Local Langlands correspondence and Weil restriction (joint work with Roger Plymen)

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université, et Université Paris Diderot 4 place Jussieu, 75005 Paris, France

ALGEBRAIC AND ANALYTIC ASPECTS OF AUTOMORPHIC FORMS

ICTS, Bangalore, India 25 February - 07 March, March 2019 Let E/F be a finite and Galois extension extension of non-archimedean local fields, with degree denoted by d. Review of the ramification of the Galois group $\Gamma = \Gamma_{E/F} := \operatorname{Gal}(E/F)$ in the lower numbering : We have a decreasing sequence of normal subgroups of Γ :

(*)
$$\Gamma = \Gamma_{-1} \supseteq \Gamma_0 \supseteq \Gamma_1 \supseteq \Gamma_2 \supseteq \cdots \supseteq \Gamma_i = \Gamma_{i+1} = \cdots = \{1\}$$

where Γ_i is the group of elements in Γ acting trivially on the quotient of the ring of integers of E by the (i+1)th power of its maximal ideal. If t is a real number ≥ -1 , let Γ_t denote the ramification group Γ_i , where i is the smallest integer $\geq t$.

We set $\Gamma_{t+} := \bigcap_{t'>t} \Gamma_{t'}$ and we call t a **break** (or **jump**) of the filtration if $\Gamma_{t+} \neq \Gamma_t$. Let b denote the largest ramification break in the filtration.

Remark

- E/F is unramified if and only if $\Gamma_0 = 1$. In that case, b = -1.
- E/F is tamely ramified if and only if $\Gamma_1 = 1$. In that case, b = 0.

For $t \ge 0$, we denote by $(\Gamma_0 : \Gamma_t)$ the index of Γ_t in Γ_0 . For $t \in [-1,0)$, we set $(\Gamma_0 : \Gamma_t) := (\Gamma_t : \Gamma_0)^{-1}$. Let e = e(E/F) denote the ramification index of E/F.

The Hasse-Herbrand function $\varphi_{E/F} \colon [-1, \infty) \to \mathbb{R}$ is defined by

$$\varphi_{E/F}(u) := \int_0^u \frac{1}{(\Gamma_0 : \Gamma_t)} dt.$$

It is continuous, piecewise linear, increasing and concave.

Remark : Let the ramification breaks occur at b_1 , b_2 , . . . , $b_k = b$. We have

$$\frac{b}{e} = \int_{0}^{b} \frac{1}{(\Gamma_{0} : \{1\})} dt
= \int_{0}^{b_{1}} \frac{1}{(\Gamma_{0} : \{1\})} dt + \dots + \int_{b_{k-1}}^{b} \frac{1}{(\Gamma_{0} : \{1\})} dt
\leq \int_{0}^{b_{1}} \frac{1}{(\Gamma_{0} : \Gamma_{b_{1}})} dt + \dots + \int_{b_{k-1}}^{b} \frac{1}{(\Gamma_{0} : \Gamma_{b})} dt
= \varphi_{E/F}(b),$$

so that $\varphi_{E/F}(b) - \frac{b}{e} \ge 0$, with equality if and only if b = 0.

Proposition

Let r > 0. Then we have

$$\varphi_{E/F}(er) = r + \varphi_{E/F}(b) - \frac{b}{e} \ge r,$$

where e=e(E/F) denotes the ramification index of E/F. In particular, $\varphi_{E/F}(er)=r$ if and only if E/F is tamely ramified.

Corollary

We have

$$\frac{\varphi_{E/F}(er)}{r} \to 1 \quad \text{as} \quad r \to \infty.$$

For later use : Define an upper numbering on ramification groups by setting

$$\Gamma^s := \Gamma_t$$
, if $s = \varphi_{E/F}(t)$.

Upper numbering behaves well with respect to quotients, i.e., if H is a normal subgroup of Γ , then $(\Gamma/H)^s = \Gamma^s H/H$.

The ramification in the upper numbering of the absolute Galois group $\Gamma_F := \operatorname{Gal}(\overline{F}/F)$ is defined as follows :

$$\Gamma(F)^t := \operatorname{proj\,lim}\,\operatorname{Gal}(L/F)^t$$

with L running through the set of finite Galois extensions of F.

The ramification in the upper numbering of the Weil group W_F of F is then inherited from the ramification in the upper numbering of the absolute Galois group :

$$W_F^t \hookrightarrow \Gamma(F)^t$$
.

Let X be an E-group scheme of finite type. The Weil restriction $\mathfrak{R}_{E/F} X$ is a finite type F-scheme satisfying the universal property :

$$(\mathfrak{R}_{E/F}X)(A)=X(E\otimes_FA),$$

for any F-algebra A. The Weil restriction exists as a F-scheme of finite type, and it has a natural F-group structure.

Notation

Let **G** be a split connected reductive group over E and let $\mathbf{M}:=\mathfrak{R}_{E/F}\,\mathbf{G}$.

Let G^{\vee} be the **Langlands dual group** of **G**, that is, the complex Lie group with root system dual to that of **G**.

Examples

- $G^{\vee} = \operatorname{GL}_n(\mathbb{C})$ if $G = \operatorname{GL}_n(F)$,
- $G^{\vee} = \mathrm{PGL}_n(\mathbb{C})$ if $G = \mathrm{SL}_n(F)$ and $G^{\vee} = \mathrm{SL}_n(\mathbb{C})$ if $G = \mathrm{PGL}_n(F)$,
- $G^{\vee} = \operatorname{Sp}_{2n}(\mathbb{C})$ if $G = \operatorname{SO}_{2n+1}(F)$,
- $G^{\vee} = \mathrm{SO}_{2n+1}(\mathbb{C})$ if $G = \mathrm{Sp}_{2n}(F)$,
- $G^{\vee} = \mathrm{SO}_{2n}(\mathbb{C})$ if $G = \mathrm{SO}_{2n}(F)$.

Next goal : to define the Langlands dual group M^{\vee} of **M**.

Notation

Let A be a group, A' be a subgroup of A of finite index, and let D be an A'-module. Let D^* be the group of maps f of A into D such that f(a'a) = a'f(a) for all $a \in A, a' \in A'$. Make D^* into a A-module by setting (sf)a = f(as) with $a, s \in A$. Write $D^* = \operatorname{Ind}_{A'}^A(D) := \operatorname{I}_{A'}^A(D)$.

Definition

The Shapiro isomorphism is defined as follows:

$$\operatorname{Sh}_A^{A'} : \operatorname{H}^1(A, D^*) \simeq \operatorname{H}^1(A', D), \qquad \alpha \mapsto (\theta \circ \alpha)|A',$$

where $\theta \colon D^* \to D$ is the morphism defined by $\theta(f) = f(1_A)$.

Remark

Let B be a group, $\mu \colon B \to A$ a homomorphism. Let $B' = \mu^{-1}(A')$ and assume that μ induces a bijection $B/B' \to A/A'$. Then $f \mapsto \mu \circ f$ induces an isomorphism $\mu' \colon \mathrm{I}_{A'}^A(D) \simeq \mathrm{I}_{B'}^B(D)$.

The absolute Weil group W_F of F

- It is a subgroup of the absolute Galois group $Gal(\overline{F}/F)$.
- We have an exact sequence

$$1 o I_{\mathsf{F}} o \operatorname{Gal}(\overline{\mathsf{F}}/\mathsf{F}) o \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) o 1$$

where I_F is the inertia group and \mathbb{F}_q is the residual field of F.

- Then $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \simeq \widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$.
- W_F is defined to be the inverse image of \mathbb{Z} under $\operatorname{Gal}(\overline{F}/F) \to \operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$.

Let W_F' denote the Weil-Deligne group of F defined as $W_F':=W_F\ltimes\mathbb{C}$ with $w\cdot z=||w||\cdot z$ for all $w\in W_F,z\in\mathbb{C}$, where w acts on \mathbb{F}_q as $x\mapsto x^{q||w||}$. Define similarly W_F' .

We will apply the previous Remark thrice.

• With $A=W_F$, $A'=W_E$, $B=W_F'$, $\mu\colon W_F'\to W_F$ then $B'=W_E'$. The condition $B/B'\simeq A/A'$ is satisfied. We infer that

$$\operatorname{Ind}_{W_{F}'}^{W_{F}'} G^{\vee} \simeq \operatorname{Ind}_{W_{E}}^{W_{F}} G^{\vee}.$$

• With $A = \Gamma_F$, $A' = \Gamma_E$, $B = W_F$, $\mu \colon W_F \to \Gamma_F$ then $B' = W_E$. The condition $B/B' \simeq A/A'$ is satisfied. We infer that

$$\operatorname{Ind}_{W_E}^{W_F} G^\vee \simeq \operatorname{Ind}_{\Gamma_E}^{\Gamma_F} G^\vee.$$

• With $A = \operatorname{Gal}(L/F)$, $A' = \operatorname{Gal}(L/E)$, $B = \Gamma_F$, μ given by the projection $\Gamma_F \to \operatorname{Gal}(L/F)$ then $B' = \Gamma_E$. The condition $A/A' \simeq B/B'$ is satisfied. We infer that

$$\operatorname{Ind}_{\Gamma_E}^{\Gamma_F} G^{\vee} \simeq \operatorname{Ind}_{\operatorname{Gal}(L/E)}^{\operatorname{Gal}(L/F)} G^{\vee}.$$

Definition

The common value will be denoted M^{\vee} :

$$M^\vee := \operatorname{Ind}_{W_E}^{W_F} G^\vee \simeq \operatorname{Ind}_{W_E'}^{W_F'} G^\vee \simeq \operatorname{Ind}_{\Gamma_E}^{\Gamma_F} G^\vee \simeq \operatorname{Ind}_{\operatorname{Gal}(L/E)}^{\operatorname{Gal}(L/F)} G^\vee.$$

Theorem [A-Plymen]

Assume that $\mathbf{G} = \operatorname{GL}_n$ and let $\lambda_G \colon \operatorname{Irr} \mathbf{G}(E) \simeq \operatorname{Hom}(W_E', G^{\vee})$ denote the LLC for $\mathbf{G}(E)$.

Set $\operatorname{Sh} := \operatorname{Sh}_{W_E'}^{W_F'}$ and let ι denote the natural bijection from $\operatorname{Irr} \mathbf{M}(F)$ to $\operatorname{Irr} \mathbf{G}(E)$.

Then

$$\lambda_{M} := \mathrm{Sh}^{-1} \, \circ \, \lambda_{G} \, \circ \, \iota$$

defines a bijection from $\operatorname{Irr} \mathbf{M}(F)$ onto $\mathrm{H}^1(W_F',M^\vee)$.

The bijection λ_M should provide the LLC for M. When \mathbf{M} is a torus, it is indeed the case (Langlands).

We will consider in this section the case n=1, that is $\mathbf{G}=\mathrm{GL}_1$. The group $\mathrm{GL}_1(E)=E^\times=\mathbb{G}_{\mathrm{m}}$ is an affine algebraic variety with defining equation xy-1=0 in affine space \mathbb{A}^2 . Upon restriction of scalars, E^\times becomes a connected commutative algebraic group with defining equation in the affine space \mathbb{A}^{2d} . This algebraic group $\mathbf{M}=\mathfrak{R}_{E/F}\,\mathbb{G}_{\mathrm{m}}$ is a torus defined over F, called an *induced torus*. We have $\mathbf{M}(F)=E^\times$.

Theorem (Langlands)

Let T be a torus defined over F.

There is a unique family of homomorphisms

 $\lambda_T \colon \mathrm{Hom}(\mathsf{T}(F),\mathbb{C}^\times) \to \mathrm{H}^1(W_F,T^\vee)$ with the following properties :

- (1) λ_T is additive functorial in T, i.e., it is a morphism between two additive functors from the category of tori over F to the category of abelian groups;
- (2) For $T=\mathfrak{R}_{E/F}\,\mathbb{G}_{\mathrm{m}}$ where E/F is a finite separable extension, λ_T is the isomorphism described above.

The Weil group W_F carries an upper number filtration $\{W_F^r : r \ge 0\}$ and

Remark : The upper number filtration of W_F is compatible with the filtration of F^{\times} via the local class field theory isomorphism :

$$(W_F^r)^{ab} \simeq F_r^{\times}.$$

Depth

Recall that $\mathbf{M} = \mathfrak{R}_{E/F} \operatorname{GL}_n$. Define the depth of a co-cycle $a \in \operatorname{H}^1(G, M^{\vee})$ to be

$$dep(a) := \inf \{r \ge 0 : W_F^s \subset \ker(a) \text{ for any } s > r\}.$$

Recall that ι denotes the natural bijection from $\operatorname{Irr} \mathbf{M}(F)$ to $\operatorname{Irr} \mathbf{G}(E)$.

Proposition (Mishra-Pattanayak for $\mathbf{M} = \mathbf{T}$, A-Plymen for \mathbf{M} arbitrary)

We have

$$dep(\lambda_M(\pi)) = \varphi_{E/F}(dep(\lambda_G(\pi_E))),$$

where $\pi_E := \iota(\pi)$.

The multiplicative group F^{\times} admits, for r > 0, a standard filtration :

$$F_r^{\times} = \{ x \in F^{\times} : \operatorname{val}_F(x-1) \ge r \}$$

On the other hand T(F) carries a Moy-Prasad filtration

$$\{\mathbf{T}(F)_r: r\geq 0\}.$$

When $\mathbf{T} = \mathfrak{R}_{E/F}(\mathbb{G}_m)$, we have

$$\mathbf{T}(F)_r = \{t \in \mathbf{T}(F) : \operatorname{val}_E(t-1) \ge er\} = E_{er}^{\times}$$

where val_E is the valuation on E normalized so that $\operatorname{val}_F(F^\times) = \mathbb{Z}$.

The *depth* of a character $\chi \colon T(F) \to \mathbb{C}^{\times}$ is

$$dep(\chi) := \inf\{r \ge 0 : \mathbf{T}(F)_s \subset \ker(\chi) \text{ for } s > r\}.$$

Comparison of depths

Theorem (J.-K. Yu)

In the LLC for T, depth is preserved if E/F is tamely ramified.

Theorem (Mishra-Pattanayak)

$$dep(\lambda_T(\chi)) = \varphi_{E/F}(e \cdot dep(\chi))$$

where χ is any character of $\mathbf{T}(F)$.

Mishra and Pattanayak constructed examples with E/F wildly ramified in which the depth is not preserved by the LLC.

As a combination of the theorem above and of the property of the Hasse-Herbrand function, we obtain :

Theorem (A-Plymen)

In the LLC for T, depth is preserved (for positive depth characters) if and only if E/F is tamely ramified.

If E/F is wildly ramified then, for each character χ of $\mathbf{T}(F)$ such that $dep(\chi) > 0$, we have

$$dep(\lambda_T(\chi)) > dep(\chi),$$

and

$$dep(\lambda_T(\chi))/dep(\chi) \to 1$$
 as $dep(\chi) \to \infty$.

A Langlands parameter for M is a homomorphism

$$\phi \colon W_F' \to M^{\vee} \rtimes W_F =: {}^L M$$

where ϕ satisfies several conditions, one of which is

$$\phi(w) = (a(w), \nu(w)) \in M^{\vee} \rtimes W_F$$

for all $w \in W_F'$, where ν is the projection map $W_F' \to W_F$. The crossed product rule for $M^\vee \rtimes W_F$ implies that

$$a(ww') = a(w)(\nu(w) \cdot a(w')) \in M^{\vee}$$

so that the map $w \mapsto a(w)$ is a 1-cocycle of W'_F with values in M^{\vee} .

This determines an injective map

$$j \colon \Phi(M) \to \mathrm{H}^1(W_F', M^{\vee}), \qquad \phi \mapsto a$$

where $\Phi(M)$ is the set of $(M^{\vee}$ -conjugacy classes) of Langlands parameters for M.

Depth of *L*-parameters

For $\phi \in \Phi(M)$, we set

$$dep(\phi) := \inf \{ r \ge 0 : W_F^s \subset ker(\phi) \text{ for any } s > r \}.$$

We have $dep(\phi) = dep(j(\phi))$.

Take d=[E:F]=2. Recall that $\mathbf{G}=\mathrm{GL}_n$. We denote by V the n-dimensional \mathbb{C} -vector space \mathbb{C}^n . The L-group of $G=\mathbf{G}(F)$ is ${}^LG=G^\vee\rtimes W_F$ where $G^\vee=\mathrm{GL}_n(\mathbb{C})=\mathrm{GL}(V)$. We have

$$M^{\vee} = \operatorname{Ind}_{W_{E}}^{W_{F}}(^{L}G^{\circ}) = \operatorname{Ind}_{W_{E}}^{W_{F}}(\operatorname{GL}_{n}(\mathbb{C})) = \operatorname{GL}_{n}(\mathbb{C}) \times \operatorname{GL}_{n}(\mathbb{C})$$

and the *L*-group of M is ${}^LM=M^\vee\rtimes W_F$, where W_F permutes the two factors $\mathrm{GL}_n(\mathbb{C})$. We will write

$$w\cdot (g_1,g_2)=(g_{w(1)},g_{w(2)}),\quad \text{for }g_i\in \mathrm{GL}(V)\text{ and }w\in W_F.$$

Let $\widetilde{\mathbf{G}}$ denote the group GL_N where $N=n^2$. The L-group of $\widetilde{G}=\widetilde{\mathbf{G}}(F)$ is ${}^L\widetilde{G}=\widetilde{G}^\vee\rtimes W_F$ where $\widetilde{G}^\vee=\mathrm{GL}_N(\mathbb{C})=\mathrm{GL}(V^{\otimes 2})$.

Let $r: {}^LM \to {}^L\widetilde{G}$ denote the map defined by

$$r(g_1,g_2,w):=(g_{w(1)}\otimes g_{w(2)},w)\quad \text{for }g_1,\,g_2\text{ in }\mathrm{GL}(V)\text{ and }w\in W_F,$$

where

$$(g_{w(1)} \otimes g_{w(2)})(v_1 \otimes v_2) = g_{w(1)}(v_1) \otimes g_{w(2)}(v_2),$$

for v_1 , $v_2 \in V$.

Let \mathfrak{o}_E denote the ring of integers of E and let \mathfrak{p}_E be the maximal ideal of \mathfrak{o}_E . Let ψ_E be a continuous nontrivial additive character of E and let $c(\psi_E)$ be the largest integer c such that ψ is trivial on \mathfrak{p}_E^{-c} . For $\Pi_E \in \mathrm{Irr}(GL_N(E))$, let $\varepsilon(s,\Pi_E,\psi_E)$ denote the Godement-Jacquet local constant. It takes the form

$$\varepsilon(s, \Pi_E, \psi_E) = \varepsilon(0, \Pi_E, \psi_E) q^{-f(\Pi_E, \psi_E)s},$$

where $\varepsilon(0, \Pi_E, \psi_E) \in \mathbb{C}^{\times}$.

The integer $f(\Pi_E) := f(\Pi_E, \psi_E) - Nc(\psi_E)$ is called the *conductor* of Π_E .

We have

$$dep(r \circ \phi) = dep(\phi)$$
, for any *L*-parameter $\phi \colon W_F' \to {}^L M$.

Let $\pi \in \operatorname{Irr}(\mathbf{M}(F))$ with *L*-parameter ϕ . We have $\operatorname{dep}(\phi) = \operatorname{dep}(\lambda_{M}(\pi))$. Then we get

$$dep(r \circ \phi) = \varphi_{E/F}(dep(\lambda_G(\iota(\pi)))).$$

As before we put $\pi_E := \iota(\pi) \in \operatorname{Irr}(\operatorname{GL}_n(E))$. Recall that $N = n^2$.

Let $As(\pi_E) \in Irr(GL_N(F))$ be the representation with *L*-parameter $r \circ \phi$. It is the *Asai lift* of π_E .

Theorem (A-Plymen)

We assume (for simplicity of the exposition) that $n \ge 2$. Then we have

$$f(\mathrm{As}(\pi_E)) = \varphi_{E/F}\left(\frac{f(\pi_E) - n}{n}\right) + n^2.$$

Proof

We have

$$f(\mathrm{As}(\pi_E)) = egin{cases} N-1 & ext{if } N=1 ext{ and } \mathrm{As}(\pi_E) ext{ is unramified,} \\ N\mathrm{dep}(\mathrm{As}(\pi_E)) + N & ext{otherwise.} \end{cases}$$

We consider the case when $N \geq 2$. Since LLC for $\mathrm{GL}_N(E)$ preserves the depth, we get

$$f(\mathrm{As}(\pi_E)) = N \mathrm{dep}(\mathrm{As}(\pi_E)) + N = N \mathrm{dep}(r \circ \phi) + N.$$

Then we obtain

$$f(As(\pi_E)) = \varphi_{E/F}(dep(\lambda_G(\pi_E))) + N.$$

We check that

$$f(\operatorname{As}(\pi_E) = \varphi_{E/F}(\operatorname{dep}(\phi_E)) + N = \varphi_{E/F}(\frac{f(\pi_E) - n}{n}) + N.$$

Thank you very much for your attention