule ends

Plus end-tracking proteins accumulate at the growing microtubule ends

GFP-EB3 and mCherry-α-tubulin in a MRC5 human lung fibroblast

0.5s/frame

EB1 family members: EB1, EB2 (RP1) and EB3 (EBF3)

Plus end tracking in vitro

Bieling et al., Nature 2007 (Surrey, Dogterom, Brunner labs)

EB family members autonomously track growing microtubule ends

GFP-EB3

Komarova et al., J Cell Biol 2009

Persistent growth of microtubules the role of EB proteins

EB3-GFP in a CAR goldfish fibroblast

movie: Ilya Grigoriev

FRAP-based analysis of protein exchange on microtubule ends

Ilya Grigoriev

Single molecule analysis of EB3 interaction with microtubules

GFP-EB3 mCherry-EB3

Association Rate (n per 1 μm per 1 nM per 1 s)		Dwell Time (s)		
Lattice	Тір	Lattice	Tip	
2.3 ± 0.9	<u>6.5 ± 0.5</u>	0.16 ± 0.03	<u>0.34 ± 0.04</u>	

Kris Leslie, Lukas Kapitein

EBs – the "core " of +TIP network

+TIPs with basic/serine-rich regions

SxIP motif is a common feature of +TIPs with basic/serine rich regions

hMACF2	PQT <mark>HRPTPRAGSRPSTAKPSKIP</mark> TPQRKSPASKLDKSSKR*
hAPC	FNYN P S PRK SSA D STSA RPSQIP T P VNNNT KKRD S K T D ST E
hCLASP1	GLTGGSS r G PP VT P SS EKR<mark>SKIP</mark>RSQGCSRETSPNRIGLAR
	RSQGCSRETSPNRIGLARSSRIPRPSMSQGCSRDTSRESSR
CLASP2	TVSSGVQ r VLVNSASAQ KR<mark>SKIP</mark>RSQGCSREASPSRLSVAR
	RSQGCSREASPSRLSVARS <mark>SRIP</mark> RPSVSQGCSREASRESSR
hMCAK	NLPLQENVTIQKQKRRSVN <mark>SKIP</mark> APKESLRSRSTRMSTVSE
hDDA3	RLPRPQGAAAKSSSQLPIPSA <mark>IP</mark> RPASRMPLTSRSVPPGRG
mSTIM1	DPDTPSPVGDNRALQGSRNTRIPHLAGKKAMAEEDNGSIGE
mMelan	AAL R AAGLTV KP SG KPRRKS<mark>GIP</mark>IFLPRVTEKLDRIPKTPP

Honnappa et al.,Cell 2009

Dimerization stimulates EB1-binding and plus end tracking of IP motif peptides

Honnappa et al., Cell 2009

Searching for new SxIP +TIPs

Bioinformatics prediction of SxIP motifs

		-5 SxIP	-9AA +5		
APC	2796	DSTSA <mark>RPSQ</mark>	<mark>IPTPV</mark> NNNTK	2814	
APC2	2075	RTTSES <mark>PSR</mark>	<mark>LPVRA</mark> PAARP	2093	
CLASP1	711	TPSSEK <mark>RSK</mark>	<mark>IPRSQ</mark> GCSRE	729	
CLASP1	734	RIGLAR <mark>SSR</mark>	<mark>IPRPS</mark> MSQGC	752	
CLASP2	487	SASAQK <mark>RSK</mark>	<mark>IPRSQ</mark> GCSRE	505	
CLASP2	510	RLSVAR <mark>SSR</mark>	<mark>IPRPS</mark> VSQGC	528	
TIP150	916	SVTAP <mark>RRSL</mark>	<mark>LPAPK</mark> STSTP	934	
Dystonin	7543	RPSTAK <mark>PSK</mark>	<mark>IPTPQ</mark> RKSPA	7561	
MACF1	5402	RRGLNK <mark>PSK</mark>	<mark>IPTMS</mark> KKTTT	5420	
МСАК	91	QKRRSV <mark>NSK</mark>	<mark>IPAPK</mark> ESLRS	109	
STIM1	635	ALQAS <mark>RNTR</mark>	<mark>IPHLA</mark> GKKAV	653	
p140Cap	1031	EKPSAS <mark>RTS</mark>	<mark>IPVLT</mark> SFGAR	1049	
FGFR10P	165	TSAQTT <mark>PSK</mark>	<mark>IPRYK</mark> GQGKK	183	
Melanophilin	503	SGKPRR <mark>KSN</mark>	<mark>LPIFL</mark> PRVAG	521	
DDA3	274	SSQLPI <mark>PSA</mark>	<mark>IPRPA</mark> SRMPL	292	
CDK5RAP2	929	TNREAK <mark>KSR</mark>	LPILIKPSRS	947	
		x ₁ x ₂	$x_3 x_4 x_5 x_6$		
x ₁ -x ₂ -S/T-x ₃ -I/L-P-x ₄ -x ₅ -x ₆ 9AA			Folding and Conservation 833 proteins		
$x_1 - x_4$: at least one of them is R or K					(~4%)
$x_1 - x_6$: none of them are D	or E				

Jiang et al., Curr Biol 2012

Grischa Toedt, Toby Gibson

Comparison between EB pull down and bioinformatics prediction

Jiang et al., Curr Biol 2012

Back-tracking +TIPs: DDA3 (proline/serine-rich coiled-coil 1)

Regulated by p53/p73 (Lo et al., Oncogene 1999; (Hsieh et al., Oncogene 2002)

Binds to EB3 (Hsieh et al., Oncogene 2007)

Targets kinesin-13 KIF2A (MT depolymerase) to the spindle (Jang et al., JCB 2008)

Back-tracking +TIPs: DDA3

GFP-DDA3/ EB3-RFP **GFP-DDA3** EB3-RFP

Jiang et al., Curr Biol 2012

Plasma membrane binding: FAM123A/AMER2 (homologue of WTX)

GFP-FAM123A

EB3-RFP

GFP- FAM123A / EB3-RFP

WTX=AMER1 (Wilms Tumor gene on the X chromosome) Regulates Wnt signaling, binds to APC, Binds to PIP2 on the plasma membrane

Jiang et al., Curr Biol 2012

How many different proteins can bind to one microtubule tip at the same time?

Growing Microtubule Tip

Are all growing microtubule tips in the same cell the same?

<u>Stromal</u> Interaction <u>Molecule:</u> STIM

• STIM1 is a transmembrane protein, which localizes predominantly to the ER

 STIM 1 is as a sensor of ER luminal Ca²⁺ and is essential for storeoperated Ca²⁺ entry

• Upon Ca²⁺ release from the ER, STIM1 locally activates Ca²⁺ channels in the plasma membrane

GFP-STIM1 colocalizes with plus end marker EB3

GFP-STIM1 and EB3-mRFP in a MRC5 human lung fibroblast

1 s/ frame

Grigoriev et al., Curr. Biol 2008

Tip Attachment Complex-mediated ER protrusion

GFP-STIM1 and mCherry-tubulin

in a MRC5 human lung fibroblast

1 s/frame

Grigoriev et al., Curr. Biol 2008

What do +TIPs do?

Regulation of microtubule dynamics

SLAINs

- SLAIN1 and SLAIN2 are present in all vertebrates
- SLAIN1 was identified as a novel embryonic stem cell gene Hirst, CE et al., Dev Biol. 2006 May 1;293(1):90-103
- SLAINs were named after amino acid stretch in SLAIN1:

HsSL1 528-ALPRP<mark>SLAIN</mark>GSN HsSL2 466-GLPRPSAPSAGGI

• Protein structure:

SLAINs link EB1 to the microtubule polymerase ch-TOG

SLAIN2 depletion causes loss of ch-TOG from microtubule tips

SLAIN2 knockdown in HeLa cells

Control siRNA

SLAIN2 siRNA

Stable EB3-GFP HeLa cell line

Knockdown of SLAIN2 and ch-TOG gives a similar MT dynamics phenotype

SLAIN2 and ch-TOG depletion increases catastrophe frequency in CHO cells

Control shRNA

SLAIN2 shRNA

EB3-GFP, Projection analysis

SLAINs are part of a complex protein network that promotes microtubule growth

EB1+EB3 depletion increases catastrophe frequency, but not as dramatically as SLAIN depletion

Ilya Grigoriev

EBs bind not only to MT stabilizers but also to destabilizers

MCAK is a microtubule depolymerase

GFP-MCAK + mCherry-EB3 (+ATP)

Montenegro Gouveia et al., Curr Biol 2010

GFP-MCAK is a gift of L.Wordeman

The proximal part of EB1 tail participates in binding to SxIP peptides

EB1c -SxIP peptide

EB1c-∆ tail -SxIP peptide

Michel Steinmetz

EB3 lacking the tail does not bind to MCAK and does not target it to the tips

Montenegro Gouveia et al., Curr Biol 2010

Targeting to microtubule tips by EB3 promotes MCAK-mediated catastrophe induction

Montenegro Gouveia et al., Curr Biol 2010

IP->NN mutation in MCAK abolishes plus end tracking in cells

MCAK WT

MCAK IP/NN

Honnappa et al., Cell 2009

IP->NN mutation in MCAK abolishes plus end tracking in vitro

Montenegro Gouveia et al., Curr Biol 2010

MCAK is a microtubule depolymerase

GFP-MCAK

Does plus end targeting enhance or inhibit depolymerization activity?

MCAK IP->NN mutant depolymerizes microtubules less efficiently

GFP-MCAK

β-tubulin

EB-dependent targeting of MCAK to microtubule tips makes it a more potent catastrophe inducer A complex and flexible network of microtubule tip-interacting proteins and their partners controls the dynamics of individual microtubule ends

Acknowledgements

Cell Biology, Faculty of Science, Utrecht University, The Netherlands

Faculty of Science Utrecht University

Acknowledgements

Cell Biology, Faculty of Science, Utrecht University, The Netherlands

Babet van der VaartAndrea MarquesIlya GrigorievEugene KatrukhaKai JiangHelma van RielHarinath DoodhiCarol YuRenu MohanBenjamin Bouchet

Casper Hoogenraad and members of his lab

Paul Scherrer Institut Switzerland Michel Steinmetz and members of his lab Erasmus MC Rotterdam, The Netherlands Jeroen Demmers

RIKEN, Kobe, Japan Yuko Mimori-Kiyosue