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A Favourite Quote

TRUTH COMES AS A CONQUEROR IF ONE DOESNOT MAKE FRIENDS WITH IT
-Rabindranath Tagore
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F Introduction to geometric quantization

F Geometric Quantization of finite Toda systems

F Quillen’s Determinant line bundle
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F Hitchin moduli space and its quantum bundles

F Further work completed/in progress
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1 Geometric Quantization – a quick

introduction



Introduction to geometric quantization

F Axioms of Quantization: Given (M,Ω), a symplectic manifold, is it possible to
assign operators to functions onMwhich act on a Hilbert space such that:

G f → f̂ is linear

G f = constant =⇒ f̂ is a multiplication operator

G If {f1, f2}Ω = f3, then [f̂1, f̂2] = −i~f̂3.

F Let (M,Ω) be a symplectic manifold such that the symplectic form is integral.
Geometric prequantization is a construction of a prequantum line bundle L on
the symplectic manifold, whose curvature is proportional to the symplectic form
Ω.

F This line bundle should come with a metric and the Hilbert space of the pre-
quantization is the space of the square integrable sections of L.
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F To every f ∈ C∞(M) we associate an operator acting on the Hilbert space, namely,

f̂ = −i~[Xf −
i

~
θ(Xf )] + f

= −i~∇θXf + f

where Xf is the Hamiltonian vector field defined by Ω(Xf , ·) = −df and θ is a
symplectic potential correponding to Ω, i.e Ω = dθ locally. Then if f1, f2 ∈ C∞(M)

and f3 = {f1, f2}Ω, Poisson bracket of the two induced by the symplectic form,
then [f̂1, f̂2] = −i~f̂3 and the other two axioms are also satisfied.

G Quantization from Prequantization: The Hilbert space of square integrable sections
of the line bundle is too huge. So geometric quantization involves searching for a
polarization and taking polarized sections as the Hilbert space.
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G Example: R2 , with (p, q) coordinates.

Ω = dp ∧ dq is the symplectic form and θ = pdq the symplectic potential.

p̂ = −i~ ∂
∂q , and

q̂ = i~ ∂
∂p + q.

To get back the usual quantization, namely

p̂ = −i~ ∂
∂q , and q̂ = q, we need to take polarized sections, i.e. functions which

depend on q alone.
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Real, Complex and holomorphic polarizations
G Real polarization: A real polarization of a symlectic manifold (M,ω) is a foliation

of M by Lagrangian submanifolds: i.e. a smooth distribution P which is

(1) integrable: if X,Y ∈ VP (M) then [X,Y ] ∈VP (M).

(2) Lagrangian: for each m ∈M , Pm is a Lagrangian subspace of TmM .

G Complex polarization: A complex polarization of a symplectic manifold (M,ω) is
a complex distribution P on M such that

(1) for each m ∈M , Pm ⊂ (TmM)C is Lagrangian

(2) the dimension of D = P ∩ P̄ ∩ TM is constant.

(3) P is integrable.

G Holomorphic polarization: A Kahler manifold is a complex manifold of real di-
mensin 2n with a symplectic structure ω and a complex structure J which is com-
patible with ω. The metric g(·, ·) = 2ω(·, J) makes M into a Riemmanian manifold.

In local holomorphic coordinates za, a = 1, ...n, ω = iωabdz
a∧dz̄b, where ωab = ω̄ba.

M has two polarizations, the holomorphic polarization P spanned by { ∂∂z} and the
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anti-holomorphic polarization spanned by { ∂∂z̄}.

G Definition: A smooth section s : M → L is said to be polarized if∇X̄s = 0 for every
X ∈ VP (M).

G Example: M = R2n × Cn′
. Then there are real coordinates pa and qb on R2n and

complex coordinates zα on Cn′
. Let K(q, z, z̄) be a real function of q’s and z’s such

that det( ∂2K
∂zα∂z̄β

) 6= 0.

Then the following is a symplectic form on M .

ω = dpa ∧ dqa −
i

2

∂2K

∂qa∂zα
dqa ∧ dzα +

i

2

∂2K

∂qa∂z̄α
dqa ∧ dz̄α

+i
∂2K

∂zα∂z̄β
dzα ∧ dz̄β

(2)

(sum over repeated indices).
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The symplectic potential is

θ = padq
a − i ∂K∂zα dz

α − i
2
∂K
∂qa dq

a.

Polarised sections are functions of q and z alone – holomorphic in z.

This example is a typical case!

G By adding a constant to K one can arrange that the Hermitian structure on L is
given by (φ, φ) = φ̄φe−K/~.

G We should like to quantize M by replacing the Hilbert space H of prequantization
by the subspace of sq. int. polarized sections of L.

The first problem is the operator f̂ corresponding to f ∈ C∞(M) maps local polar-
ized sections to polarized sections only if the flow of Xf preserves P .

This follows from

∇X̄(f̂ s) = f̂(∇X̄s)− i~∇[X̄,Xf ]s.

So if f̂ s is polarized whenever s is polarized, then [X,Xf ] ∈ VP (M) whenever
X ∈ VP (M).

Thus only a limited class of observables f can be quantized directly.

G Holomorphic Quantization: If the prequantum bundle is holomorphic, one could
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take holomorphic sections as polarised sections. But for a general f , f̂ doesnot
take holomorphic sections to holomorphic sections. Only some functions can be
quantized.

G Many successes in this: Harmonic osciallator, spin quantization, Witten’s construc-
tion of Jone’s polynomial from Chern-Simon’s gauge theory and of course quanti-
zation of coadjoint orbits.
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G Spin Quantization:

Example: The holomorphic quantization of S2. S2 is identified with CP 1, a Kähler
manifold. Using z as the coodinates on S2, the Kähler form is ω = i dz∧dz̄(1+zz̄)2 . We
take symplectic form to be Ω = nω, where n is an integer. This is integral and∫
S2 Ω = 2πn The symplectic potential can be taken to be A = in

2 [ zdz̄−z̄dz(1+zz̄) ]. The
covariant derivative acting on sections of the prequantum bundle is given by ∂−iA.

E The holomorphic polarization condition is (∂z̄ − iAz̄)Ψ = [∂z̄ + n
2

z
1+zz̄) ]Ψ = 0. This

can be solved as Ψ = exp(−n2 log(1 + zz̄))f(z).

(Note that nlog(1 + zz̄) is the Kähler potential for Ω. )

Th inner product is given by < 1|2 >= iα
∫

dz∧dz̄
2π(1+zz̄)n+2 f

∗
1 f2.

Since f(z) is holomorphic, we can see that a basis of non-singular wavefunctions
is given by f(z) = 1, z, z2, ....zn, as higher powers will not give finite norm. The
dimension of this Hilbert space is (n+ 1).

E This is relevant to physics: a particle of spin n
2 has as phase space the coadjoint

orbit of SU(2) corresponding to a sphere and the Hilbert space of the quantization
is exactly the one as above.
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Coadjoint Orbits
G Coadjoint actions of a Lie group G whose Lie algebra is G:

G The adjoint action g → gA induces a coadjoint action of G on the dual space G∗ by

g : G∗ → G∗ : f → fg where fg(A) = f(gA) for A ∈ G.

G Coadjoint Orbits:

Suppose that G is connected. Under the coadjoint action G∗ breaks up into orbits of
the form

M = {fg|g ∈ G}, on each of which G acts transitively. The orbits are connected
because G is connected.

G The first well known result is that they are all symplectic manifolds.

This is described as follows:

The action on G∗ of the one-parameter subgroup generated by A ∈ G is the flow of
the vector field XA ∈ V (G∗), where the value of XA at f is f ′ ∈ Tf (G∗) = G∗, where
f ′(B) = f([A,B]).

Let f ∈ G∗ and let M be the orbit through f . The vector fields XA span the TfM .
In fact, if XA and XA′ are the same, then f([A,B]) = f([A′, B]).
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The symplectic form on the coadjoint orbit through f ∈ G∗ is given by the formula
ω(XA, XB) = 1

2f([A,B]).

In fact it depends only on XA and XB and not on A,B. It is invariant under the
coadjoint action.

G The second result of Kostant and Souriau is that any symplectic manifold on which
G has a transitive Hamiltonian action is a covering space of an orbit in G∗. In
principle all elementary classical systems with symmetry group G which admit a
moment map can be found by analysing the orbits in G∗.

G Kostant used the method of geometric quantization to quantize coadjoint orbits
with an eye to constructing representations of G.
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Our work:
F Geometric Quantization of the finite Toda systems (joint with Dr. Saibal Ganguli)

F Extension of the construction of Quillen bundle to some other situations (various
moduli spaces):

E The vortex moduli space for a compact Riemann surface.

E The Hitchin moduli space for a compact Riemann surface genus g > 1.

E Dimensionally reduced Seiberg-Witten equations on a Riemann surface.

E Dimensionally reduced generalized Seiberg-Witten equations on a Riemann sur-
face, (joint work with Dr. Varun Thakre).

F Deriving a general theorem that the Quillen bundle is in some sense central to
geometric quantization of compact symplectic and Kähler manifolds which are
integral (jointly with Mathai Varghese):

E Holomorphic Quillen determinant bundle on integral compact symplectic
and Kähler manifolds
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Geometric Quantization of the finite Toda system

F Adler had showed that the Toda system can be given a coadjoint orbit description.
We quantize the Toda system by viewing it as a single coadjoint orbit orbit of a
multiplicative group of lower triangular matrices of determinant one with positive
diagonal entries.

F We get a unitary representation of the group with square integrable polarized sec-
tions of the quantization as the module. The eigenvectors of the Hamiltonian are
given by the Whittacker functions, as in the literature.
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Geometric Quantization of Various Moduli Spaces
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Determinant line bundle of Quillen
F The moduli space of solutions to various equations arising from physics often carry

symplectic structure. In order to quantize some of these systems, we wish to quan-
tize the moduli spaces using geometric quantization. In order to do that we need
to understand the determinant line bundle of Quillen.

F A = space of unitary connections on a vector bundle E associated to a principal G
bundle on a Riemann surface Σ. Can identify A = A0,1 (since A1,0∗ = −A0,1) . On
this infinite-dimensional space, we define the determinant line bundle of Quillen.

F One defines the Cauchy-Riemann operator on Σ locally written as ∂̄ + A0.1 which
acts on sections of the vector bundleE. We denote it by ∂̄A. Construct a line bundle
L on A0,1 as follows.

The fiber on A0,1 is det ∂̄A = ∧top(Ker ∂̄A)∗ ⊗ ∧top(Coker ∂̄A)

F The dimension of Ker ∂̄A jumps even locally but the whole object makes sense
–after certain identifications (Quillen’s ingenious construction). Quillen further
shows that L carries a metric and a connection s.t. the Kähler potential is ∂ζA

∂s (0)

where ζA is the zeta function corresponding to the Laplacian of ∂̄A. The curvature
turns out to be proportional to Ω(α, β) = −

∫
Σ

Tr(α ∧ β), the Kähler form on A0,1.
Rukmini Dey µ ¶ ToC · ¸ Geometric prequantization page 21 of 36



Motivating example: geometric quantization of the
moduli space of flat connections

F The motivating example in our context would be the geometric quantization of the
moduli space of flat connections on a principal G-bundle P on a compact Riemann
surface Σ, using the Quillen determinant line bundle construction.

F The Hilbert space of quantization is given by some conformal blocks in a certain
Conformal Field Theory. The literature is very vast but some names associated to
this are Witten, Axelrod, Della Pietra, Narasimhan, Beauville, Drezet, Andersen.

F This example led to Witten’s construction of the Jone’s polynomial from the Chern’s
Simon’s Gauge theory.

F Another example: Donaldson’s construction of the Quillen bundle on the moduli
space of ASD connections on Kahler surfaces.

F Yet another example: Quite recently, Eriksson and Romao have constructed Quillen
bundle on vortex moduli spaces – a very algebro-geometric construction.
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The Vortex Moduli Space

F The vortex equations are as follows. Let Σ be a compact Riemann surface and let
ω = 1

2h
2dz ∧ dz̄ be i times the volume form on it. Let A be a unitary connection on

a principal U(1) bundle P

Let L be a complex line bundle associated to P . Let Ψ be a section of L, i.e. Ψ ∈
Γ(Σ, L) . There is a Hermitian metric H on L.

The pair (A,Ψ) will be said to satisfy the vortex equations if

(1) F (A) = 1
2 (1− |Ψ|2H)ω,

(2) ∂̄AΨ = 0,

where F (A) is the curvature of the connectionA and ∂A+∂̄A is the covariant deriva-
tive operator
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F Let S be the space of solutions to (1) and (2). There is a gauge group
acting on the space of (A,Ψ) which leaves the equations invariant. Lo-
cally it looks like Maps(Σ, U(1)). If g is an U(1) gauge transformation
then (A1,Ψ1) and (A2,Ψ2) are gauge equivalent if A2 = g−1dg + A1

and Ψ2 = g−1Ψ1. Taking the quotient by the gauge group of S gives
the moduli space of solutions to these equations and is denoted byM.

F

∫
Σ

F (A) = 4πN where N is an integer called the vortex number.

F By theorems of Taubes and Bradlow, one has that the moduli space of
vortices is parametrized by the zeroes of Ψ. Thus the moduli space is
the symmetric product, SymN (Σ). When the Riemann surface is CP 1,
the moduli space is complex projective space CPN .
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The metric and symplectic form

F OnM one can define a metric which is the descendent of a metric on the configu-
ration space, given by,

G(X,Y ) =

∫
Σ

∗α1 ∧ α2 + i

∫
Σ

Re < β, η >H ω

F a complex structure induced by I =

 ∗ 0

0 i

 : TpC → TpC where ∗ : Ω1 → Ω1 is

the Hodge star operator on Σ such that ∗α1,0 = −iα1,0 and ∗α0,1 = iα0,1
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F We define the symplectic form to be the Marsden-Weinstein descendent of the form
induced by the following symplectic form of the configuration space

Ω(X,Y ) = −1

2

∫
Σ

α1 ∧ α2 +
i

2

∫
Σ

Re < iβ, η >H ω

= −1

2

∫
Σ

α1 ∧ α2 −
1

4

∫
Σ

(βHη̄ − β̄Hη)ω

In fact, G(IX,Y ) = 2Ω(X,Y ). This form is in fact a Kähler form on theM.
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Quillen bundle on the vortex moduli space

F We denote the Quillen bundle P = det(∂̄A) which is well defined on C = A ×
Γ(L). We can give P a modified Quillen metric, namely, we multiply the Quillen
metric e−ζ

′
A(0) by the factor e−

i
4π

∫
M
|Ψ|2Hω, where recall ζA(s) is the zeta-function

corresponding to the Laplacian of the ∂̄A operator.

F The factor e−ζ
′
A(0) contributes

i

2π

(
−1

2

∫
Σ

α1 ∧ α2

)
to the curvature, and the factor

e−
i

4π

∫
M
|Ψ|2Hω contributes

i

2π

(
−1

4

∫
Σ

(βHη̄ − β̄Hη)ω

)
to the curvature.

Thus we have the following:

The curvature of P with the modified Quillen metric is indeed i
2πΩ on the affine

space C.
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F One can show that the modified Quillen line bundle descends to the moduli space
of vortices and indeed its curvature is i

2πΩ where Ω here is the descendent of the
symplectic form on the affine space. We showed that this form is exactly the famous
Samols-Manton-Nasir form on the moduli space.

F Now we restrict our attention to the case when the Riemann surface is S2 of radius
R. The moduli space is CPN . If 1

2πΩ is integral, then 1
2π [Ω] = [ωFS ], (the coho-

mology class of the Fubini-Study Kahler form) if we fine tune the volume of the
sphere!

Thus in this case [ 1
2πΩ] = [ 1

2πωSMN ] = [ωFS ].
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Dimension of the Hilbert space of quantization of vortex moduli space:

F Theorem (D., S. Ganguli). The dimension of the Hilbert space of ge-
ometric quantization for N -vortices on a compact Riemann surface of
genus g is given by the holomorphic Euler characteristic of the quan-
tum line bundle L on the SymmN (Σ) (i.e. the vortex moduli space)
which has curvature proportional to the Manton-Nasir form, ωMN , a
Kähler form ( which is integral if the volume of the surface is A = 4πk,
k ∈ Z+ ). The dimension of the Hilbert space is

(
k
N

)
, where k = A

4π if
A
4π > max(N, g − 1) .
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2 Two General Theorems



Holomorphic determinant line bundles on integral
compact Kähler and symplectic manifolds

F Given an integral Kähler form ω on a compact Kähler manifold, there is a holomor-
phic line bundle L on the manifold with connection and curvature proportional to
ω (setting for geometric quantization). We show in the following theorem that a
high enough tensor power of L is indeed a Quillen determinant bundle.

F Theorem ( D., V. Mathai): Any compact Kähler manifold M with integral Kähler
form ω, parametrizes a natural holomorphic family of Cauchy-Riemann operators
{∂̄a : a ∈ M} on CP 1 such that the Quillen determinant line bundle det(∂̄) ∼= L⊗k

as holomorphic line bundles, where L is the holomorphic line bundle determined
by ω, for some sufficiently large k.
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F The strategy of the proof of the above theorem goes briefly as follows. We first
establish the theorem for complex projective spaces CPN for all integers N and for
k = 1. This is achieved by viewing CPN as the moduli space of N -vortices on CP 1.

F Every pt [(A,Ψ)] on the moduli space of N -vortices on a sphere corresponds to
a point a ∈ CPN and determines a Cauchy-Riemann operator ∂̄a on CP 1. The
Quillen determinant line bundle on CPN denoted by det(∂̄), (equipped with the
modified metric which involves Ψ also ) is isomorphic as a holomorphic line bundle
to the hyperplane bundle which is the dual of the tautological bundle on CPN and
whose curvature is proportional to ωFS . This is because [ 1

2πΩ] = [ωFS ].
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F The next step is to apply the Kodaira embedding theorem into CPN to establish the
theorem in general for a Kahler manifoldM with integral Kahler form ω. For k large
enough, there is a holomorphic emdedding φk of M into P (H0(M,O(L⊗k))∗) =

CPN , (Kodaira embedding), such that [φ∗k(ωFS)] = k[ω] where ωFS is the Fubini-
Study form on CPN . In fact, φ∗k(H) ∼= L⊗k, where H is the hyperplane bundle on
CPN . But the hyperplane bundle is a Quillen determinant line bundle, as we saw
before. Hence we have our theorem.

F Our second result is a symplectic analogue of our theorem, established using Gro-
mov’s embedding theorem.

Theorem (D., V. Mathai): any compact symplectic manifold M with integral sym-
plectic form ω, parametrizes a natural smooth family of Cauchy-Riemann operators
{∂̄a : a ∈M} on CP 1 such that the determinant line bundle det(∂̄) ∼= L as complex
line bundles, where L is the prequantum line bundle determined by ω.
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An equivariant version
D.-Mathai conjecture on an equivariant version was proved by I. Biswas

Let M be a compact Kähler G-manifold M with integral Kähler form ω, where G is a
compact Lie group. That is, ω is a G-invariant Kähler form on the G-manifold M and
all structures are G-invariant. Let L denote the holomorphic G-line bundle determined
by ω. Then M parametrizes a natural holomorphic G-equivariant family of Cauchy-
Riemann operators {∂̄z : z ∈ M} on a compact Kähler G-manifold Z such that the
Quillen determinant line bundle det(∂̄) ∼= L⊗k as holomorphicG-line bundles, for some
sufficiently large k.

Similarly a symplectic analogue.
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Geometric quantization of the Hitchin moduli space

F The Hitchin moduli space MH is the moduli space of solutions of a set of equa-
tions obtained by dimensionally reducing the Self-Dual Yang-Mills from 4 to 2 di-
mensions and defining them on a compact Riemann surface of genus g > 1. The
moduli space has very rich structure. In particular, it has a hyperKähler structure,
i.e. three symplectic forms (say, Ω, Q1 and Q2 ), derived from a metric g and three
complex structures I, J and K (Hitchin.)

F We showed that the three Kahler forms are integral and there are three prequantum
line bundles corresponding to these Kahler forms, i.e. line bundles on the Hitchin
moduli spaceMH whose curvatures are proportional to these Kahler forms. These
are all Quillen bundles with some modifications.

For example the first Kahler form can be quantized by a determinant of a ∂̄A opera-
tor, where the Quillen metric has been modified by terms involving the Higgs field
Φ.

The first Kahler form is integral – private communication with I. Biswas
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F Quantization:

These line bundles are holomorphic w.r.t. their respective complex structures. One
takes holomorphic sections of these line bundles to be the appropriate Hilbert spaces.
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Further Work Completed in this direction:

F Geometric Quantization of the moduli space of dimensional reduction of modified
Seiberg-Witten equations on a Riemann Surface

F Studying the moduli space of dimensional reduction of generalized Seiberg-Witten
equations (where the spinors take values in a hyperKähler manifold) and its geo-
metric quantization. Joint work with Dr. Varun Thakre
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