ENTANGLEMENT RELATIONS & BULK LOCALITY

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

May 22, 2018 AdS/CFT at 20 and Beyond

AdS/CFT at 20

String theory (gravity) \iff

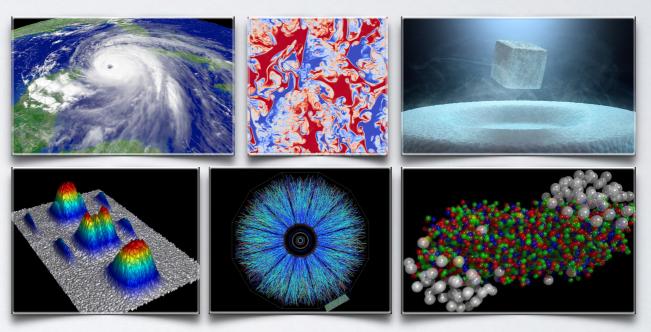
"in bulk" = higher dimensions

describes gravitating systems, e.g. black holes

field theory (no gravity)

"on boundary" = lower dimensions

describes experimentally accessible systems



Invaluable tool to:

- Study strongly interacting field theory (hard, but describes many systems)
 by working with higher-dimensional gravity on AdS (easy).
- Study quantum gravity in AdS (hard, but needed to understand spacetime)
 by using the field theory (easy for certain things)

Pre-requisite:

We need to understand the AdS/CFT dictionary...

- How does bulk spacetime emerge from the CFT?
 - Which CFT quantities give the bulk metric?
 - What determines bulk dynamics (Einstein's eq.)?
 - How does one recover a local bulk operator from CFT quantities?
- What part of bulk can we recover from a restricted CFT info?
 - What bulk region does a CFT state (at a given instant in time) encode?
 - What bulk region does a spatial subregion of CFT state encode?
- (How) does the CFT "see" inside a black hole?
 - Does it unitarily describe black hole formation & evaporation process?
 - How does it resolve curvature singularities?

Recent hints / expectations: entanglement plays a crucial role...

Entanglement Entropy (EE)

Suppose we can divide a quantum system into a subsystem A and its complement B, such that the Hilbert space decomposes:

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

Suppose we only have access to a subsystem A of the full system = A + B. The amount of entanglement is characterized by Entanglement Entropy S_A :

- reduced density matrix $ho_A={
 m Tr}_B\ |\psi\rangle\langle\psi|$ (more generally, for a mixed total state, $\ \rho_A={
 m Tr}_B
 ho$)
- EE = von Neumann entropy $S_A = -{
 m Tr}\,
 ho_A\, \log
 ho_A \, \equiv S(A)$

Entanglement relations

- Sub-additivity (SA) $S(A) + S(B) \ge S(AB)$
 - Mutual information $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$
 - ~ non-negative amount of correlation (qtm. & classical) betw. A & B

SA & SSA holds universally for any quantum system

- Strong Subadditivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$
 - Conditional mutual information $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$
 - ~ amount of correlation is monotonic under inclusion

MMI does NOT hold universally...

Monogamy of Mutual Information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

- Tripartite information $I3(A:B:C) \equiv I(A:B) + I(A:C) I(A:BC) \leq 0$
- ~ super-additivity of mutual information

Entanglement monogamy

- But MMI does hold for genuine quantum entanglement
 - (as opposed to classical correlation)
 - since entanglement between A and B cannot be shared by C
- → represent entanglement by a thread connecting A & B
 - automatically implements monogamy
 - classical correlations could nevertheless emerge naturally...
 cf. `micro-equilibration' of entanglement [VH, Rota]:
- MMI holds for holographic states w/ geom. dual [Hayden, Headrick, Maloney]
 - quantum entanglement dominates over classical correlation
 - threads weave the fabric of bulk spacetime?

Cf. "geometry from entanglement" [Van Raamsdonk], "ER=EPR" [Maldacena & Susskind], tensor networks [Swingle, Takayanagi, ...]

Motivation

- Elucidate holography
 - Structure/characterization of CFTs (& states) w/ gravity dual
 - Fundamental nature of spacetime & its relation to entanglement:
 - (How) does entanglement "build" geometry?
- Bulk geometrizes entanglement relations...
 - e.g. SA, SSA, MMI very easy to prove geometrically
- ...but simultaneously obscures their fundamental differences:
 - i.e. SSA is true for all quantum states, while MMI is not.
 - Why does MMI and SSA "look the same" from bulk standpoint?
- Understanding the distinction would elucidate the essence of HEE prescriptions & emergence of bulk spacetime.

Preview

- Q: Why does MMI and SSA "look the same" from the bulk?
 - Only O(N²)
 - in geometric proof we can "cancel surfaces"
 - But is that the full story? Or is there a distinction already at the geometric level?
- Hint from "Bit Thread" description of HEE:
 - SSA trivial
 - MMI hitherto eluded proof
 - But follows easily from assumption of 'cooperative' flows [M. Headrick]
- Q: What guarantees existence of cooperative flows?
- A: Bulk locality...

OUTLINE

- Motivation & Preview
- Background
 - SSA & MMI proof using RT
 - Bit Threads
 - SSA proof using bit threads
- MMI proof using bit threads
 - Basic argument
 - Cooperative flow construction
- Generalizations
- Summary & Open questions

OUTLINE

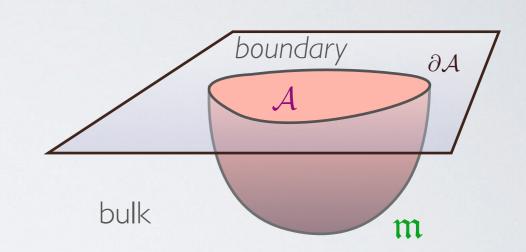
- Motivation & Preview
- Background
 - SSA & MMI proof using RT
 - Bit Threads
 - SSA proof using bit threads
- MMI proof using bit threads
 - Basic argument
 - Cooperative flow construction
- Generalizations
- Summary & Open questions

Holographic Entanglement Entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations:

In the bulk, entanglement entropy $S_{\mathcal{A}}$ for a boundary region \mathcal{A} is captured by the area of a minimal co-dimension-2 bulk surface \mathfrak{m} at constant t anchored on entangling surface $\partial \mathcal{A}$ & homologous to \mathcal{A}

$$S_{\mathcal{A}} = \min_{\partial \mathfrak{m} = \partial \mathcal{A}} \frac{\operatorname{Area}(\mathfrak{m})}{4 G_{N}}$$

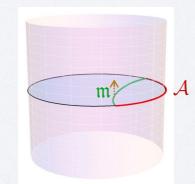


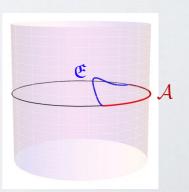
In time-dependent situations, RT prescription needs to be covariantized:

[HRT = VH, Rangamani, Takayanagi '07]

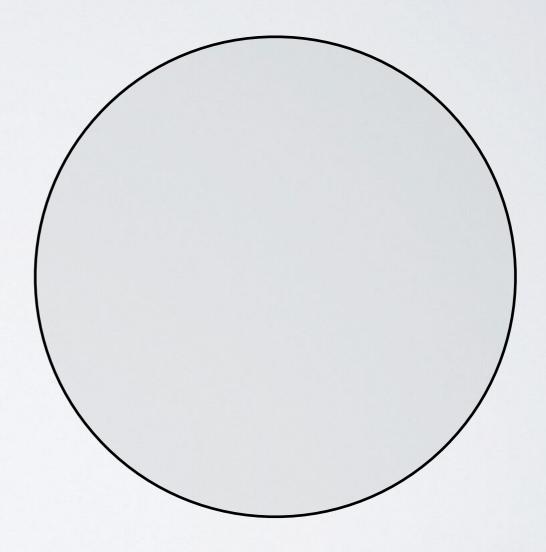
minimal surface m at constant time

This gives a well-defined quantity in any (arbitrarily time-dependent asymptotically AdS) spacetime.

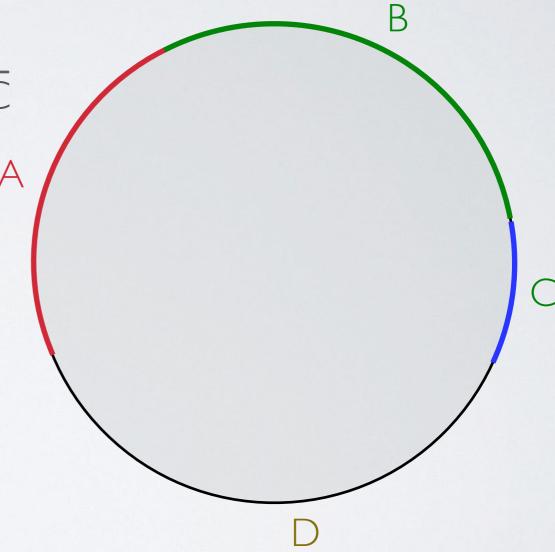




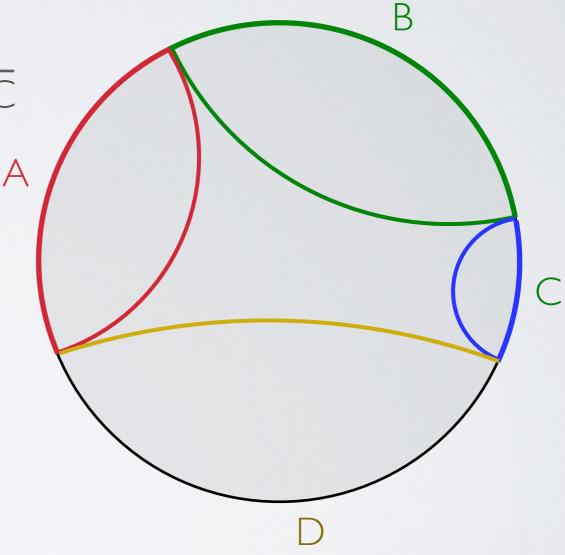
- Set-up example:
 - consider static slice of AdS₃



- Set-up
 - consider static slice of AdS₃
 - partition into A,B,C, and D=ABC

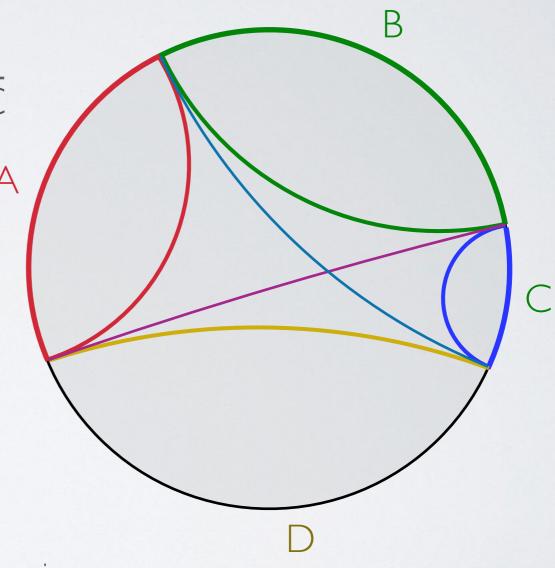


- Set-up
 - consider static slice of AdS₃
 - partition into A,B,C, and D=ABC
 - construct corresponding minimal surfaces



Set-up

- consider static slice of AdS₃
- partition into A,B,C, and D=ABC
- construct corresponding minimal surfaces
- & ones for AB & BC
- UV divergences
 - EE has 'area-law' UV divergence
 - MI is UV finite for non-adjoining regions (but infinite for adjoining ones)
 - CMI can be UV finite even for adjoining regions
 - tripartite info. 13 is always UV finite for any regions



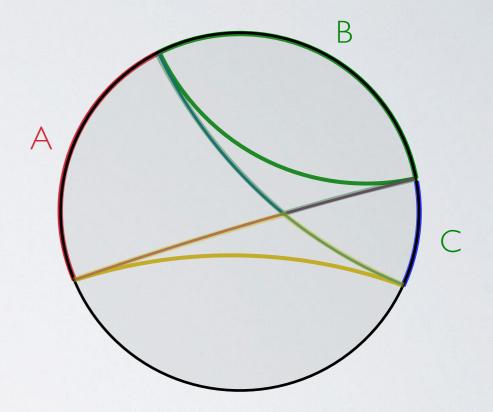
Proof of SSA & MMI in RT

Strong subadditivity (SSA)

~ amount of correlation is monotonic under inclusion (= positivity of conditional mutual information I(A:B|C))

$$S(AB)+S(BC) \ge S(B)+S(ABC)$$

follows from area comparison...



Proof of SSA & MMI in RT

Strong subadditivity (SSA)

~ amount of correlation is monotonic under inclusion (= positivity of conditional mutual information I(A:B|C))

$$S(AB)+S(BC) \ge S(B)+S(ABC)$$

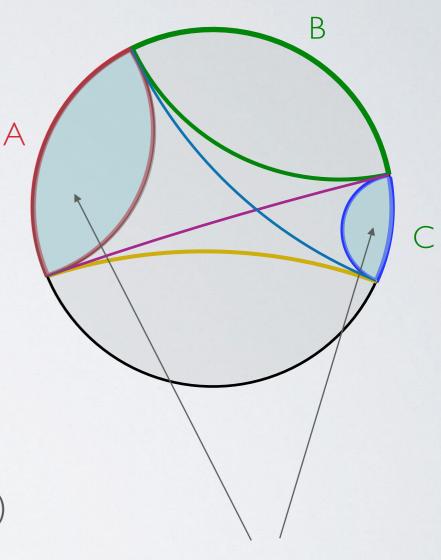
follows from area comparison...

- Monogamy of mutual information (MMI)
 - ~ superadditivity of mutual information (= negativity of tripartite information I3(A:B:C))

$$S(AB)+S(BC)+S(AC) \ge S(A)+S(B)+S(C)+S(ABC)$$

Suppose I(A:C)=0 \Rightarrow surfaces cancel

reduces to the same proof as for SSA



homology region for AC

Proof of SSA & MMI in RT

Strong subadditivity (SSA)

~ amount of correlation is monotonic under inclusion (= positivity of conditional mutual information I(A:B|C))

$$S(AB)+S(BC) \ge S(B)+S(ABC)$$

follows from area comparison...

- Monogamy of mutual information (MMI)
 - ~ superadditivity of mutual information
 (= negativity of tripartite information I3(A:B:C))

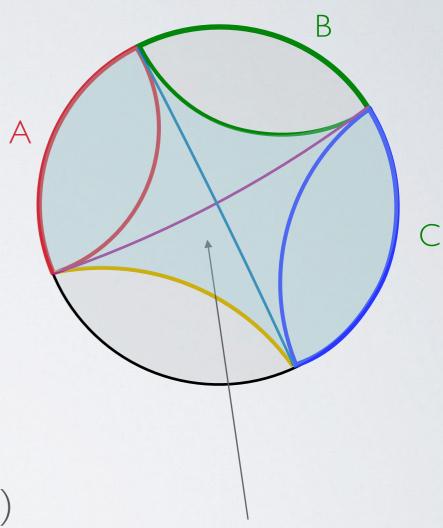
$$S(AB)+S(BC)+S(AC) \ge S(A)+S(B)+S(C)+S(ABC)$$

Alternately if I(B:D)=0

 \Rightarrow other set of surfaces cancel

again reduces to the same proof as for SSA

• Both SSA & MMI proved in HRT = maximin [Wall]



homology region for AC

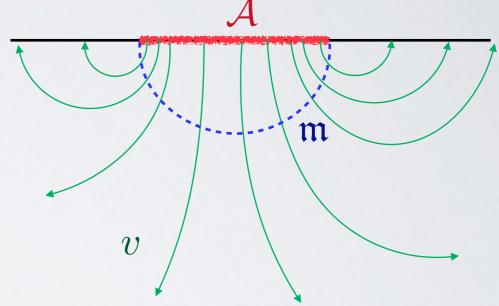
cf. [Hayden, Headrick, Maloney]

Bit thread picture of (static) EE

- Reformulate EE in terms of flux of flow lines [Freedman & Headrick, '16]
 - let v be a flow = vector field satisfying $\nabla \cdot v = 0$ and $|v| \leq 1$.
 - Then EE is given by max flux = flux of any maximizer flow $v_{\mathcal{A}}$

$$S(\mathcal{A}) = \max_{v} \int_{\mathcal{A}} v = \int_{\mathcal{A}} v_{\mathcal{A}} \ge \int_{\mathcal{A}} v$$

 By Max Flow - Min Cut theorem, equivalent to RT: (bottleneck for flow = minimal surface) detailed derivation in [Headrick & VH, '17]



- Useful reformulation of holographic EE
 - behaves more naturally
 - is more computationally efficient
 - ties better to QI quantities
 - provides more intuition cf. suggested threads capturing quantum entanglement monogamy...

Bit threads - interpretation

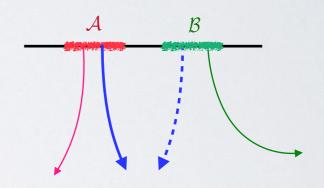
cf [Freedman & Headrick, '16]

Nesting: 3 common maximizer flow for nested regions

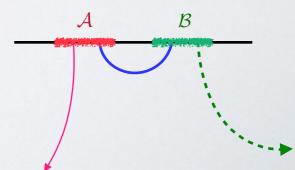
Suppose we maximize on AB.

- —Then we can additionally maximize on either A or B, but not both.
- Conditional entropy H(A:B) = S(AB) S(B)
 - ~ bits in A which are uncorrelated with B
 - = # of threads left on A when we measure B
- Mutual information I(A:B) = S(A) + S(B) S(AB)
 - ~ correlations (redundancy) between A and B
 - = # of threads which can flop between A and B
- Entangled qubits are threads between A and B which switch direction.

$$S(A)=S(B)=2, S(AB)=3$$
:



$$S(A)=S(B)=2, S(AB)=1$$
:



proof of SSA via bit threads

Consider conditional mutual information I(A:B|C)

- = (max flux on A after maximinizing on C and ABC)
 - (min flux on A after maximinizing on C and ABC)
- = # of threads moveable betw. A and B after maximizing on C and ABC

$$\Rightarrow \geq 0 \Rightarrow SSA$$

[Freedman & Headrick, '16]

Can't do the same for MMI:

e.g. using nesting & the basic properties of fluxes, can construct state which nevertheless violates MMI

→ need additional ingredients...

OUTLINE

- Motivation & Preview
- Background
 - SSA & MMI proof using RT
 - Bit Threads
 - SSA proof using bit threads
- MMI proof using bit threads
 - Basic argument
 - Cooperative flow construction
- Generalizations
- Summary & Open questions

Basic argument

- Recall MMI: $S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$
- Consider the LHS:

$$S(AB) + S(BC) + S(CA) = \int_{AB} v_{AB} + \int_{BC} v_{BC} + \int_{CA} v_{CA}$$

maximizer flows for the corresponding regions

arbitrary flows
$$\geq \int_{AB} v_3 + \int_{BC} v_1 + \int_{CA} v_2$$

$$= \int_{A} (v_2 + v_3) + \int_{B} (v_1 + v_3) + \int_{C} (v_1 + v_2)$$

• We want to find flows v_1, v_2, v_3 which would allow us to relate this to the RHS...

Basic argument

• If we can define

$$v_1 = \tilde{v}_1 \equiv \frac{1}{2} (v_{ABC} - v_A + v_B + v_C)$$

 $v_2 = \tilde{v}_2 \equiv \frac{1}{2} (v_{ABC} + v_A - v_B + v_C)$
 $v_3 = \tilde{v}_3 \equiv \frac{1}{2} (v_{ABC} + v_A + v_B - v_C)$

such that each \tilde{v}_i is a flow,

Then

$$\int_{A} (\tilde{v}_{2} + \tilde{v}_{3}) + \int_{B} (\tilde{v}_{1} + \tilde{v}_{3}) + \int_{C} (\tilde{v}_{1} + \tilde{v}_{2})$$

$$= \int_{A} (v_{A} + v_{ABC}) + \int_{B} (v_{B} + v_{ABC}) + \int_{C} (v_{C} + v_{ABC})$$

$$= S(A) + S(B) + S(C) + S(ABC)$$

which is the desired RHS of MMI.

- Hence MMI holds, **provided** we can show that for any configuration of A,B,C, we can find corresponding maximizer flows v_A, v_B, v_C , and v_{ABC} , such that \tilde{v}_1, \tilde{v}_2 , and \tilde{v}_3 are all flows simultaneously.
- We'll call such flows cooperative flows. [M.Headrick]

Main challenge

The expressions

$$v_1 = \tilde{v}_1 \equiv \frac{1}{2} (v_{ABC} - v_A + v_B + v_C)$$
 $v_2 = \tilde{v}_2 \equiv \frac{1}{2} (v_{ABC} + v_A - v_B + v_C)$
 $v_3 = \tilde{v}_3 \equiv \frac{1}{2} (v_{ABC} + v_A + v_B - v_C)$

do not a-priori give flows, since the norm bound need not be satisfied:

$$\begin{vmatrix}
|v_A| \le 1 \\
|v_B| \le 1 \\
|v_C| \le 1
\end{vmatrix}$$

$$\Rightarrow \qquad \begin{cases}
|\tilde{v}_1| \le 2 \\
|\tilde{v}_2| \le 2 \\
|\tilde{v}_3| \le 2
\end{cases}$$

- So we need large amount of simultaneous cancellations.
- ullet Can't have e.g. $v_A=v_B$ for generic A and B since generally not compatible
- Could have v_{ABC} equal to at most one of $v_A, v_B,$ or v_C , but that does not suffice...

Detour

- If A and C are completely uncorrelated, i.e. if I(A:C)=0, then we can have simultaneous maximizer flows $v_A=v_C$.
- Then choosing additionally $v_B = v_{ABC}$ (using nesting), we verify flows:

$$v_{1} = \tilde{v}_{1} \equiv \frac{1}{2} (v_{ABC} - v_{A} + v_{B} + v_{C}) = v_{B}$$

$$v_{2} = \tilde{v}_{2} \equiv \frac{1}{2} (v_{ABC} + v_{A} - v_{B} + v_{C}) = v_{A}$$

$$v_{3} = \tilde{v}_{3} \equiv \frac{1}{2} (v_{ABC} + v_{A} + v_{B} - v_{C}) = v_{B}$$

$$\Rightarrow |\tilde{v}_{i}| \leq 1$$

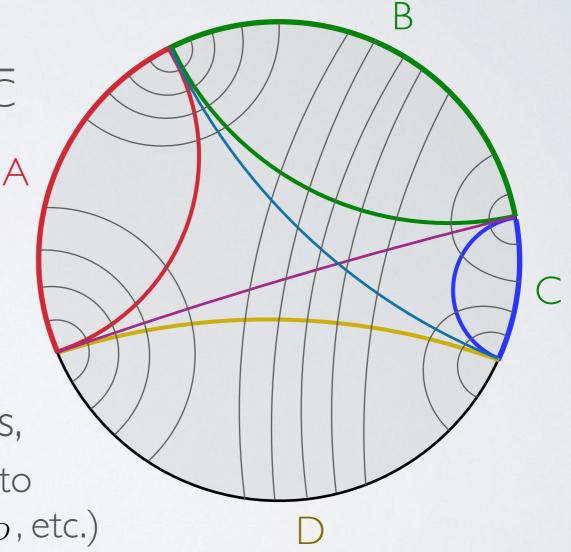
- However, if $I(A:C) \neq 0$, we could at best take $v_A = -v_C$ (by viewing C as nested in BCD and using $v_C = v_{BCD} = -v_A$)
- But now $\tilde{v}_1 = v_B v_A$ and $\tilde{v}_3 = v_B + v_A$ are no longer flows...
- Hence we have to find a more robust method...

Set-up

- consider static slice of AdS₃
- partition into A,B,C, and D=ABC
- construct corresponding minimal surfaces
- & ones for AB & BC
 (WLOG assume AC = A+C)

To construct cooperative flows,

• separate each maximizer flow into "strands" (e.g. $v_A = v_{A \to B} + v_{A \to D}$, etc.)



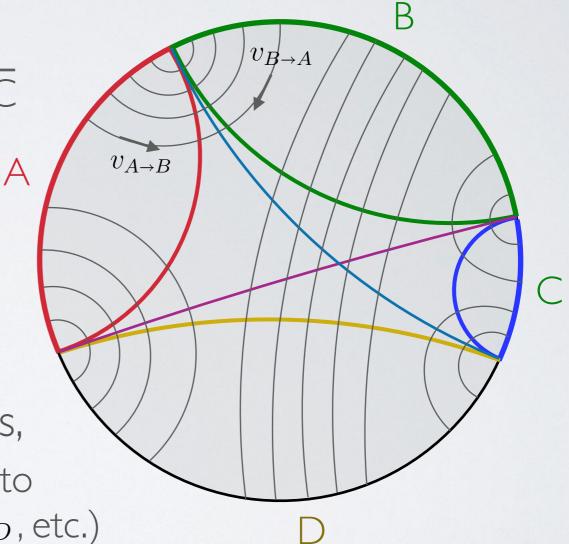
Set-up

- consider static slice of AdS₃
- partition into A,B,C, and D=ABC
- construct corresponding minimal surfaces
- & ones for AB & BC
 (WLOG assume AC = A+C)

To construct cooperative flows,

• separate each maximizer flow into "strands" (e.g. $v_A = v_{A \to B} + v_{A \to D}$, etc.)

• s.t. $v_{A \rightarrow B} = -v_{B \rightarrow A}$, etc.



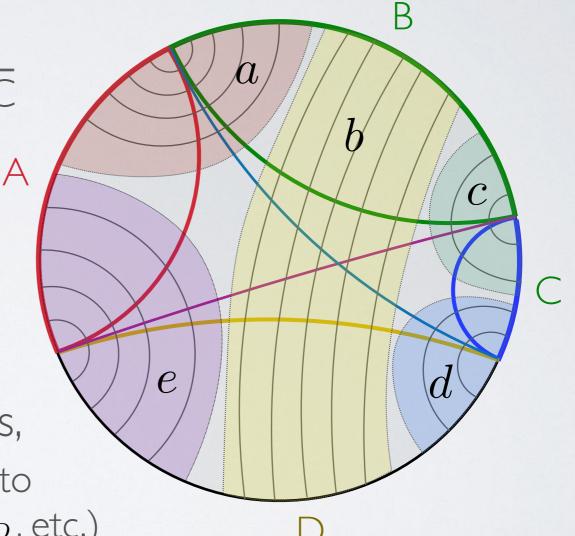
Set-up

- consider static slice of AdS₃
- partition into A,B,C, and D=ABC
- construct corresponding minimal surfaces
- & ones for AB & BC
 (WLOG assume AC = A+C)

To construct cooperative flows,

• separate each maximizer flow into "strands" (e.g. $v_A = v_{A \rightarrow B} + v_{A \rightarrow D}$, etc.)

- s.t. $v_{A \rightarrow B} = -v_{B \rightarrow A}$, etc.
- w/ each strand confined to distinct bulk regions: a,b,c,d,e

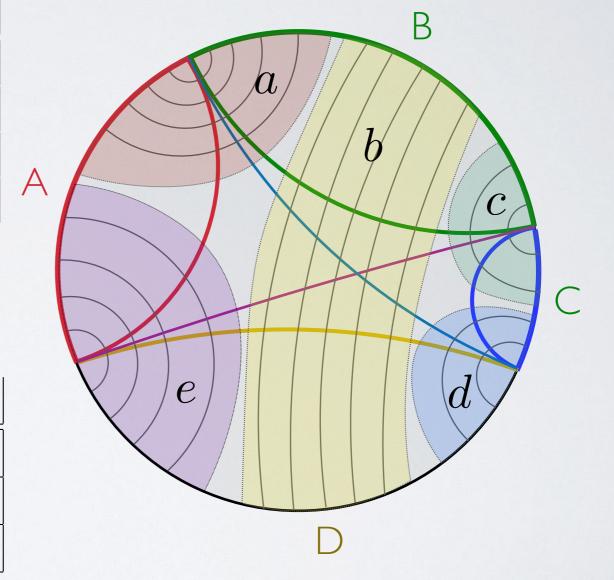


Then w/ maximizer flows split as follows:

	a	b	c	$\mid d \mid$	e
v_A	$v_{A o B}$	0	0	0	$v_{A \to D}$
v_B	$v_{B \to A}$	$v_{B \to D}$	$v_{B \to C}$	0	0
v_C	0	0	$v_{C \to B}$	$v_{C \to D}$	0
v_{ABC}	0	$v_{B\to D}$	0	$v_{C \to D}$	$v_{A \to D}$

ullet The corresponding $ilde{v}_i$'s are given by

	a	b	c	d	e
\tilde{v}_1	$v_{B \to A}$	$v_{B\to D}$	0	$v_{C \to D}$	0
\widetilde{v}_2	$v_{A o B}$	0	$v_{C \to B}$	$v_{C \to D}$	$v_{A \to D}$
\widetilde{v}_3	0	$v_{B\to D}$	$v_{B\to C}$	0	$v_{A\rightarrow D}$



ullet So despite being sum of several flows, each $ilde{v}_i$ is indeed a flow in the full bulk.

- Crux: How can we guarantee that such separation into distinct bulk regions is always possible?
- NB. threads maximally constrained on corresponding minimal surfaces; require

```
Area [\mathfrak{m}_{A}] = \operatorname{Area} [\mathfrak{m}_{A \to B}] + \operatorname{Area} [\mathfrak{m}_{A \to D}]

Area [\mathfrak{m}_{B}] = \operatorname{Area} [\mathfrak{m}_{B \to A}] + \operatorname{Area} [\mathfrak{m}_{B \to C}] + \operatorname{Area} [\mathfrak{m}_{B \to D}]

Area [\mathfrak{m}_{C}] = \operatorname{Area} [\mathfrak{m}_{C \to B}] + \operatorname{Area} [\mathfrak{m}_{C \to D}]

Area [\mathfrak{m}_{D}] = \operatorname{Area} [\mathfrak{m}_{D \to A}] + \operatorname{Area} [\mathfrak{m}_{D \to B}] + \operatorname{Area} [\mathfrak{m}_{D \to C}]

= 9 \text{ eqns for 10 unknowns}

Area [\mathfrak{m}_{A \to D}] = \operatorname{Area} [\mathfrak{m}_{D \to A}]

Area [\mathfrak{m}_{A \to D}] = \operatorname{Area} [\mathfrak{m}_{D \to B}]

Area [\mathfrak{m}_{B \to C}] = \operatorname{Area} [\mathfrak{m}_{D \to B}]

Area [\mathfrak{m}_{C \to D}] = \operatorname{Area} [\mathfrak{m}_{D \to C}]
```

• Elsewhere we can 'comb' flows away from each other using minimal surface foliations...

OUTLINE

- Motivation & Preview
- Background
 - SSA & MMI proof using RT
 - Bit Threads
 - SSA proof using bit threads
- MMI proof using bit threads
 - Basic argument
 - Cooperative flow construction
- Generalizations
- Summary & Open questions

Generalizations

- General regions
 - regions composed of multiple components require more strands but same principle applies.
- General static asymp. AdS₃ geometries
 - since minimal surfaces of nested regions don't intersect, same...
- Higher dimensions
 - nesting of minimal surfaces still applies, and strands can be braided through each other, so less constraining...
- Time dependence
 - use covariant bit threads: since still I-d, seemingly less constraining.
- More partitions
 - more subtle...

5-region cyclic inequality

• As example w/ more partitions, consider the 5-region cyclic inequality: cf. holographic entropy cone [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15]

$$S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB) \ge$$

$$S(AB) + S(BC) + S(CD) + S(DE) + S(EA) + S(ABCDE)$$

Similar argument as above would give this provided

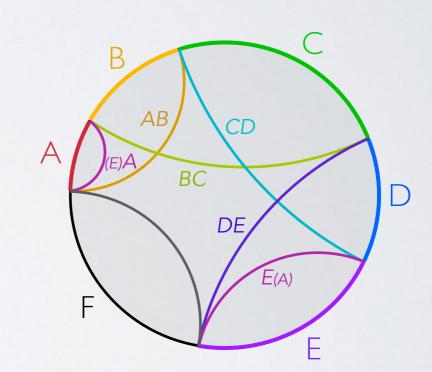
$$v_{1} = \frac{1}{3} (v_{AB} + v_{BC} + v_{CD} - 2v_{DE} + v_{EA} + v_{ABCDE})$$

$$v_{2} = \frac{1}{3} (v_{AB} + v_{BC} + v_{CD} + v_{DE} - 2v_{EA} + v_{ABCDE})$$

$$v_{3} = \frac{1}{3} (-2v_{AB} + v_{BC} + v_{CD} + v_{DE} + v_{EA} + v_{ABCDE})$$

$$v_{4} = \frac{1}{3} (v_{AB} - 2v_{BC} + v_{CD} + v_{DE} + v_{EA} + v_{ABCDE})$$

$$v_{5} = \frac{1}{3} (v_{AB} + v_{BC} - 2v_{CD} + v_{DE} + v_{EA} + v_{ABCDE})$$



are all flows everywhere.

 However now can't use a single set of strands since intersecting minimal surfaces — need overlaid strands...

OUTLINE

- Motivation & Preview
- Background
 - SSA & MMI proof using RT
 - Bit Threads
 - SSA proof using bit threads
- MMI proof using bit threads
 - Basic argument
 - Cooperative flow construction
- Generalizations
- Summary & Open questions

Summary

- Demonstrated existence of cooperative flows
 - explicit construction for 4 simple regions in static asymp. AdS₃
- Crucial ingredient: bulk locality
 - => local regions foliated by (piecewise) minimal surfaces
 - => can "comb" threads into strands = cooperative flows
- Flows (bit threads) more useful than RT
- SSA vs. MMI:
 - SSA proof didn't require cooperative flows => more general
 - MMI proof uses cooperative flows
 - => bulk locality used more crucially for MMI than for SSA

Open Questions

- Extent of generalizations
- Role of time (cf. covariant bit threads)
- Better re-formulation
- Mapping out entropy cone
- Other (multipartite) entanglement measures
- Relation to entanglement of purification

