

AdS/CFT at 20 and Beyond @ ICTS, May, 2018

Aspects of Entanglement Entropy under Local Excitations in CFTs

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP)

Kyoto University

Mainly Based on our recent papers:

```
[1] JHEP 1801 (2018) 115 [arXiv:1711.09913]
with Yuya Kusuki (YITP, Kyoto)
[2] J.Phys. A50 (2017) 24, 244001 [arXiv:1701.03110]
with Pawel Caputa (YITP, Kyoto), Yuya Kusuki (YITP, Kyoto)
and Kento Watanabe (Tokyo)
```

Also thanks to collaborators in our earlier works:

Jyotirmoy Bhattacharrya (IIT Kharagpur)

Song He (AEI, Potsdam)

Alexander Jahn (Berlin Free U.)

Masahiro Nozaki (Chicago)

Tokiro Numasawa (McGill)

Tomonori Ugajin (OIST)

1 Introduction

AdS/CFT [Maldacena 1997, Gubser-Klebanov-Polyakov, Witten 1998,.....]

Emergence of Gravity from Dynamics in CFTs

⇔ Emergent Spacetime from Quantum Entanglement

AdS/CFT in GR limit highly relies on the special feature of holographic CFTs (large N and strongly coupled).

Maximally Chaotic [e.g. Maldacena-Stanford-Shenker 2015]

⇒ In this talk, we want to see special features of holographic CFTs via quantum entanglement dynamics.

The time evolution of (Renyi) Entanglement Entropy (for locally excites states) classifies CFTs?

n-th Renyi entanglement entropy (REE)

$$S_A^{(n)} = \frac{1}{1-n} \cdot \log \operatorname{Tr}[(\rho_A)^n].$$

$$H_{tot} = H_A \otimes H_B .$$

$$\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi| .$$

$$\lim_{n \to 1} S_A^{(n)} = -\text{Tr}[\rho_A \log \rho_A] = S_A . \quad (\text{Tr}[\rho_A] = 1).$$

In AdS/CFT, we can calculate the entanglement entropy geometrically as an area of minimal area surface in AdS.

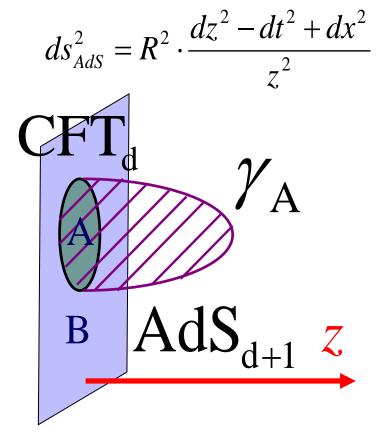
Holographic EE (HEE)

[Ryu-TT 06, Hubeny-Rangamani-TT 07]

$$S_A = \operatorname{Min}_{\gamma_A} \left[\frac{\operatorname{Area}(\gamma_A)}{4G_N} \right]$$

$$\partial \gamma_A = \partial A$$

 $\gamma_A \approx A$ (homologous)



Consider excited states defined by local operators:

$$|O(x)\rangle \equiv \underline{e^{-\varepsilon H}} \cdot O(x)|0\rangle$$
.

UV regularization

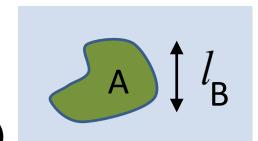
$$\Delta S_A^{(n)} \equiv S_A^{(n)} \left[O(x) \right] - S_A^{(n)} \left[0 \right].$$

We study

 $S_A^{(n)}$ ~ Loss of information when we assume that the region B is invisible.

 $\Delta S_A^{(n)}$ ~ ``degrees of freedom'' of the operator O.

Two limits



(1) $l \rightarrow 0$ limit (\approx small energy limit)

In this case, we find a property analogous to

the first law of thermodynamics:

$$\Delta S_A [O] \propto \Delta E_A$$

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13, Wong-Klich-Pando Zayas-Vaman 13 ...,]

- (2) $l \rightarrow \infty$ limit (\approx large energy limit) This leads to a very `entropic' quantity!
 - **⇒** The main purpose of this talk.

[Nozaki-Numasawa-TT 14,....]

Contents

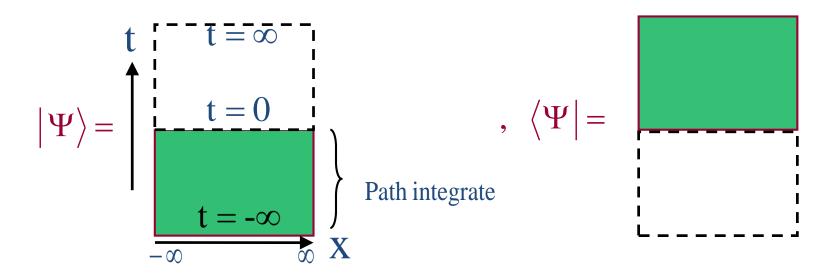
- 1 Introduction
- Calculations of Renyi EE for locally excited states
- Case 1: Free scalar CFTs
- 4 Case 2: Rational 2d CFTs
- ⑤ Case 3: Large c CFTs (Holographic CFTs in 2d)
- 6 Case 4: Cyclic Orbifold CFTs
- 7 Conclusions

2 Calculations of Renyi EE for locally excited states (2-1) Replica method for ground states

A basic method to find EE in QFTs is the replica method.

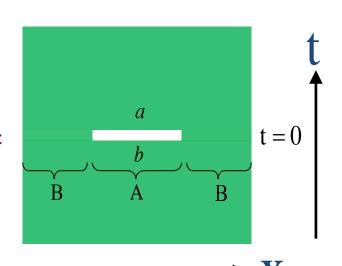
$$S_{A} = -\frac{\partial}{\partial n} \log \operatorname{Tr}_{A} (\rho_{A})^{n} |_{n=1} .$$

In the path-integral formalism, the ground state wave function $|\Psi\rangle$ can be expressed as follows:



Then we can express

$$\rho_A = \text{Tr}_B |\Psi\rangle\langle\Psi|$$
 as follows: $[\rho_A]_{ab} =$

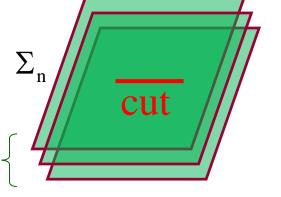


Glue each boundaries successively.

$$\operatorname{Tr}(\rho_A)^n = b$$

$$=\frac{Z(\Sigma_n)}{Z(\Sigma_1)^n}.$$

n - sheetedRiemann surface



n sheets

 $-\infty$

(2-2) Replica Method for Excited States

We want to calculate $\operatorname{Tr}(\rho_{\scriptscriptstyle A})^{\scriptscriptstyle n}$ for

$$\begin{split} \rho_A(t,x) &= e^{-iHt} e^{-\varepsilon H} O(x) \Big| 0 \Big\rangle \Big\langle 0 \Big| O(x) e^{-\varepsilon H} e^{iHt} \\ &= O(\tau_e,x) \Big| 0 \Big\rangle \Big\langle 0 \Big| O(\tau_l,x), \\ (\tau_e \equiv -\varepsilon - it, \qquad \tau_l \equiv -\varepsilon + it), \end{split}$$

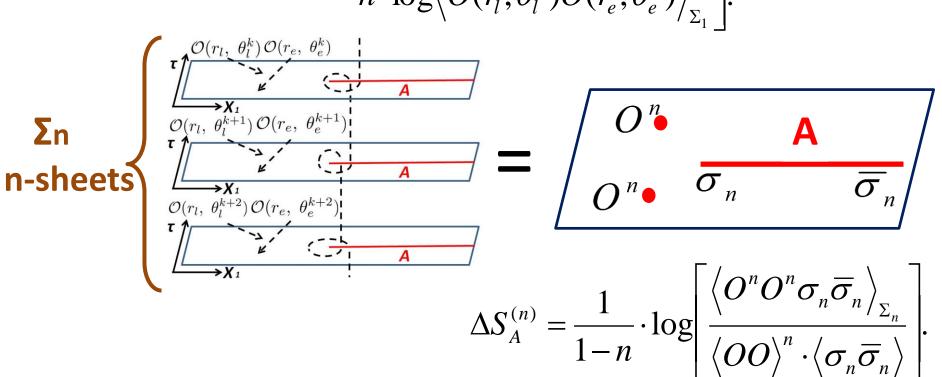
where ε is the UV regulator for the operator.

Here we consider a d+1 dim. CFT on \mathbb{R}^{d+1} .

$$(\tau, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1} \implies \text{We set } x_1 + i\tau = re^{i\theta}.$$

In this way, the Renyi EE can be expressed in terms of correlation functions (2n-point function etc.) on Σ_n :

$$\Delta S_A^{(n)} = \frac{1}{1-n} \cdot \left[\log \left\langle O(r_l, \theta_l^n) O(r_e, \theta_e^n) \cdots O(r_l, \theta_l^1) O(r_e, \theta_e^1) \right\rangle_{\Sigma_n} - n \cdot \log \left\langle O(r_l, \theta_l) O(r_e, \theta_e) \right\rangle_{\Sigma_1} \right].$$



We focus on the free massless scalar field theory on Σn

$$S = \int d^{d+1}x \left[\partial_{\mu}\phi \partial^{\mu}\phi \right]$$

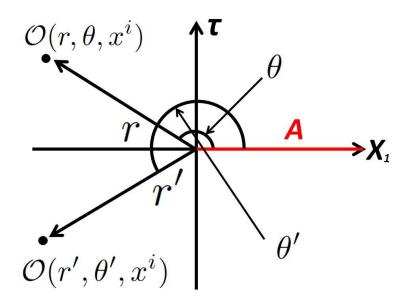
and calculate 2n-pt functions using the Green function:

$$G_{\Sigma n}^{d=3}[(r,\theta,\vec{x});(s,\varphi,\vec{y})] = \frac{1}{4n\pi^2 rs(a-1/a)} \cdot \frac{a^{1/n} - a^{-1/n}}{a^{1/n} + a^{-1/n} - 2\cos((\theta-\varphi)/n)},$$

where
$$\frac{a}{1+a^2} = \frac{rs}{|\vec{x} - \vec{y}|^2 + r^2 + s^2}$$
. $\mathcal{O}(r, \theta, x^i)$

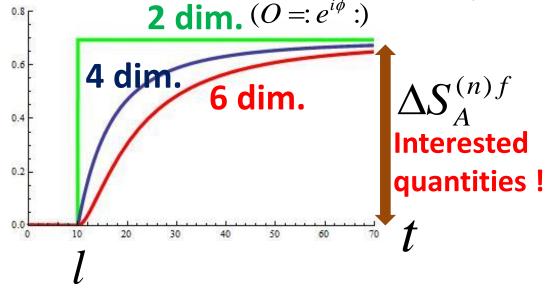
The operator *O* is chosen as

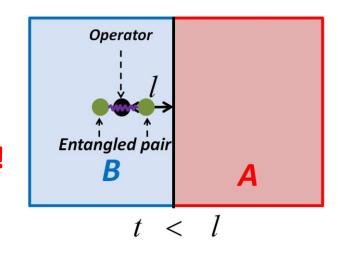
$$O_k = : \phi^k:$$



Time evolution in free massless scalar theory

$$\Delta S_A^{(2)}$$
 for $O =: \phi$: (i.e. $k = 1$)
 $\Delta S_A^{(2)}$ for $O =: \phi$: (i.e. $k = 1$)
 $\Delta S_A^{(2)}$ and $a_1 = -l$ with $a_2 = \cdots = a_d = 0$.

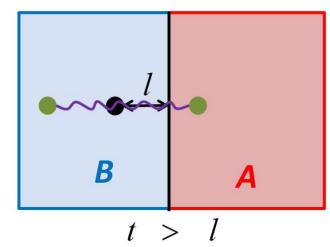




E.g.
$$\Delta S_{A(4\text{dim})}^{(2)} = \log \left(\frac{2t^2}{t^2 + l^2} \right)$$
.

Note:

 $\Delta S_A^{(n)f}$ is 'topologically invariant' under deformations of A.



$$\Delta S_A^{(n)f}$$
 for $O = \phi^k$ in $d+1 > 2$ dim.

TABLE I. $\Delta S_A^{(n)f}$ and $\Delta S_A^f \left(=\Delta S_A^{(1)f}\right)$ for free massless scalar field theories in dimensions higher than two (d>1).

n	k = 1	k=2	• • •	k = l
2	$\log 2$	$\log \frac{8}{3}$		$-\log\left(\frac{1}{2^{2l}}\sum_{j=0}^{l}\left({}_{l}C_{j}\right)^{2}\right)$
3	$\log 2$	$\frac{1}{2}\log\frac{32}{5}$	• • •	$\frac{-1}{2}\log\left(\frac{1}{2^{3l}}\sum_{j=0}^{l}\left({}_{l}C_{j}\right)^{3}\right)$
рy	:	:		:
m	$\log 2$	$\frac{1}{m-1}\log\frac{2^{2m-1}}{2^{m-1}+1}$	• • •	$\frac{1}{1-m}\log\left(\frac{1}{2^{ml}}\sum_{j=0}^{l}({}_{l}C_{j})^{m}\right)$
1	$\log 2$	$\frac{3}{2}\log 2$	• • •	$l\log 2 - \frac{1}{2^l} \sum_{j=0}^l {}_l C_j \log {}_l C_j$
	2 3	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

EPR state!

[For a proof: Nozaki 14]

$$_{n}C_{k}\equiv\frac{n!}{k!(n-k)!}$$

Heuristic Explanation

First, notice that in free CFTs, there are definite (quasi) particles moving at the speed of light.

$$\Rightarrow \phi \approx \phi_L + \phi_R .$$
left-moving right-moving L=A R=B

$$\phi^{k} | \operatorname{vac} \rangle \approx \sum_{j=0}^{k} {C_{j} \cdot (\phi_{L})^{j} \cdot (\phi_{R})^{k-j}} | \operatorname{vac} \rangle$$

$$= 2^{-k/2} \sum_{j=0}^{k} \sqrt{{k \choose j}} |j\rangle_{L} |k-j\rangle_{R}. \quad {}_{n}C_{k} \equiv \frac{n!}{k!(n-k)!}$$

$$\Rightarrow \Delta S_A^{(n)f} = \frac{1}{1-n} \log \left[2^{-nk} \sum_{j=0}^k {\binom{k}{k}} {\binom{j}{k}}^n \right]$$
 Agree with replica
$$\Delta S_A^f = k \log 2 - 2^{-k} \sum_{j=0}^k {\binom{k}{k}} {\binom{j}{k}} {\binom{j}{k}}$$
 Calculations!

4 Case 2: Rational 2d CFTs [He-Numasawa-Watanabe-TT 14]

(4-1) Free Scalar CFT in 2d

Consider following two operators in the free scalar CFT:

(i)
$$O_1 =: e^{i\alpha\phi}: \implies \Delta S_A^{(n)f} = 0.$$
 $\left|O_1\right> = e^{i\alpha\phi_L}\left|0\right>_L \otimes e^{i\alpha\phi_R}\left|0\right>_R \Rightarrow \text{Direct product state}$

(ii)
$$O_2 =: e^{i\alpha\phi}: +: e^{-i\alpha\phi}: \implies \Delta S_A^{(n)f} = \log 2.$$

$$|O_2\rangle = e^{i\alpha\phi_L}|0\rangle_L \otimes e^{i\alpha\phi_R}|0\rangle_R + e^{-i\alpha\phi_L}|0\rangle_L \otimes e^{-i\alpha\phi_R}|0\rangle_R$$

$$\approx |\uparrow\rangle_L |\uparrow\rangle_R + |\downarrow\rangle_L |\downarrow\rangle_R \implies \text{EPR state}$$

(4-2) General Results for 2d Rational CFTs

First, focus on 2nd REE. Using the conformal map: $z = \sqrt{w} = \sqrt{r}e^{i\theta}$.

It is straightforward to rewrite the 2nd REE in terms of 4-pt functions on $\Sigma_1 = \mathbb{C}$:

$$\left\langle O(w_1, \overline{w}_1) O(w_2, \overline{w}_2) O(w_3, \overline{w}_3) O(w_4, \overline{w}_4) \right\rangle_{\Sigma_2} = |z_{13} z_{24}|^{-4\Delta_O} \cdot G_O(z, \overline{z}).$$

$$\begin{split} w_1 &= i(\varepsilon - it) - l, \quad \overline{w}_1 = -i(\varepsilon - it) - l, \\ w_2 &= -i(\varepsilon + it) - l, \quad \overline{w}_2 = i(\varepsilon + it) - l. \quad \left(z \equiv \frac{z_{12} z_{34}}{z_{13} z_{24}}, \quad z_{ij} \equiv z_i - z_j. \right) \\ w_3 &= e^{2\pi i} w_1, \quad w_4 = e^{2\pi i} w_2. \end{split}$$

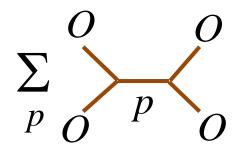
We can show that the limit $\mathcal{E} \longrightarrow 0$ leads to

We can show that the limit
$$\varepsilon \to 0$$
 leads to
$$\Delta S_A^{(n)} = 0$$
(i) Early time: $0 < t < l \quad (z, \overline{z}) \approx (O(\varepsilon^2), O(\varepsilon^2)) \to (0,0)$.

(ii) Late time:
$$t \ge l$$
 Chiral Fusion Transformation $z \to 1-z$ $(z, \overline{z}) \approx (1 + O(\varepsilon^2), O(\varepsilon^2)) \to (1,0).$

In terms of conformal block, we find at late time:

$$\begin{split} G_O(z,\overline{z}) &= \sum_{p} \left(C_{OO}^p \right)^2 \cdot F_O(p \mid z) \cdot \overline{F}_O(p \mid \overline{z}) \\ &\underset{(z,\overline{z}) \\ \to (1,0)}{\cong} F_O(I \mid z) \cdot \overline{F}_O(I \mid \overline{z}) \\ &\cong F_{II}[O] \cdot (1-z)^{-2\Delta_O} \cdot \overline{z}^{-2\Delta_O}. \end{split}$$



 $F_{p,q}[O]$: fusion matrix

Then the n=2 REE is expressed at late time:

$$\Delta S_A^{(2)f} = -\log F_{I,I}[O] = \log d_O.$$

 $d_O \equiv \frac{S_{I,O}}{S_{I,I}} = \frac{1}{F_{I,I}[O]}.$

Quantum Dimension

[Moore-Seiberg 89]

More generally we find $\Delta S_A^{(n)f} = \log d_O$.

Ex. Ising CFT:
$$\Delta S_A^{(n)}[I] = \Delta S_A^{(n)}[\varepsilon] = 0$$
, $\Delta S_A^{(n)}[\sigma] = \log \sqrt{2}$.

States in RCFT =
$$\bigoplus [H_L^{(i)} \otimes H_R^{(i)}]$$
 = Entanglement Entropy

(5) Case 3: Large c CFTs (Holographic CFTs)

(5-1) Holographic Entanglement Entropy

For n=1 (EE), we can employ the HEE to find $\Delta S_A^{(1)}$ directly.

For 2d CFT (AdS_3/CFT_2) ,

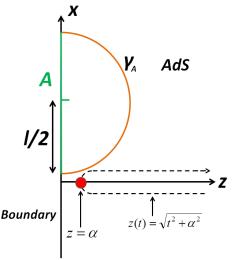
$$\Delta S_A^{(1)} \approx \frac{c}{6} \log \left(\frac{t}{\mathcal{E}} \right) \text{[Nozaki-Numasawa-TT 13]}$$

⇒ Reproduced by the large c CFT

[Asplund-Bernamonti-Galli-Hartman 14]

For higher dim. CFTs, it is still too early to say final results. Our numerical results for AdS4/CFT3, implies ~Log[t] like behavior.

[Jahn-TT 17]





(5-2) Renyi EE in Large c CFTs

Holographic CFTs (we focus 2d) are characterized by the large central charge and sparse spectrum.

[Heemskerk-Penedones-Polchinski-Sully 09,]

This allows us to approximate four point functions by vacuum conformal blocks. [Hartman 13, Asplund-Bernamonti-Galli-Hartman 14]

For Renyi EE calculations for locally excited states, we obtain

$$\Delta S_A^{(n)} = \frac{1}{1-n} \cdot \log \left[\frac{\left\langle O^n O^n \sigma_n \overline{\sigma}_n \right\rangle_{\Sigma_n}}{\left\langle O O \right\rangle^n \cdot \left\langle \sigma_n \overline{\sigma}_n \right\rangle} \right] \qquad z(t) = \frac{2i\epsilon}{l-t+i\epsilon}, \quad \overline{z}(t) = \frac{-2i\epsilon}{l+t-i\epsilon}$$

$$= \frac{1}{1-n} \cdot \log \left[|z|^{4h_{\sigma_n}} \sum_{p} \left(C_{oo}^p \right)^2 \cdot F_{oo}^{oo}(p | z) \cdot \overline{F}_{oo}^{oo}(p | \overline{z}) \right]$$

$$\approx \frac{1}{1-n} \cdot \log \left[|z|^{4h_{\sigma_n}} \left(C_{oo}^I \right)^2 \cdot F_{oo}^{oo}(I | z) \overline{F}_{oo}^{oo}(I | \overline{z}) \right]$$

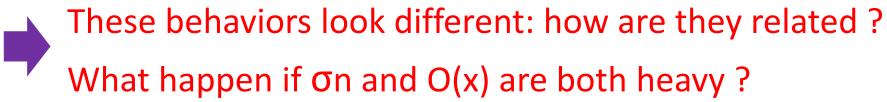
If we consider n=1 (von-Neumann EE), the twist operator σ n becomes light because $h_{\sigma_n} = \frac{c}{2A}(n-1/n)$.

 \Rightarrow We can apply the HHLL conformal block calculation.

This leads to
$$\Delta S_A^{(1)} \approx \frac{c}{6} \log \left(\frac{t}{\varepsilon} \right)$$
 . [Asplund-Bernamonti-Galli-Hartman 14]

On the other hand, if the excitation O(x) is light, then we find the Renyi EE behaves as

$$\Delta S_A^{(n)} \approx \frac{2nh_O}{n-1}\log\left(\frac{t}{\varepsilon}\right)$$
 . [Caputa-Nozaki-TT 14]



Motivated by this, we performed full analysis by using the Zamolodchikov's recursion relation [Kusuki-TT 17].

[Zamolodchikov 1984,, Chen-Hussong-Kaplan-Li 17]

The conformal block for $\langle O_A(0)O_A(z)O_B(1)O_B(\infty)\rangle$ is given by

$$F_{h_B h_B}^{h_A h_A}(0|z)$$

$$= (16q)^{-\frac{c-1}{24}} z^{\frac{c-1}{24}} (1-z)^{\frac{c-1}{24}-h_A-h_B} \theta_3(q)^{\frac{c-1}{2}-8(h_A+h_B)} \times H^{\underline{h_A,h_B}}(q).$$

$$H^{h_A,h_B}(q) = 1 + \sum_{m=1}^{\infty} c_m q^{2m}$$

Here we introduced $q \equiv e^{-\pi \frac{K(1-z)}{K(z)}}$.

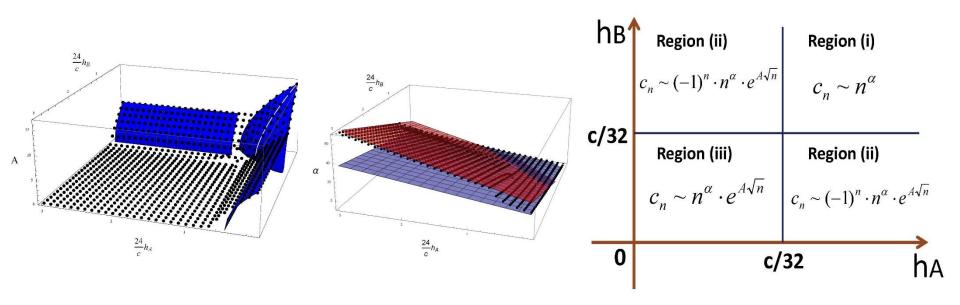
Late time limit of Renyi EE: $q \approx i \cdot e^{\frac{\pi^2}{4\log[t/\varepsilon]}} \rightarrow i$.

We numerically solved the Zamolodchikov recursion relation up to m≈1000.

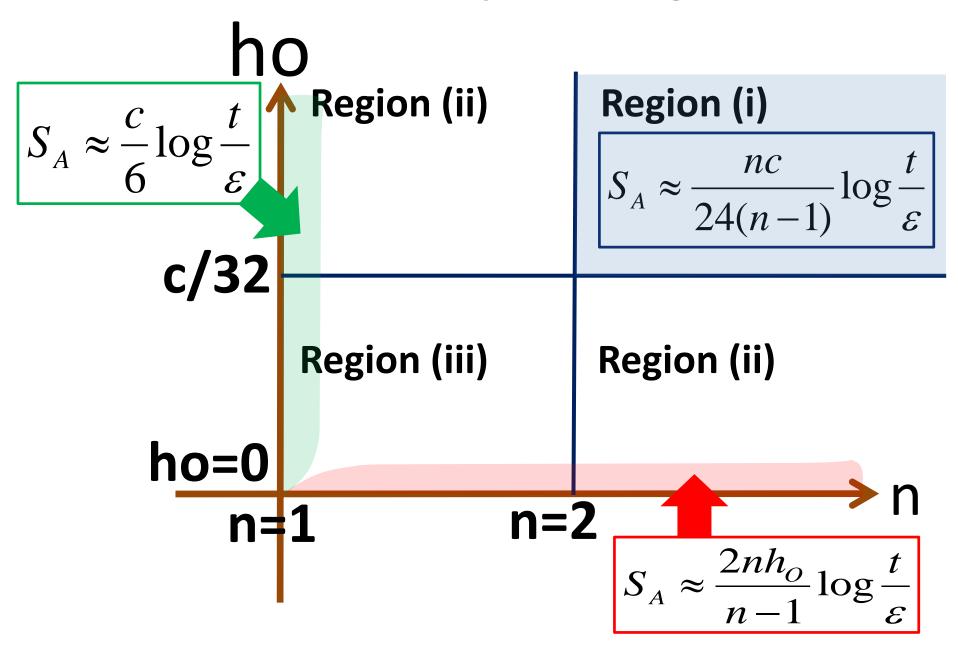
For large m, we find the Cardy formula –like behavior:

$$|c_m| \approx \beta \cdot m^{\alpha} \cdot e^{A\sqrt{m}} \quad (m \to \infty).$$

Such behaviors are sensitive to the dimensions hA and hB.



Our Final Result on Renyi EE in Large c CFT



Summary so far (We focus on 2d CFTs)

(i) RCFT (Integrable and Rational)

(ii) Holographic CFTs (Large c CFTs) ~Maximally Chaotic

$$\Delta S_A^{(n)} \approx B(c, h_O, n) \cdot \log \left(\frac{t}{\varepsilon}\right)$$
Logarithmic growth

Are there any intermediate behaviors?

6 Case 4: Cyclic Orbifold CFTs

[Caputa-Kusuki-Watanabe-TT 17]

We consider a class of cyclic (Zn) orbifold CFTs (c=2n):

$$(T^2)^n/Z_n$$
, $(Z_n = \text{symmetric group}).$

The T^2 CFT is described by two real scalar X and Y, which are compactified as $X^2X+2\pi R$, $Y^2Y+2\pi R$.

It is useful to define $\eta=R^2$. ($\eta=1$: self-dual radius)

- (a) If $\eta=p/q$ (rational), the torus CFT becomes rational.
- (b) If η is irrational, the torus CFT becomes irrational.

Integrable but Irrational!

A twisted sector of Sn orbifold

$$(X^{(i)}, Y^{(i)}) \rightarrow (X^{(i+1)}, Y^{(i+1)}), \quad i = 1, 2, ..., n$$

The corresponding primary operator (twist operator) is denoted by σ_n . Conformal dim.: $\Delta = \frac{c}{24}(n-n^{-1})$.

We are interested in the local excitation by this twist operator:

$$|\Psi\rangle \equiv \underline{e}^{-\varepsilon H} \cdot \sigma_n(x) |0\rangle.$$

The four point function of twist operators

[Calabrese-Cardy-Tonni 09]

$$\langle \sigma_n \overline{\sigma}_n \sigma_n \overline{\sigma}_n \rangle \propto F_n(z, \overline{z}),$$

$$F_n(z,\bar{z}) = \frac{2^{n-1}\eta^{n-1}}{\prod_{k=1}^n I_{k/n}(z,\bar{z})} \cdot \Theta(\eta\Gamma)^2,$$

$$\Theta(\Gamma) \equiv \sum_{m \in \mathbb{Z}^{n-1}} e^{i\pi m^T \cdot \Gamma \cdot m}$$
, (Γ is a certain rank $2(n-1)$ matrix)

$$I_{k/n}(z,\bar{z}) = {}_{2}F_{1}\left(\frac{k}{n},1-\frac{k}{n},1;z\right) \cdot {}_{2}F_{1}\left(\frac{k}{n},1-\frac{k}{n},1;1-\bar{z}\right) + (c.c.).$$

Normalized s.t. $F_n(0,0) = 1$.

(a) Rational case (η=p/q)

In the rational case we find

$$F_n(1,0) = \frac{1}{(2pq)^n}.$$

Thus the growth of 2nd Renyi entropy is finite:

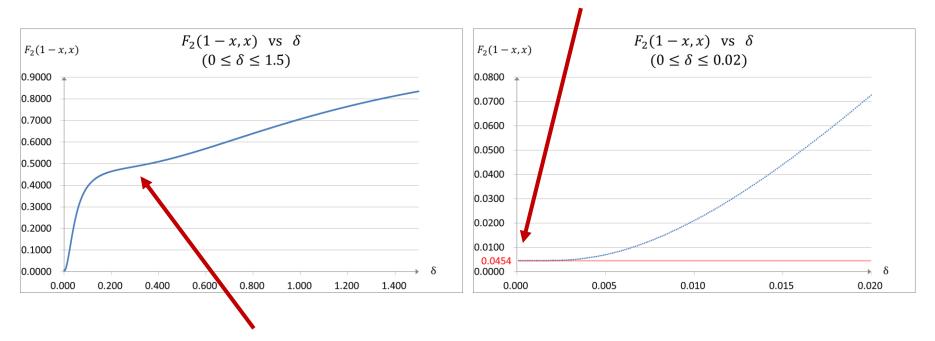
$$\Delta S_A^{(2)} = (n-1) \cdot \log(2pq) \sim (c/2) \log(2pq).$$

Indeed this agrees with the quantum dimension:

$$d_{\sigma} = \frac{S_{0\sigma}}{S_{00}} = \frac{1}{(s_{00})^{n-1}} = (2pq)^{n-1}.$$

Numerical Plot for $\eta = 10/11$

Correct Plateau F2=1/220



Plateau corresponding to $\eta = 1 \Rightarrow F_2 = 1/2$.

We defined:
$$\delta = \frac{\pi}{2\log(2t/\varepsilon)} \left(\to 0 \right)$$

(b) Irrational case (n≠p/q)

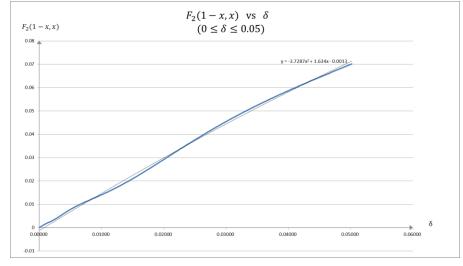
First of all we get $F_n(1,0) = 0$. $\Rightarrow \Delta S_A^{(2)}(t = \infty) = \infty$.

As we sweep δ or the time t, we picks up infinitely many plateau contributions (\Leftrightarrow rational values $\eta = p/q$).

Note: Continued fractions describe irrational numbers.

eg.
$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \dots}}$$
.

Plot of
$$F_2$$
 for $\eta = \sqrt{2}$



F2 behaves as follows for small δ (or large t):

$$F_{2}\left(1-\frac{\varepsilon^{2}}{4t^{2}},\frac{\varepsilon^{2}}{4t^{2}}\right)$$

$$1 \leq \frac{1-\frac{\varepsilon^{2}}{4t^{2}}}{\delta} \leq A(\eta).$$

This leads to the log(log) growth of Renyi EE!

$$\Delta S_A^{(2)} \approx \log \left(\log \left(\frac{t}{\varepsilon}\right)\right).$$

Plot of (F_2/δ) for $\eta = \sqrt{2}$ $F_2(1-x,x)/\delta \text{ vs } \delta \text{ (0 } \leq \delta \leq 0.05)$ 1.54000 1.54000 1.44000

7 Conclusions

We summarize the time evolutions of (Renyi) EEs $\Delta S_A^{(n)}$ for locally excited states in various CFTs.

(a) Free CFTs in any dim. or Rational CFTs in 2d

 $\Delta S_A^{(n)}$ shows a finite growth = log[quantum dim.].

(b) Holographic CFTs in 2d
$$\Delta S_A^{(n)} \propto B(c,h_O,n) \cdot \log \left(\frac{t}{\varepsilon}\right)$$

(c) Irrational but integrable 2d CFT (sym. orbifold CFTs)

$$\Delta S_A^{(n)} \propto \log \log \left(\frac{t}{\varepsilon}\right)$$

(d) Higher dim. Hol. CFTs ⇒ At least sublinear [Jahn-TT, 2017]

These results naturally lead us to the following conjecture:

Our Conjecture

Maximal growth of EE at late time under a local excitation will be logarithmic with the coefficient for large c CFTs:

$$\Delta S_A^{(n)}(t) \leq B(c, h_O, n) \cdot \log \left(\frac{t}{\varepsilon}\right).$$