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Abstract

We describe the computation of next to leading order QuantumChromodynamics radiative corrections

to resonant production of a scalar particle φ at Hadron colliders such as the Tevatron at Fermilab

and the LHC at CERN. We use dimensional regularisation to regulate ultraviolet, soft and collinear

singularies that are present in various parton level sub process contributions. We show how soft

singularities cancel between virtual and real emission subprocesses. The remaining UV and collinear

singularities are removed using MS scheme . Finally, we demonstrate how next to leading corrections

reduce renormalisation and factorisation scale dependence of production cross section making our

theoretical predictions more stable under perturbation.
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1 Introduction

Leading order predictions of observables at hadron colliders often suffer from various theoretical uncer-
tainties. These uncertainties arise from missing higher order perturbative corrections, choice of renor-
malisation, factorisation scales and parton distribution functions and experimental inputs that serve as
boundary conditions for renormalisation group equations. In this article we discribe how next to lead-
ing order QCD corrections can improve the theoretical predictions with respect to renormalisation and
factorisation scale choices. We have considered total cross section for resonant production of a scalar
particle as our observable to demostrate this.

2 Resonant production of a scalar particle

In this section, we explain in detail, the computation of NLO (order αs (αs = g2s/4π)) QCD radiative
corrections to resonant production of a neutral scalar particle φ in hadron colliders. The hadronic reaction
is given by

H1(P1) +H2(P2) → φ(p) +X , (1)

where H1 and H2 denote the incoming hadrons, Pi(i = 1, 2) their momenta and X represents an inclusive

hadronic state. The action that describes the interaction of φ̂ with the quark and anti-quark fields is
given by Yukawa interaction:

SY =

∫

d4ξ Lint(ξ) = Ŷ

∫

d4ξ φ̂(ξ) ψ̂(ξ)ψ̂(ξ) (2)

where Ŷ is the bare coupling strength of the interaction.

In the parton model, we can express the hadronic cross section, σH1H2 for the reaction given in
eqn.(1) in terms of ultraviolet (UV) renormalised partonic cross sections σ̂ab, a, b = q, q, g and bare

parton distribution functions f̂c(xi) , i = 1, 2 and c = q, q, g of colliding partons as follows:

σH1H2(S,m2) =

∫

dx1

∫

dx2f̂a(x1)f̂b(x2)σ̂ab(ŝ,m
2) (3)

2

P2

a

b

P1

φ
=

X

2

⊗
a

P1

2

⊗
b

P2

2

φ

a

b

X

where S = (P1 + P2)
2 and ŝ = (x1P1 + x2P2)

2 are the center of mass energies of incoming hadrons
and partons respectively. m is the mass of the final state scalar particle. The sum over a and b is
implied for the repeated indices. The bare parton distribution function f̂c(x) describes the probability
of finding a parton of type c which carries a momentum fraction x of the hadron. Since the partonic
cross sections are often singular due to collinear kinematics of massless partons we have put ”hats” on
parton distribution functions fc(xi) (c = a, b and i = 1, 2) and on partonic cross sections. The parton
distribution functions describe long distance part of the hadronic cross section and hence they are not
computable in perturbative QCD. On the other hand, the bare partonic cross sections σ̂ab that describe
the short distance part of the reaction can be computed in QCD perturbation theory using

σ̂ab(ŝ,m
2) =

1

2ŝ

∫

[dPSm] Σ|Mab|2 (4)
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as a series expansion in strong coupling constant gs. In the above equation Mab is the amplitude for the
partonic scattering reaction

a(pa) + b(pb) → φ+
∑

c

c(pc), a, b, c = q, q, g (5)

with pa, pb and pc are the momenta of partons a, b and c respectively. The symbol
∑

means suming
over spin/polarisation and color of final state partons c and averaging the spin/polarisation and color of
incoming partons a and b. The phase space integration is given by

∫

[

dPSab
m

]

=

∫ m
∏

i=1

(

dn−1pi
(2π)n−12p0i

)

(2π)nδn(

m
∑

j=1

pj − pa − pb) (6)

Defining

∆̂(τ̂ ,m2) ≡ ŝσ̂ab(ŝ,m
2), τ̂ =

m2

ŝ
(7)

and using the identity

∫

dτ̂δ(τ − τ̂x1x2) =
S

ŝ
, τ =

m2

Ŝ
(8)

we can express the hadronic cross section, eqn.(3) as

σH1H2(S,m2) =
1

S

∫

dx1

∫

dx2

∫

dτ̂ f̂a(x1)f̂b(x2)∆̂ab(τ̂ ,m
2)δ(τ − τ̂x1x2) (9)

The above expression can be written in ”convolution” notation as follows:

σH1H2(S,m2) =
1

S
f̂a ⊗ f̂b ⊗ ∆̂ab(m

2) (10)

Beyond the leading order in perturbative QCD, the partonic cross sections σ̂ab get contributions from
subprocesses involving loops with virtual partons as well as from emission of additional real partons.
These subprocesses often suffer from various singularities resulting from ultraviolet, soft and collinear
regions of loop integrations and also from soft and collinear regions of phase space integrations. In the
following we will regulate all these singularities using dimensional regularisation, where the number of
space time dimensions is taken to be n = 4+ ε with ε being a complex number. The singularities in the
resulting subprocess partonic cross sections will appear as poles in 1/εα where α = 1, 2. The ultraviolet
singularies can be systematically removed by using renormalisation prescription namely MS. The soft
singularities that arise due to massless gluons present in the virtual as well as real emission subprocesses
cancel among themselves thanks to Kinoshita-Lee-Nauenberg (KLN) theorem. The collinear singularities
arise when two or more massless partons become collinear to each other. They often do not cancel and
hence the partonic cross sections are collinear singular beyond leading order. We will describe how these
singularities are removed in the following.

It is often contivenient to work with bare strong constant coupling α̂s and bare Yukawa coupling Ŷ
and finally to replace them by renormalised ones. That is, we expand UV as well as soft finite bare
partonic cross sections interms of bare coupling constants α̂s and Ŷ as follows

∆̂ab(τ̂ ,m
2, ε) = ∆̂

(0)
ab (τ̂ ,m

2, ε) +
α̂s,ε

4π
Sε∆̂

(1)
ab (τ̂ ,m

2, ε) +O(α̂2
s,ε) (11)

where the perturbative coefficients ∆̂
(i)
ab (τ̂ ,m

2, ε) are UV divergent but they will become finite after
coupling constant renormalisations at the renormalisation scale µR:

α̂s,εSε = Zαs
(µ2

R, ε)αs(µ
2
R)

(

1

µ2
R

)
ε
2

(12)
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and

Ŷ 2
ε Sε = Z2

Y (µ
2
R, ε)Y

2(µ2
R)

(

1

µ2
R

)
ε
2

(13)

where

α̂s,ε =
ĝ2s,ε
4π

, ĝs,ε = ĝs

(

1

µ

)
ε
2

, Ŷs,ε = Ŷ

(

1

µ

)
ε
2

(14)

with µ being the scale introduced in order to make ĝs and Ŷ dimensionless in n dimensions. The factor
Sε results from angular averaging in n dimensions and is given by

Sε = exp
(ε

2
(γE − ln(4π))

)

(15)

where γE = 0.577215665 is Euler-Mascheroni constant.

The collinear singularities present in ∆̂(τ̂ ,m2, ε) will go away only if we sum over all the degenerate
initial states. This is achieved by the procedure called mass factorisation wherein one redefines the bare
parton distribution functions f̂c(x) at a scale called factorisation scale µF in such a way that the collinear
singularities in the bare parton cross sections ∆̂(τ̂ ,m2, ε) are removed. Such a collinear renormalised
parton distribution function fa(τ, µ

2
F ) is given by,

fa(τ, µ
2
F ) = Γab(τ, µ

2
F , ε)⊗ f̂b(τ) (16)

where Γab(τ, µ
2
F , ε) are renormalisation kernels defined in MS scheme. They are expanded in powers of

strong coupling constant as

Γab(τ, µ
2
F , ε) = δabδ(1− τ) +

α̂s,ε

4π
Sε

(µ2
F )

ε
2

ε
P

(0)
ab (τ) + (O(α̂2

s,ε)) (17)

P
(0)
ab (τ) are called Altarelli-Parisi splitting functions. These kernels contain right poles in 1/ε to cancel

the collinear singularities in the bare partonic suprocess cross sections. This procedure is called mass
factorisation. Note that this introduces a scale µF parametrising the arbitrariness inherent in the removal
of collinear singularity in the parton cross section through the redefinition of bare parton distribution
functions.

Treating f̂a and fa as components column vectors f̂ and f respectively and Γab the ab components
of a matrix Γ, eqn.(10) can be written as

σH1H2(S,m2) =
1

S
f̂T ⊗ ∆̂(m2, ε)⊗ f̂ (18)

where the argument τ is supressed as it is understood in convolution notation. Substituting eqn.(16) in
eqn.(18) we obtain,

σH1H2(S,m2) =
1

S

(

fT (µ2
F )⊗

[

Γ−1(µ2
F , ε)

]T
)

⊗ ∆̂(m2, ε)⊗
(

Γ−1(µ2
F , ε)⊗ f(µ2

F )
)

(19)

which can be written as

σH1H2(τ,m2) =
1

S
fT (µ2

F )⊗∆(m2, µ2
F )⊗ f(µ2

F ) (20)

where the renormalised parton cross section ∆(τ̂ ,m2, µ2
F ) in the limit ε→ 0 is given by

∆(τ̂ ,m2, µ2
F ) ≡

[

Γ−1(µ2
F , ε)

]T ⊗ ∆̂(m2)⊗ Γ−1(µ2
F , ε) (21)

Expanding the above equation in powers of α̂s as

∆ab(τ̂ ,m
2, µ2

F ) = ∆
(0)
ab (τ̂ ,m

2, µ2
F ) +

α̂s,ε

4π
Sε∆

(1)
ab (τ̂ ,m

2, µ2
F ) +O(α̂2

s,ε) (22)
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and substituting eqn. (16) in eqn.(18) we obtain

σH1H2(S,m2) =
1

S

[

fq ⊗ fq ⊗∆
(0)
qq + fq ⊗ fq ⊗∆

(0)
qq

+
α̂s,ε

4π
Sε

(

fq ⊗ fq ⊗∆
(1)
qq + fq ⊗ fq ⊗∆

(1)
qq

)

+
α̂s,ε

4π
Sε

(

∑

a=q,q

fa ⊗ fg ⊗∆(1)
ag +

∑

a=q,q

fg ⊗ fa ⊗∆(1)
gq

)

+O(α2
s,ε)

]

(23)

where

∆
(1)
qq = ∆̂

(1)
qq − (P (0)

qq + P
(0)
qq )⊗ ∆̂

(0)
qq

(

1

ε
+

1

2
ln(µ2

F )

)

(24)

∆(1)
ag = ∆̂(1)

ag − P
(0)
ag ⊗ ∆̂

(0)
aa

(

1

ε
+

1

2
ln(µ2

F )

)

(25)

∆(1)
ga = ∆̂(1)

ga − P
(0)
ag ⊗ ∆̂

(0)
aa

(

1

ε
+

1

2
ln(µ2

F )

)

a = q, q (26)

are finite parts of the partonic cross sections defined in MS scheme. Finally we replace α̂s,ε by αs(µ
2
R)

in the eqn.(125) because

α̂s,εSε = Zαs
(ε)αs(µ

2
R)

(

1

µ2
R

)
ε
2

=

(

1 +
αs(µ

2
R)

4π

2β0
ε

+O(α2
s)

)

αs(µ
2
R)

(

1

µ2
R

)
ε
2

= αs(µ
2
R) +O(α2

s(µ
2
R)) (27)

Generalising to all orders, we can express the hadronic cross section as follows:

σH1H2(S,m2) = fa(τ, µ
2
F )⊗ fb(τ, µ

2
F )⊗∆ab(m

2, µ2
F )

=
∑

a,b=q,q̄,g

∫ 1

τ

dx1
x1

∫ 1

τ/x1

dx2
x2

fa(x1, µ
2
F ) fb(x2, µ

2
F )∆ab

(

τ

x1 x2
,m2, µ2

F

)

(28)

where the finite ∆ab are given by

∆ab

(

τ̂ ,m2, µ2
F

)

=

∞
∑

i=0

αi
s(µ

2
R)

4π
∆

(i)
ab

(

τ̂ ,m2, µ2
F , µ

2
R

)

(29)
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3 Renormalisation Group Invariance

Recall that the strong coupling constant âs and the Yukawa coupling constant Ŷ are renormalised by the
renormalisation constants ZY (µ

2
R) and Zas

(µ2
R) respectively at the renormalisation scale µR as

âs

(

1

µ2

)
ε
2

Sε = Zas
(µ2

R)as(µ
2
R)

(

1

µ2
R

)
ε
2

Ŷ 2

(

1

µ2

)
ε
2

Sε = Z2
Y (µ

2
R)Y

2(µ2
R)

(

1

µ2
R

)
ε
2

(30)

The fact that âs and Ŷ do not depend on the renormalisation scale µR implies

µ2
R

d

dµ2
R

ln as(µ
2
R) =

ε

2
− µ2

R

d

dµ2
R

lnZas
(µ2

R) =
ε

2
+

1

as(µ2
R)
β(as(µ

2
R))

=
ε

2
−

∞
∑

i=0

ai+1
s (µ2

R)βi

µ2
R

d

dµ2
R

lnY 2(µ2
R) =

ε

2
− µ2

R

d

dµ2
R

lnZ2
Y (µ

2
R) =

ε

2
+ 2γ(as)

=
ε

2
− 2

∞
∑

i=0

ai+1
s (µ2

R)γi (31)

where LO and NLO coefficients β0,β1 are

β0 =
11

3
CA − 4

3
TFnf

β1 =
34

3
C2

A − 4TFnfCF − 20

3
TFnfCA , (32)

the LO and NLO coefficients γ0 and γ1 are

γ0 = 3CF

γ1 =
3

2
C2

F +
97

6
CFCA − 10

3
CFTFnf (33)

and the color factors for SU(N) QCD are given by

CA = N, CF =
N2 − 1

2N
, TF =

1

2
(34)

and nf is the number of active flavours. Using das/β(as) = dµ2
R/µ

2
R, in the limit ε→ 0 we find

d

das
lnY (as) =

γ(as)

β(as)
(35)

The solution to the above equation is given by

Y (as(µ
2
R)) = Y (as(µ

2
0)) exp

(

∫ as(µ
2

R)

as(µ2

0
)

das
γ(as)

β(as)

)

(36)

Expanding the integrand in powers of as, the integration in the exponential can be performed easily to
obtain

Y (as(µ
2
R)) = Y (as(µ

2
o))

C(as(µ
2
R))

C(as(µ2
0))

(37)
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where

C(as) = 1 + a
γ0
β0

s

[

1 + as

(

γ1
β0

− β1γ0
β2
0

)

+O(a2s)

]

(38)

In fig. (1), we have plotted LO as well as NLO evolution of αs(µ
2
R) and Y (µ2

R) as a function of renromal-
isation scale µR. Eventhough the parton distribution functions are independent of µR, the LO prediction
of the hadronic cross section depends on the scale µR through partonic cross section which is proportional
to Y 2(µ2

R) for resonant production of a scalar particle.

Strong coupling constant

αs (µR)

LHC

µR = Q

MSTW 2008 LO

MSTW 2008 NLO

LO

NLO

Q (GeV)

0.08

0.09

0.1

0.11

0.12

0.13

200 400 600 800 1000

Scalar coupling constant

λ (µR) LHC

µR = Q

MSTW 2008 LO

MSTW 2008 NLO

LO

NLO

Q (GeV)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

x 10
-2

200 400 600 800 1000

Figure 1: αs and Y are plotted as a function for renormalisation scale µF using LO and NLO evolution
equations.

The mass factorisation/renormalisation of parton distribution functions leads to renormalisation group
equations with respect to factorisation scale µF . Recall that

fa(τ, µ
2
F ) = Γab(τ, µ

2
F )⊗ f̂b(τ) (39)

Demanding that f̂ is µF independent, we obtain

µ2
F

df

dµ2
F

= µ2
F

d

dµ2
F

Γ(µ2
F )⊗ f̂

= µ2
F

d

dµ2
F

Γ(µ2
F )⊗ Γ−1(µ2

F )⊗ f(µ2
F )

=
1

2
Pab(µ

2
F )⊗ f(µ2

F ) (40)

where Pab are the Altarelli-Parisi splitting functions and are defined by

Pab(τ, µ
2
F ) = lim

ε→0
2µ2

F

d

dµ2
F

Γ(µ2
F )⊗ Γ−1(µ2

F ) (41)

The perturbative expansion for Pab is given by

Pab(τ, µ
2
F ) =

∞
∑

i=0

ai+1
s (µ2

F )P
(i)
ab (τ) (42)
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Hence the renormalisation group evolution equation for the parton distribution function can be written
as

µ2
F

d

dµ2
F

fa(τ, µ
2
F ) =

1

2

∫ 1

τ

dz

z
Pac(z, µ

2
F )fc(

τ

z
, µ2

F ) (43)

These are called Altarelli-Parisi evolution equations. Since the hadronic cross section is proportional to
the partonic flux namely

Φab(τ, µ
2
F ) ≡ fa(τ, µ

2
F )⊗ fb(τ, µ

2
F ) =

∫ 1

τ

dz

z
fa(z, µ

2
F )fb

(τ

z
, µ2

F

)

, (44)

we have plotted them in fig.(2) as a function of m for two choices of µF viz m = µF /10 and m = 10µF .

d type Quark flux

Φd d
_ ( τ, µF )

LHC

τ = m2 / S

MSTW 2008 LO
MSTW 2008 NLO

LO ( µF = 0.1 * m)

LO ( µF = 10 * m)

NLO ( µF = 0.1 * m)

NLO ( µF = 10 * m)

m (GeV)

10 2

10 3

10 4

200 400 600 800 1000

Gluon flux

Φgg( τ, µF ) LHC

τ = m2 / S

MSTW 2008 LO

MSTW 2008 NLO

LO ( µF = 0.1 * m)

LO ( µF = 10 * m)

NLO ( µF = 0.1 * m)

NLO ( µF = 10 * m)

m (GeV)

10 3

10 4

10 5

10 6

200 400 600 800 1000

Figure 2: Φdd,Φgg are plotted as a function for renormalisation scale m using LO and NLO evolution
equations for two choices of µF viz µF = m/10, µF = 10m.

∆
(i)
ab ’s beyond leading order (i.e., i > 0) depend on µF . But µF dependence cancels with that coming

from partonic distribution functions fc(τ, µ
2
F ) after convolutions with ∆

(i)
ab s and summed to all orders in

perturbation theory. This is due to the fact that the observable σH1H2(S,m2) is renormalisation group
invariant with respect to µF

µ2
F

d

dµ2
F

σH1H2(S,m2) = 0 . (45)

This implies

µ2
F

d

dµ2
F

σH1H2(S,m2) = µ2
F

d

dµ2
F

(

fT (µ2
F )⊗∆(µ2

F )⊗ f(µ2
F )

)

= 0 (46)

which gives

0 =

(

µ2
F

dfT (µ2
F )

dµ2
F

)

⊗∆(µ2
F )⊗ f(µ2

F ) + f(µ2
F )⊗

(

µ2
F

d∆(µ2
F )

dµ2
F

)

⊗ f(µ2
F )

+f(µ2
F )⊗∆(µ2

F )⊗
(

µ2
F

df(µ2
F )

dµ2
F

)

(47)
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Substituting eqn.(40) in the above equation, we obtain the following renormalisation group equation for
∆(µ2

F )s:

µ2
F

d

dµ2
F

∆(τ̂ ,m2, µ2
F ) = −1

2

[

PT (µ2
F )⊗∆(m2, µ2

F ) + ∆(m2, µ2
F )⊗ P (µ2

F )

]

(48)

Note that in the leading order hadronic cross section, the factorisation scale enters only in the parton
distributions functions namely through Φab and the LO partonic cross sections are independent of µF .
Hence, predictions at leading order will be sensitive to the choice of factorisation scale which is un-
physical. Beyond leading order, partonic cross sections will also depend on the factorisation scale (see
eqn.(24,25,26)) due to mass factorisation.

While each term ∆
(i)
ab for i > 0 in the perturbative expansion of eqn.(29) is dependent on the UV

renormalisation scale µR, the sum to all orders in perturbation theory is µR independent:

µ2
R

d

dµ2
R

∆ab

(

τ̂ ,m2, µ2
F

)

= 0 (49)

This is the statement of renormalisation group invariance.

The renormalisation group equations of αs, Y and fa (see eqns.(31,43)) determine the scale dependence
of fixed perturbative results. Hence, the hadronic cross sections computed using truncated perturbative
results often give renormalisation and factorisation scale dependent predictions. They can spoil the
reliability of the theoretical predictions. In the following sections we will explicitly demonstrate how
both these scale dependences in the hadronic cross sections get reduced as we include next to leading

order contributions ∆
(1)
ab (τ̂ ,m

2).

4 Subprocess contributions

In this section we describe the computational details of ∆
(0)
ab and ∆

(1)
ab that contribute at next to leading

order in perturbative QCD to the resonant production of scalar particle in hadron colliders.

4.1 Leading Order (LO) contribution from q + q → φ

The leading order partonic sub process that contributes to resonant production of φ proceeds through
annihilation of quark and anti-quark as follows:

q̄(p′) + q(p) → φ(q) (50)

where p and p′ are the momenta of incoming quark and anti-quark respectively and q is the momentum
of the outgoing scalar.

The amplitude for this process is given by

M
(0)
qq = −iŶε v̄i(p′) ui(p) with Ŷε =

Ŷ

(µ2)
ε
2

(51)

the subscript i denotes the color index of the quark and anti-quark. Since we consider only light quarks
in the initial state, we have

(p′)2 = p2 = 0 (52)

whereas the scalar has a mass m. The cross-section for the process is

σ̂
(0)
qq (τ̂ ,m2) =

1

4 (p.p′)

∫

[

dPSqq
1

] 1

4N2

∑

spin,color

|M (0)
qq |2 (53)
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Figure 3: Subprocess qi + q̄j → φ at O(α0
s).

where
[

dPSqq
1

]

=
dn−1q

(2π)n−1 2 q0
(2 π)n δn(p′ + p− q) , (54)

the factors 1/4 and 1/N2 arise from the spin and color averaging respectively for the incoming quark and
anti-quark and 4 p · p′ is the flux factor. We can simplify the phase space integration using the identity

∫

dn−1q

(2π)n−1 2 q0
=

∫

dnq

(2π)n
2πδ(q2 −m2)θ(q0) , (55)

to obtain
∫

dn−1q

(2π)n−1 2 q0
(2 π)n δn(p′ + p− q) = 2πδ(ŝ−m2) (56)

The square of the matrix element after suming over spin and color becomes

∑

spin,color

|M (0)
qq |2 = 4NŶ 2

ε p · p′ (57)

Substituting eqns.(56,57) in eqn.(53) we obtain

∆
(0)
qq (τ̂ ,m

2) = ∆̂
(0)
qq (τ̂ ,m

2)

= ∆0 δ(1 − τ̂), ∆0 ≡ Ŷ 2
ε

π

2Nŝ
(58)

4.2 Next to Leading Order (NLO) contributions

The QCD correction to the process of interest has contributions from two different, but related, sources.
First, the quark-pair-initiated process itself receives radiative correction.

O(αs) corrections to q + q → φ (59)

To this must be added the contribution arising from radiating off a soft gluon:

q + q → φ+ g (60)

And secondly, since our true initial state is not quarks, but (anti-)protons, we must include possible
contributions from “initial-state” gluons as well.

q + g → φ+ g

q + g → φ+ g (61)

9



Figure 4: O(αs) virtual gluon corrections to qi + q̄j → φ.

4.2.1 O(αs) correction to q + q → φ

To calculate the QCD radiative correction to this process, we start by computing the O(g2s) corrections to
the vertex function and the self energy, where gs is the QCD strong coupling constant. A prime ingredient
for this is the calculation of the corresponding renormalisation constants Z1,Y and Z2. Even on regulating
the ultraviolet (UV) singularities, we would, expectedly, be left with soft and collinear singularities.
Throughout our calculation we shall use dimensional regularisation to regulate any singlarity and the
MS prescription for renormalising UV singularities.

Let us first consider the vertex function MV upto order g2s . This can be expanded as

MV
qq =M

(0)
qq +M

(1),V
qq (62)

where M
(0)
qq = −iŶεv(p′) u(p), and

M
(1),V
qq = −Ŷε ĝ2s,ε

∫

dnk

(2π)n

v̄(p′) ta ta
[

γµ(−/p′ + /k)(/p+ /k ) γµ

]

u(p)

[(p′ − k)2 + iη ] [(p+ k)2 + iη ] [k2 + iη ]
. (63)

In 4-dimensions, when the components of the momentum k become large, the integral becomes ultraviolate
singular due terms of the form

∫

dk
g(k)

k
: for regular function g(x), it diverges logarithmically in the limit k → ∞. (64)

(65)

In addition to UV singularities, we encounter soft singularities when the gluon in the loop becomes soft,
i.e the momentum of the gluon becomes zero. Also, we find that when the gluon in the loop becomes
collinear to either quark or anti quark, the integral becomes singular which goes by the name collinear
singularity. That is,

∫ ∞

0

d|~k|
|~k|

: diverges logarithmically in the soft limit |~k| → 0. (66)

∫ 1

−1

dcosθ

1− cos2θ
: diverges logarithmically in the collinear limit θ → 0. (67)

The soft and collinear singularies are often called infra-red singularities. The integral that appear in vertex
function has both UV and infra-red singularities but it divides into sum of integrals having disjoint regions
of convergence in 4 + ε dimension. In other words, integrals which are singular in the UV region but
convergent in infra-red region have regions of convergence distinct from those which are convergent in
the UV region but singular in infra-red region. Ofcourse the full integral is not convergent for any value
of ε. We can treat each part separately and for each part there is some domain of 4+ ε in which it exists
and from which it may be analytically continued in the complex 4 + ε plane. Hence, we can work in n
dimensional space time where UV,soft and collinear singularities are regulated simultaneously.

10



The matrices ta are the Gell-Man matrices and satisfy (tata)ij = CF δij , CF = (N2 − 1)/2N . Using

γµ/a/bγ
µ = 4a · b+ (n− 4)/a/b (68)

and the equations of motion, namely

/pu(p) = 0, v(p′)/p′ = 0 (69)

we get

M
(1),V
qq = −Ŷε ĝ2s,ε

∫

dnk

(2π)n

v̄(p′) ta ta
[

− 4p · p′ + 4(p− p′) · k + nk2
]

u(p)

[(p′ − k)2 + iη ] [(p+ k)2 + iη ] [k2 + iη ]
(70)

which can be written as
M

(1),V
qq = v̄(p′) (−i Ŷε) Γ̄(1) u(p) , (71)

where
Γ̄(1) = −i CF ĝ

2
s,ε

[

− 2m2 I1 + 4 (p− p′)µ Iµ + n gµν Iµν

]

, (72)

with

I{1, µ, µν} =

∫

dnk

(2π)n

{

1, kµ, kµ kν

}

[(p′ − k)2 + iη ] [(p+ k)2 + iη ] [k2 + iη ]
. (73)

Naive power counting shows that Iµν is logarithmically divergent in 4-dimensions, while the other two
are convergent. The integrals can be evaluated explicitly (for example, using Feynman parametrisation)
and the results can be expressed in terms of Gamma functions:

I1 = Kε(q)

(

1

q2

)

[

4

ε2
(1 + ε)

]

Iµ = Kε(q)

(

(p′ − p)µ
q2

)

[

2

ε

]

Iµν = Kε(q)

(

− gµν +
pµpν + p′µp

′
ν

q2
(2 + ε)−

pµp
′
ν + pνp

′
µ

q2
ε

)[

2

ε

]

(74)

where

Kε(q) =
1

16π2

(

− q2

4π

)

ε
2 Γ2

(

1 + ε
2

)

Γ
(

1− ε
2

)

Γ (2 + ε)
q = p+ p′ (75)

The resultant vertex function is then (ǫ ≡ n− 4)

Γ̄(1) =
α̂s,ε

4π
CF

(−m2

4π

)

ǫ
2 Γ2

(

1 + ǫ
2

)

Γ
(

1− ǫ
2

)

Γ(2 + ǫ)

[

− 2

ǫ2
(2 + ǫ)2

]

, (76)

with α̂s,ε ≡ ĝ2s,ε/4π.

The renormalisation constant Z1,Y is defined through the relation

Z−1
1,Y = 1 + Γ̄(1)|UV (77)

and, of course, depends on the way the ultraviolet divergent part Γ(1)|UV is isolated. Within the MS
scheme, it can easily be ascertained to be

Z1,Y = 1 +
α̂s,ε

4π
Sε

(

µ2
R

)
ε
2 CF

(

8

ǫ

)

, (78)
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The self energy correction to the Born amplitude (say, to the quark only) can be expressed as

M
(1),S
qq = −i Ŷεv̄(p′)

1

/p
Σ(/p)u(p) , (79)

where

Σ(/p) = −i ĝ2s,ε CF

∫

dnk

(2 π)n
γµ (/p + /k) γµ

[k2 + iη ] [ (p+ k)2 + iη ]
. (80)

Notice that Σ(/p) does not contribute to the amplitude given in eqn.(50) due to the massless nature of
the light quarks. On the other hand, the above equation can be used to determine the wave function
renormalisation constant Z2. In the MS scheme, this can be rewritten as

Z2 = 1 +
α̂s,ε

4π
Sε

(

µ2
R

)
ε
2 CF

(

2

ǫ

)

. (81)

Our next task is to compute the virtual contributions to the process given in eqn.(50). In order to do
this, we have to redefine the fields and the coupling constants in terms of the renormalised ones (and,
of course, the renormalisation constants Z2 and Z1,Y .) This is equivalent to adding UV counter terms
corresponding to the vertex function and the wave function renormalisation constant.

M
(0)+V+CT
qq =M

(0)
qq +M

(1),V
qq +M

(1),CT
qq . (82)

It turns out that the effect of the counter term(CT) is

M
(0)
qq +M

(1),CT
qq =

(

−i Yε(µ2
R)

Z1,Y

Z2

)

v̄(p′) u(p) (83)

Yε(µ
2
R) = Y (µ2

R)/(µR)
ε
2 and the renormalised coupling Y is related to the unrenormalised one through

Y (µ2
R) =

Z2

Z1,Y
S

1

2

ε

(

µR

µ

)
ε
2

Ŷ , ZY =
Z1,Y

Z2
(84)

The virtual and counter term contribution to the Born diagram can be expressed as

σ̂(0)+V +CT =
1

4
(

p · p′
)

∫

dn−1q

(2π)n−12q0

1

4N2

∑

spin,color

(

|M (0)
qq |2 + 2Re

(

M
(0)∗
qq M

(1),V+CT
qq

))

×(2π)nδn(p+ p′ − q) . (85)

M
(1),V+CT
qq =M

(1),V
qq +M

(1),CT
qq . (86)

Performing the phase space integration, we find

σ̂(0)+V +CT =
π

2Ns
Y 2
ε (µ

2
R)

(

1 +
α̂s,ε

4π
SεCFF

(1)

)

δ(1− τ̂ ) , (87)

where

F (1) =
4π

α̂s,εSεCF

(

Z2
1,Y

Z2
2

+ 2Γ̄(1) − 1

)

. (88)

The function F (1) does not contain any UV singularities due to the presence of counter terms defined
through the renormalisation contants Z1,Y , Z2. Using the identities

Re
[

(−1)
ε
2

]

= 1− 3

4
ζ(2)ε2 +O(ε3)

Γ(1 + aε) = exp

(

−aεγE +

∞
∑

k=2

ζ(k)

k
(−aε)k

)

(89)
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Figure 5: O(αs) real gluon emission subprocess: qi + q̄j → φ+ g.

we can simplify Γ
(1)

as

Γ
(1)

=
α̂s,ε

4π
SεCF (m

2)
ε
2

[

− 8

ε2
− 2 + 7ζ(2) +O(ε)

]

(90)

to obtain F (1):

F (1) =

[

− 16

ǫ2
+

12

ǫ
− 4 + 14ζ(2)− 6 ln

(

m2

µ2
R

)

]

. (91)

where ζ(2) = π2/6. Hence, we find

∆̂(0)+V +CT = ŝσ̂(0)+V +CT

= ∆̂
(0)
qq

(

1 +
α̂s,ε

4π
SεCF (m

2)
ε
2

[

− 16

ǫ2
+

12

ǫ
− 4 + 14ζ(2)− 6 ln

(

m2

µ2
R

)

])

. (92)

The double pole term in ε is the result of overlaping of soft and collinear regions in the loop integration
and the simple pole arises from collinear region.

4.2.2 O(αs) contribution from q + q → φ+ g

We now compute the contribution coming from the gluon bremsstrahlung to O(αs):

q(p) + q(p′) → φ(q) + g(k). (93)

Here, k is the momentum of the out going gluon. The corresponding cross-section is

σ̂r
qq =

1

4
(

p · p′
)

∫

[

dPSqq
2

]

Kqq

∑

s,c

|M r
qq|2 (94)

where the spin and color average factor is given by

Kqq =
1

4N2
(95)

and the two body phase space is

[

dPSqq
2

]

=
dn−1k

(2 π)n−1 2 k0
dn−1q

(2 π)n−1 2 q0
(2 π)n δn( k + q − p− p′ ) (96)

and the amplitude M r
qq is given by

M r
qq = − Ŷε ĝs,ε v̄(p

′) ta
[ γµ (/k − /p′)

(k − p′)2
+

(/p− /k) γµ

(p− k)2

]

u(p) ε∗µ(k) . (97)
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The phase space integration can be easily done in the centre of mass frame of incoming quarks wherein
the momenta of the particles can be parametrised as

p =

√
s

2

(

1, 0,~0, 1
)

, p′ =

√
s

2
(1, 0,~0,−1)

k = |q|
(

1, sin θ,~0, cos θ
)

, q =
(

q0,−|q| sin θ,~0,−|q| cos θ
)

q0 =

√
s

2
(1 + τ̂) |q| =

√
s

2
(1− τ̂ ),

(98)

The square of the matrix element is found to be

Kqq

∑

s,c

|M r
qq|2 = Ŷ 2

ε ĝ
2
s,ε

CF

N

[

2(n− 2)p · kp′ · k
(

1

(k − p′)4
+

1

(p− k)4

+
4

(k − p′)2(p− k)2

)

+
8p · p′(p · p′ − p · k − p′ · k)

(p− k)2(k − p′)2

]

(99)

The two body phase space integration reduces to

∫

[

dPSqq
2

]

= 24−2n π1− n
2

Γ
(

n
2 − 1

)

(

ŝ−m2

ŝ

)n−3

ŝ
n
2
−2

∫ π

0

dθ(sin(θ))n−3

=
1

8π

(

m2

4π

)

ε
2 τ̂−

ε
2 (1 − τ̂)1+ε

Γ
(

1 + ε
2

)

∫ 1

0

dy
[

y(1− y)
]

ε
2

, 1 + cos(θ) = 2y (100)

and

∫

[

dPSqq
2

] 1

(k − p′)2α(p− k)2β
=

1

8π

(

m2

4π

)
ε
2 τ̂−

ε
2 (1− τ̂ )1+ε

Γ
(

1 + ε
2

)

(

− τ̂

m2(1− τ̂)

)α+β

×Γ
(

1− α+ ε
2

)

Γ
(

1− β + ε
2

)

Γ (2− α− β + ε)
(101)

Note that the phase space integrations over the square of the matrix elements develop soft and collinear
singularities in 4-dimensions. They appear as poles in 1/ε after the phase space integrations are carried
out.

∫

[

dPSqq
2

]

Kqq |M r
qq|2 = Ŷ 2

ε ĝ
2
s,ε

CF

N

(

1

8π

(

m2

4π

)

ε
2

Γ
(

1 +
ε

2

) τ̂−
ε
2 (1− τ̂ )ε

Γ (2 + ε)

)

×
[

16

ε

(

− 1− τ̂ +
2

1− τ̂

)

− 8− 24τ̂ +
32

1− τ̂
+ 8ε(1− τ̂ )

]

(102)

The term 1/(1 − τ̂ ) present in the above expression is not integrable in because it diverges as τ̂ → 1 or
equivalently ŝ→ m2, a configuration that results from soft gluons. On the other hand, in 4+ε dimensions
the factor that results from phase space measure, (1− τ̂ )ε, regulates integral to produce

∫ 1

0

dz
(1− z)ε

1− z
=

1

ε
for ε > 0 (103)
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For any regular function f(τ̂ ) (regular as τ̂ → 1), we find

∫ 1

0

dτ̂f(τ̂)
(1 − τ̂)ε

1− τ̂
=

∫ 1

0

dτ̂
(

f(τ̂ )− f(1)
)(1− τ̂ )ε

1− τ̂
+ f(1)

∫ 1

0

dτ̂
(1− τ̂ )ε

1− τ̂

=

∫ 1

0

dτ̂
(

f(τ̂ )− f(1)
)

∞
∑

i=0

εi

i!

lni(1− τ̂ )

1− τ̂
+
f(1)

ε

∫

dτ̂δ(1 − τ̂)

=

∫ 1

0

dτ̂f(τ̂)

∞
∑

i=0

εi

i!

(

lni(1− τ̂ )

1− τ̂

)

+

+
f(1)

ε

∫

dτ̂δ(1− τ̂ ) (104)

In the above, the “ + ” prescription for a function lni(1− τ̂ )/(1− τ̂ ) is defined as

∫ 1

0

dτ̂f(τ̂ )

(

lni(1− τ̂)

1− τ̂

)

+

=

∫ 1

0

dτ̂
(

f(τ̂)− f(1)
) lni(1− τ̂ )

1− τ̂
. (105)

From eqn.(104), for any orbitrary regular function, we find

(1− τ̂ )ε

1− τ̂
=

1

ε
δ(1− τ̂ ) +

1

(1− τ̂ )+
+ ε

(

ln(1 − τ̂)

1− τ̂

)

+

+O(ε2) (106)

The above representation is useful to isolate soft singularities as poles in 1/ε in the eqn.(102) to get
∆̂r

qq = ŝσ̂r
qq :

∆̂r
qq = ∆0

α̂s,ε

4π
Sε(m

2)
ε
2CF

[(

16

ε2
− 6ζ(2)

)

δ(1− τ̂ ) +
8

ε

(

− 1− τ̂ +
2

(1− τ̂ )+

)

+4

(

1 + τ̂ − 2

1− τ̂

)

ln(τ̂ )− 8(1 + τ̂) ln(1− τ̂)

+16

(

ln(1 − τ̂)

1− τ̂

)

+

+ 4(1− τ̂ )

]

(107)

Note that soft singularity resulting from τ̂ → 1 overlaps with the singularity coming from collinear
configurations in the two body phase space giving double poles (1/ε2) in the above expression. The single
pole contribution proportional to (−1−τ̂+2/(1−τ̂)) is due to collinear configurations of the emitted gluon
with the incoming quark/anti-quark states. Additing contributions coming from the virtual subprocesses
and UV counter terms, we find

∆̂
(1)
qq = ∆̂

(1),V+CT
qq + ∆̂r

qq

= ∆0(m
2)

ε
2CF

[(

12

ε
− 4 + 8ζ(2)− 6 ln

(

m2

µ2
R

)

)

δ(1− τ̂ )

+
8

ε

(

− 1− τ̂ +
2

(1− τ̂ )+

)

ln(τ̂ ) + 4

(

1 + τ̂ − 2

1− τ̂

)

ln(τ̂ )− 8(1 + τ̂ ) ln(1− τ̂ )

+16

(

ln(1− τ̂ )

1− τ̂

)

+

+ 4(1− τ̂ )

]

(108)
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Figure 6: O(αs) quark (antiquark) gluon initiated subprocess: qi(qi) + g → φ+ qj(qj).

The finite partonic cross section defined by ∆
(1)
qq in eqn.(24) is given by

∆
(1)
qq = ∆̂

(1)
qq −∆02

(

4CF

[

− 1− τ̂ +
2

(1− τ̂ )+
+

3

2
δ(1− τ̂ )

])(

1

ε
+

1

2
ln(µ2

F )

)

(109)

where we have substituted Altarelli-Parisi plitting function given by

P (0)
qq = P

(0)
qq = 4CF

[

− 1− τ̂ +
2

(1 − τ̂)+
+

3

2
δ(1− τ̂ )

]

(110)

in eqn.(24). Substituting eqn.(108) in the eqn.(109), we obtain

∆
(1)
qq = ∆0CF

[(

− 4 + 8ζ(2) + 6 ln

(

µ2
R

µ2
F

)

)

δ(1− τ̂ )

+4

(

− 1− τ̂ +
2

(1− τ̂)+

)

ln

(

m2

µ2
F

)

+ 4

(

1 + τ̂ − 2

1− τ̂

)

ln(τ̂ )

−8(1 + τ̂ ) ln(1 − τ̂) + 16

(

ln(1 − τ̂)

1− τ̂

)

+

+ 4(1− τ̂ )

]

(111)

Note that ∆
(1)
qq is free of UV, soft and collinear singularities and hence suitable for any further study.

4.2.3 O(αs) contribution from q + g → φ+ q

We now compute the final piece, namely the contribution of the Compton-like process to order αs:

q(p) + g(k) → φ(q) + q(p′). (112)

The partonic cross-section is given by

σ̂qg =
1

4
(

p · k
)

∫

[dPSqg
2 ] Kqg

∑

s,c

|Mqg|2 (113)

the spin and color average keeping in my that the gluons have n− 2 polarisation states in n dimensions
gives the factor

Kqg =
1

2(n− 2)N(N2 − 1)
. (114)

and the two body phase space is

[dPSqg
2 ] =

dn−1p′

(2 π)n−1 2 p′0
dn−1q

(2 π)n−1 2 q0
(2 π)n δn( q + p′ − k − p ) (115)
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The matrix element is given by

Mqg = − Ŷε ĝs,εū(p
′) ta

[ γµ (/p′ − /k)

(p′ − k)2
+

(/p+ /k) γµ

(p+ k)2

]

u(p) εµ(k) . (116)

Kqg

∑

s,c

|Mqg|2 = Ŷ 2
ε ĝ

2
s,ε

2TF
N(n− 2)

[

2(n− 2)p · kp′ · k
(

1

(p′ − k)4
+

1

(p+ k)4

+
4

(p′ − k)2(k + p)2

)

+
8p · p′(−p · p′ + p · k − p′ · k)

(k + p)2(p′ − k)2

]

(117)

where TF = 1/2.

p =

√
s

2

(

1, 0,~0, 1
)

, k =

√
s

2
(1, 0,~0,−1)

p′ = |q|
(

1, sin θ,~0, cos θ
)

, q =
(

q0,−|q| sin θ,~0,−|q| cos θ
)

q0 =

√
s

2
(1 + τ̂) |q| =

√
s

2
(1− τ̂ ),

(118)

∫

[dPSqg
2 ]

1

(p′ − k)2α(p+ p′)2β
=

1

8π

(

m2

4π

)
ε
2 τ̂−

ε
2 (1− τ̂ )1+ε

Γ
(

1 + ε
2

)

(

− 1
)α
(

τ̂

m2(1 − τ̂)

)α+β

×Γ
(

1− α+ ε
2

)

Γ
(

1− β + ε
2

)

Γ (2− α− β + ε)
(119)

On performing the angular integration, we get

∫

[dPSqg
2 ]Kqg

∑

s,c

|Mqg|2 = Ŷεĝ
2
s,ε

TF
N

(

1

8π

(

m2

4π

)

ε
2

Γ
(

1 +
ε

2

) τ̂
−ε
2 (1− τ̂ )1+ε

Γ (2 + ε)

)

× 2

2 + ε

[

− 3

2
− 5

2
τ̂ +

3

1− τ̂

+
1

ε

(

2

1− τ̂
− 4τ̂

)

+ ε

(

−3

4
− τ̂

4
+

1

1− τ̂

)

]

(120)

Substituting the above expression in eqn.(113) and expanding around ε = 0, we find ∆̂qg = ŝσ̂qg :

∆̂qg = ∆0
αs,ε

4π
Sε(m

2)
ε
2 TF

[

4

ε

(

τ̂2 + (1 − τ̂)2
)

+ (1− τ̂ )(7τ̂ − 3)

−2
(

τ̂2 + (1 − τ̂)2
)

ln(τ̂) + 4
(

τ̂2 + (1− τ̂ )2
)

ln(1− τ̂ )

]

(121)

Note that the above expression has only single pole 1/ε which results from the outgoing quark becoming

collinear to initial gluon state. The finite partonic cross section defined by ∆
(1)
qg in eqn.(25) is given by

∆(1)
qg = ∆̂(1)

qg −∆0

(

4TF

[

τ̂2 + (1− τ̂ )2

])(

1

ε
+

1

2
ln(µ2

F )

)

(122)
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where we have substituted Altarelli-Parisi splitting function given by

P (0)
qg = P

(0)
qg = 4TF

[

τ̂2 + (1 − τ̂)2
]

(123)

in eqn.(25). Substituting eqn.(121) in the eqn.(122), we obtain

∆(1)
qg = ∆̂(1)

qg −∆0

(

4TF

(

τ̂2 + (1− τ̂ )2
)

)(

1

ε
+

1

2
ln(µ2

F )

)

= ∆0TF

[

(1− τ̂ )(7τ̂ − 3) + 2
(

τ̂2 + (1− τ̂ )2
)

ln

(

m2

µ2
F

)

−2
(

τ̂2 + (1− τ̂ )2
)

ln(τ̂ ) + 4
(

τ̂2 + (1 − τ̂)2
)

ln(1− τ̂ )

]

(124)

Note that both the quark and gluon initiated processes, after the mass factorisation, are free of collinear
singularity. We use these results for our further analysis after folding with appropriate parton distribu-
tions.

5 Results

Having obtained the analytic expressions in the last section, we now endeavour to see the impact of these
corrections to resonant production of a scalar. In order to demonstrate the role of these corrections, we
restrict ourselves to case where the scalar couples only to d type quarks and anti-quarks. To this end,
one needs to define the leading-order and the next-to-leading-order cross-sections for hadronic collider:

σLO : convolute the cross-section ∆
(0)
qq with the appropriate LO evolved quark, anti-quark

distribution functions;

σNLO : convolute the cross-sections ∆
(0)
qq + αs

4π∆
(1)
qq ,

αs

4π∆
(1)
ag and αs

4π∆
(1)
ga (a = q, q) with the

appropriate NLO evolved quark,anti-quark and gluon distributions functions.

Explicitly, we find

σH1H2

LO (S,m2) =
1

S

[

fLO
d (µ2

F )⊗ fLO
d

(µ2
F )⊗∆

(0)

dd
(µ2

R) + fLO
d

(µ2
F )⊗ fLO

d (µ2
F )⊗∆

(0)

dd
(µ2

R)

]

σH1H2

NLO (S,m2) =
1

S

[

fNLO
d (µ2

F )⊗ fNLO
d

(µ2
F )⊗∆

(0)

dd
(µ2

R) + fNLO
d

(µ2
F )⊗ fNLO

d (µ2
F )⊗∆

(0)

dd
(µ2

R)

+
αNLO
s (µ2

R)

4π

(

fNLO
d (µ2

F )⊗ fNLO
d

(µ2
F )⊗∆

(1)

dd
(µ2

R, µ
2
F )

+fNLO
d

(µ2
F )⊗ fNLO

d (µ2
F )⊗∆

(1)

dd
(µ2

R, µ
2
F )

)

+
αNLO
s (µ2

R)

4π

(

∑

a=d,d

fNLO
a (µ2

F )⊗ fNLO
g (µ2

F )⊗∆(1)
ag (µ

2
R, µ

2
F )

+
∑

a=d,d

fNLO
g (µ2

F )⊗ fNLO
a (µ2

F )⊗∆(1)
gq (µ

2
R, µ

2
F )

)]

(125)
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For our numerical analysis, we choose to work with

Y (MZ) = 0.01, at LO,NLO

αs(MZ) = 0.13939 at LO, αs(MZ) = 0.12018 at NLO (126)

and MSTW 2008 LO and NLO parton distribution functions.

To begin with, we concentrate on the resonance production of a scalar starting with a dd̄ initial state
(at the Born level). In Fig.8, we plot both the LO and the NLO cross-sections as a function of scalar mass
for two choices of factorisation scale µF = 0.1 m and µF = 10 m. The renormalisation scale µR has been
chosen to be the same as the scalar mass. As is clear from the plots, the inclusion of NLO contributions
reduce the factorisation scale uncertainty considerably. The fall in the parton-level cross-sections is due
to the rapid decrease of the parton densities at high momentum fractions.

To parametrise the effect of the NLO corrections, it is common to introduce the K-factor:

K ≡ σH1H2

NLO (S,m2)

σH1H2

LO (S,m2)
, (127)

which we plot in Fig.9. As is clear from the plots the 30% to 65% corrections results from the NLO
QCD corrections and the precise value depends on the mass of the scalar and center of mass energy of
the machine and type of incoming parton fluxes.

Having explored the dependence of theK-factor on the scalar mass we now turn to the renormalisation
and factorisation scales. In top left (right) panel of Fig.10, we plot the variation of both LO and NLO
cross sections for the LHC with respect to µF /m (µR/m) while keeping scale µR = m (µF = m) The
bottom panels corresspond to the case at Tevatron. We have set m = 800 GeV for LHC and m = 300
GeV for Tevatron. We find the NLO corrected cross sections are less sensitive to both factorisation and
renormalisation scales.

6 Conclusions

We have systematically described the formalism to compute QCD higher order radiative corrections to
resonant production of a scalar particle in hadron colliders. We have shown how various singularities
can arise when we include corrections beyond the leading order in QCD perturbation theory and show
how they can be removed. Dimensional regularisation has been used throughout to regulate all the
singularities. We have used MS scheme to renormalise UV and collinear singularities. The numerical
importance of such corrections to production cross section and the role of these corrections in reducing
the theoretical uncertainities resulting from renormalisation and factorisation scales are demonstrated in
detail.
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Figure 7: Cross-section for resonant scalar production at the LHC. Y (MZ) has been set to 0.01. We have
used MSTW 2008 LO and NLO parton distribution functions.
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Total cross section
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Figure 8: Cross-section for resonant scalar production at the Tevatron. Y (MZ) has been set to 0.01. We
have used MSTW 2008 LO and NLO parton distribution functions.
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Figure 10: The dependence of the cross-sections at the LHC on the value of the factorisation scale µF

and the renormalisation scale µR. The top and bottom panels correspond to the LHC and the Tevatron
cross-sections respectively.
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