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Classical Weil-Petersson metric
Let Xp → Tp be the Teichmüller family of (marked) compact Riemann
surfaces of genus p.

Let the surface X represent a point in Tp.
Then the tangent space of Tp at X can be identified with the space of
harmonic Beltrami differentials on X

TX (Tp) = H1(X , TX ) ' H0(X ,Ω⊗2
X )∨

André Weil (1958)

Hermitian metric on Teichmüller space, L2-inner product for harmonic
Beltrami differentials induced by Poincaré metric on fibers.

Previously introduced by Hans Petersson.

〈φdz2, ψdz2〉PW =

∫
X

φdz2 ψ dz
2

gdzdx
=

∫
X

φψ

g
dzdz

(where gdzdz Poincaré metric)
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The Weil-Petersson form ωWP is Γp-invariant, descends to moduli
spaceMp = Tp/Γp as orbifold metric.

Wolpert

The Weil-Petersson form is the curvature form of Mumford’s line
bundle λp

ωWP ' c1(hQ, λ)

The Weil-Petersson form extends to the Deligne-Mumford
compactificationMp as a positive current.
The Weil-Petersson current possesses a continuous potential,
given by a continuous hermitian metric on λp.

Note: Mp\Mp ”consists” of moduli spaces of punctured Riemann
surfaces of lower genus.
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Moduli spaces: Analytic Program

Equip analytic objects (e.g. complex manifolds, holomorphic line
bundles) with distinguished metrics.
Define natural/intrinsic hermitian metric (with form ωWP) on the
base of a holomorphic family (descending to the moduli space).
Prove a fiber integral formula for ωWP implying Kähler property.
Compute curvature of ωWP .
Construct a holomorphic, hermitian line bundle on the moduli
spaceM s.t. c1(λ,hQ) ' ωWP

Extend ωWP to a compactificationM of the moduli space as a
positive current.
Application: Extend (λ,hQ) toM =M∩D (after modification of
the boundary).
Application: Projective embedding ofM, i.e. λ ample modulo D.

Substantially different methods
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Generalized Petersson-Weil metrics

Approach
Given a holomorphic family (of vector bundles, complex manifolds,
etc.) parameterized by S.
Kodaira-Spencer map for s ∈ S

ρs : TsS → {infinitesimal deformations} = Def (D)

Equip the vector space of infinitesimal deformations with natural
L2-inner product (typically induced on a cohomology group by
distinguished metric on given object).

Generalizations to moduli spaces of stable holomorphic vector
bundles, to Douady spaces, moduli space of canonically polarized
manifolds, and for families of polarized Calabi-Yau manifolds.
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⇒intrinsically defined hermitian metric GWP on parameter space S.

⇒Kähler property of GWP , Kähler form ωWP descending to
corresponding moduli space.
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Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)
(f : X → S,gX/S) holomorphic family of compact Riemann surfaces
{Xs = f−1(s)}s∈S, with Poincaré metrics gs. Then

ωWP =
1

2π

∫
X/S

c2
1(X/S,g).

implies Kähler property.

Idea: Realize ωWP as integral of a real, closed (n + 1,n + 1) over
family of compact n-dimensional manifolds.
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Moduli of stable holomorphic vector bundles on Kähler
manifolds
(X , ωX ) compact Kähler manifold

S (reduced) complex analytic space.
E → X × S hol. family of stable vector bundles, Es = E|X × {s}.
h hermitian metric on E s.t.
hs = h|Es Hermite-Einstein metric on Es.
F curvature form of h

Kodaira-Spencer map

ρs : TsS → H1(X ,End(Es)),

with L2-inner product of harmonic Kodaira-Spencer tensors w.r. hs.

Fact:
TsS 3 v 7→ (vyF )|X × {s}

harmonic representative of ρs(v).

Georg Schumacher Marburg 8
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Fix det(Es), r = rk(E), then simplest form (λ = 0):

Fiber integral formula
1

2π2ω
WP = −1

r

∫
X×S/S

ch2(End(E),h) ∧ ωn−1.

where

ch2(End(E),h) =
1
2

tr
(√
−1

2π
F ∧

√
−1

2π
F
)
.
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Theorem (Biswas-Sch.)
Let E ∈ Coh(X × S), OS-flat, S a polydisk. Let Es be stable and locally
free for s ∈ S\A. Then ωWP extends to S as a closed, positive
(1,1)-current.

Approach: Bound the Donaldson invariant.
Simple case: E locally free:

Heat equation
Let s ∈ S′ = S\A. For all t ≥ 0 there a differentiable endomorphisms
h(t) of Es with det(h(t)) = 1 s.t.

∂h
∂t

h−1 = −(ΛX Fs − λidEs ).

h(0) = h0 initial metric

Georg Schumacher Marburg 10
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Fiber integral formula:

ωWP,S′ ' −
1
2

∫
X×S′/S′

tr(F ∧ F ) ∧ ωn−1 + λ

∫
X×S′/S′

tr(F ) ∧ ωn

Second term: det(h(t)) = 1 ⇒ tr(F ) = tr(F0)
For t = 0 initial metric⇒∃ωS,aux (local) Kähler form on all of S.
First term: Use secondary Bott-Chern form.

R2(t) =

∫ t

0
tr
(
F (τ) · ΛX F (τ)

)
dτ

over all of X × S′

1
2

(tr(F (t) ∧ F (t)) = tr(F0 ∧ F0)) +
√
−1 ∂∂R2(t)
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Boundedness of Donaldson functional

M(t) =

∫
X

R2(t) ∧ ωn
X ≤ 0 0 ≤ t <∞

⇒ claim

Georg Schumacher Marburg 12



Douady spaces (Axelsson-Biswas-Sch.)

Given Kähler manifold (Z , ωZ ), Douady space D of embedded
n-dimensional subspaces:

X �
� i //

f
��

Z × D

pr2{{
D

universal, flat embedded family.

Over smooth locus D′:

ωWP =

∫
X/D

ωn+1
Z

Varouchas⇒ continuous potential for ωWP .
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Hurwitz space (Axelsson-Biswas-Sch.)

Objects
Riemann surfaces pr : X → P1 simple coverings.

Introduce a Weil-Petersson form, extend to compactified moduli space
as a current.

Fiber integral

ωWP '
∫
X/S

c1(X/S,g) ∧ pr∗c1(P1,h)

Extension Theorem holds
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Moduli of canonically polarized manifolds (Sch.)
Objects

(X , ωX ), s.t. KX ample
ωX Kähler-Einstein: Ric(ωX ) = −ωX

Kodaira-Spencer map
Family X → S, s ∈ S

ρs : TsS → H1(Xs, TXs )

Curvature of the relative canonical bundle

ωX/S relative Kähler-Einstein form

g = ωn
X/S relative volume form, with metric g−1 on KX/S

ωX =
√
−1∂∂ log g curvature of KX/S

Then
ωX |Xs = ωXs (Kähler-Einstein cdtn.)

Georg Schumacher Marburg 15
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Fiber integral formula

ωWP '
∫
X/S

ωn+1
X

Degenerating families:

Extend ωX as a positive current
Push forward to parameter space
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Universal (degenerating) family

X �
� Φ

//

f

##

PN × S

pr
��

S

for Φ = Φ|mKX/S |

Fubini-Study metric hFS on OPN (1), induces (Φ∗hFS)1/m on KX/S, i.e.
relative (initial) volume form Ω0

X/S,
with curvature

ω0
X =

√
−1∂∂ log Ω0

X/S

s.t.
ω0
X = ωFS|X .

The form ω0
X fails to be Kähler-Einstein

(ω0
X/S)n = e−F Ω0

X/S

Georg Schumacher Marburg 17
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Monge-Ampère equation

ωn
X/S = eu+F (ω0

X/S)n

with
ωX/S = ω0

rel +
√
−1∂∂u

C0-estimates
u|Xs ≤ sup(−F |Xs)

Let f : X → S be singular over S′ = S\V (σ). Then (from embedding)

|σ(s)|k · sup(−F |Xs) ≤ C for some k > 0.

Consequence:

ωX ′/S′ possesses bounded potentials (locally w.r. to X ),

hence extends as a positive current.
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Descend to moduli space

Finally

ωWP =

∫
X/S

(ωX )n+1 =

∫
X/S

(ω0
X +

√
−1∂∂u)n+1

=

∫
X/S

(ω0
X )n+1 +

√
−1∂∂

∫
X/S

n∑
j=0

u(ω0
X )j(ω0

X +
√
−1∂∂u)n−j .

First integral possesses continuous potential by Varouchas’ theorem.
Second integral defines a bounded function. Hence ωWP is a positive
closed current.
Present work for SLC singularities by Takayama, Tosatti, Rong-Zhang,
a.o.
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Degenerating families of Calabi-Yau manifolds

Definition
Calabi-Yau manifold X : c1,R(X ) = 0

Denote by ωX a Ricci-flat Kähler metric according to Yau’s theorem:

ωn
X = g dV Ricci-flat volume form
0 = Ric(ωX ) =

√
−1∂∂ log(ωn

X )

Definition
Let X Kähler. A polarization λX ∈ H1(X ,Ω1

X ) ∩ H2(X ,R) is a Kähler
class.
A polarized family (f : X → S, λX/S) defined by
λX/S ∈ R1f∗(Ω1

X/S)(S) s.t. λX/S|Xs are polarizations for the fibers Xs.
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Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



Fujiki-Sch. ’90

Equivalent: λ ∈ R2f∗R(S) s.t. λ|Xs are polarizations for the fibers Xs.

Let f : X → S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
ωn
X/S = g(z, s)dV (z).

ΘX := 2πc1(KX/S,g−1) =
√
−1∂∂ log g

be the curvature form of (KX/S,g−1).

We know that ΘX is equal to zero on the fibers, and that its
push-forward to the base is ωWP :

Fujiki-Sch. ’90

ωWP = −
∫
X/S

2πc1(X/S,g) ∧ ωn
X with norm.

∫
X/S

ωn+1
X = 0

Georg Schumacher Marburg 21



More is true:

Proposition
f : X → S (polarized) family of Calabi-Yau manifolds
Ricci-flat relative volume forms ωn

X/S = g(z, s)dV (z) (with
normalization).
Then

ΘX =
1

vol(Xs)
f ∗ωWP
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Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume

(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1
R (X )

or
(b) b1(Xs) = 0

Assume
Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.
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Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume

(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1
R (X )

or
(b) b1(Xs) = 0

Assume
Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1

R (X )
or

(b) b1(Xs) = 0
Assume

Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1

R (X )
or

(b) b1(Xs) = 0

Assume
Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1

R (X )
or

(b) b1(Xs) = 0

Assume
Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1

R (X )
or

(b) b1(Xs) = 0
Assume

Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Let

Gs(z,w) the Green’s functions for Laplacians 2s on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(a) λX/S ∈ R2f∗R(S) is the image of some λX ∈ H1,1

R (X )
or

(b) b1(Xs) = 0
Assume

Gs(z,w) > −c ∀s ∈ S

Then ∃ Kähler form ω̃X s.t. ω̃X |Xs = ωXs Ricci flat.

Georg Schumacher Marburg 23



Validity of the assumptions

Cheeger ’70, Cheeger-Yau ’80
The Green’s function is bounded, if the diameter (of the fibers Xs) is
bounded from above.

Sh. Takayama ’15, X. Rong–Y. Zhang ’11
The diameter is bounded for projective families of Calabi-Yau
manifolds.

Y. Zhang ’16, V. Tosatti ’15
The diameter is bounded for polarized families of Calabi-Yau
manifolds, under mild assumptions for the type of degeneration.
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Let f : X → S be a proper, open, surjective holomorphic mapping of
Kähler manifolds (X , ωX ) and (S, ωS). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s ∈ S′ = S\W

. Then ωX |X ′ defines a
polarization in the sense Theorem 1.
Let ω̃X ′ according to Theorem 1. Normalize

ρ = ω̃X ′ + f ∗ω̃S′ s.t.
∫
X ′/S′

ρn+1 = 0.

Theorem 2. (Choi-Sch. ’17)

(1) The metric hρ on the relative canonical bundle KX ′/S′ extends to
KX/S as a singular hermitian metric, and

(2) the curvature ΘhρX′/S′
(KX ′/S′) of the relative canonical line bundle

extends to X as a d-closed positive (1,1)-current.

M. Păun: Demailly’s approximation theorem of psh. functions by fctns.
with algebraic singularities. Ohsawa-Takegoshi Thm.
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M. Păun: Demailly’s approximation theorem of psh. functions by fctns.
with algebraic singularities. Ohsawa-Takegoshi Thm.

Georg Schumacher Marburg 25



Let f : X → S be a proper, open, surjective holomorphic mapping of
Kähler manifolds (X , ωX ) and (S, ωS). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s ∈ S′ = S\W . Then ωX |X ′ defines a
polarization in the sense Theorem 1.
Let ω̃X ′ according to Theorem 1. Normalize

ρ = ω̃X ′ + f ∗ω̃S′ s.t.
∫
X ′/S′

ρn+1 = 0.

Theorem 2. (Choi-Sch. ’17)

(1) The metric hρ on the relative canonical bundle KX ′/S′ extends to
KX/S as a singular hermitian metric, and

(2) the curvature ΘhρX′/S′
(KX ′/S′) of the relative canonical line bundle

extends to X as a d-closed positive (1,1)-current.
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On S′ for any form representing the polarization, in particular for ω:

ωWP = f∗(f ∗(ωWP) ∧ ωn) =

∫
X ′/S′

f ∗(ωWP) ∧ ωn = vol(Xs)

∫
X/S

Θ ∧ ωn

Theorem 2 and wedge product of currents Bedford-Taylor.

Corollary

ωWP extends to S as a positive, closed current.
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Extension Theorem

Kähler form ω = ωX

Relative canonical bundle

KX/S = KX ⊗ f ∗K−1
S

Local coordinates

U = {(z1, . . . , zn+d )} ⊂ X and (s1, . . . , sd ) on S

In terms of Euclidean volume forms

ωn ∧ f ∗dVS = χ · dVX = eψU · dVX

with ψU = −∞ at singular points of f .
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Corresponding curvature form on X ′:

ΘhωX/S
(KX/S) =

√
−1∂∂ψU |X ′ =

√
−1∂∂ log (ωn ∧ f ∗dVS) .

Ricci-flat volume form
exists a unique function ηs ∈ C∞(Xs) s.t.

−√−1∂∂ηs = Ric(ωs)∫
Xs

eηsωn
s =

∫
Xs

ωn
s = vol(Xs).

ρs = ωs +
√
−1∂∂ϕs fiberwise Ricci-flat

ρ = ω +
√
−1∂∂ϕ extends in natural way to total space X

Here the Kähler property of X is being used.
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Monge-Ampère equation

eηsωn
s = ρn

s for each s ∈ S′.

eηωn ∧ f ∗(dVS) = ρn ∧ f ∗(dVS) on X ′.

Hence

√
−1∂∂ log (eηωn ∧ f ∗(dVS)) =

√
−1∂∂ log (ρn ∧ f ∗(dVS))

Curvature of relative canonical bundle near singular points

√
−1∂∂(η + ψU) =

√
−1∂∂η + Θhω

X ′/S′
(KX ′/S′) = Θhρ

X ′/S′
(KX ′/S′).

Aim.
Bound the potential θ := η + ψU
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Ohsawa-Takegoshi Extension Theorem

Let ψ : Ω ⊂ Cn → R ∪ {−∞} a psh. function on a bounded
pseudoconvex domain. Then there exists a constant C > 0 (only
depending on diam(Ω)) s.t. given a hyperplane H ⊂ Cn

∀f ∈ O(Ω ∩ H) with
∫

Ω∩H
e−ψ|f |2dλ <∞

∃F ∈ O(Ω) s.t. F |Ω ∩ H = f and∫
Ω

e−ψ|F |2dλ ≤ C
∫

Ω∩H
e−ψ|f |2dλ.
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Idea

Approximate psh. function by a function of the form

log
∑
|σk |2 with σk holomorphic

Apply the Ohsawa-Takegoshi Theorem to |σk |2.
Use extra variable Z 3 m→∞ in weight function e−mθ.
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Hilbert space of holomorphic functions

Definition
m > 1, s ∈ S′ weighted norm on O(Us):

‖φ‖2m,s :=

∫
Us

|φ|2 e−m θsρn
s . for φ ∈ O(Us).

Hilbert space
H(m)

s = {φ ∈ O(Us); ‖φ‖2m,s <∞}.

eθsdVX/f ∗(dVS) = ρn
s on X ′

so that ‖φ‖2m,s =

∫
Us

|φ|2 e−(m−1)θsdVXs

where dVXs = dVX/f ∗dVS on Us.
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Theorem (cf. Demailly)

θs(x) = lim
m→∞

(
sup

{
1
m

log |φ(x)|2 ;φ ∈ H(m)
s with ‖φ‖2m,s ≤ 1

})
for every x ∈ Us, s ∈ S′.

Namely for an ON-basis {σs
k} of Hm

s the Bergman kernel is given by

ϕm =
1
m

log
∑

k

|σs
k |

2

By general theory

ϕs
m(x) = sup

{
1
m

log |φ(x)|2 : φ ∈ H(m)
s s.t. ‖φ‖2m,s ≤ 1

}
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Apply the mean-value inequality to a ball Bε.

φ ∈ H(m)
s with ‖φ‖2m,s ≤ 1,

|φ(x)|2 ≤ n!

πnr2n

∫
Bε
|φ(ζ)|2 dλ(ζ)

≤ n!

πnr2n sup
ζ∈Br

(
emθs

)∫
Bε
|φ(ζ)|2 e−mθsdλ(ζ).

Let Cs := supBr
dλ/(ρs)n. Then it follows that

|φ(x)|2 ≤ n!Cs

πnε2n sup
ζ∈Bε

(
emθs

∫
Bε
|φ(ζ)|2 e−mθs (ρs)n

)
≤ n!Cs

πnε2n sup
ζ∈Bε

(
emθs

)
.
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Hence

1
m

log |φ(x)|2 ≤ sup
ζ∈Bε

θs(ζ) +
1
m

(
log

n!

πnε2n + log Cs

)
.

Let m→∞.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the
extension of functions to the ambient space that are given at a point.
∃ φ ∈ O(Us) s.t. φ(x) = a and∫

Us

|φ|2 e−2mθs (ρs)n ≤ Cs |a|2 e−2mθs(x).

Now

ϕs
m(x) ≥ θs(x)− log Cs

m
.

Finally let m→∞.
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Note the order of limit processes: First let m→∞. The constants Cs,
which are unbounded as the singular figers are approached, are
eliminated in this way.

Proof of the Extension Theorem
Let φs ∈ H(m)

s with ‖φs‖2s ≤ 1. Hölder inequality:∫
Us

|φs|2/m dVXs =

∫
Us

|φs|2/m e−θsρn
s

≤
(∫

Us

|φs|2 e−mθsρn
s

) 1
m
(∫

Us

ρn
s

)m−1
m

≤ (vol(Xs))
m−1

m ≤ C

C = max(1, vol(Xs)), independent of m and s.
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The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:
∃ holomorphic function F on U s.t.

The restriction of F to Us is equal to φ.
There exists a numerical constant C0 > 0 independent of m and s
such that ∫

U
|F |2/m dVz ≤ C0

∫
Us

|φ|2/m dVz

p∗dVs
≤ C0 · C.

Mean value inequality applicable

|F (x)|2/m ≤ Cr

∫
Br (x)

|F (z)|2/m dVz ≤ Cr · C0 · C

on Br (x).
Use argument for all fixed θs, s ∈ S′.
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θs are uniformly bounded on W ∩ X ′ where W ⊂⊂ U.

⇒ curvature ΘhρX/Y
(KX/Y )|X0 extends as a d-closed positive real

(1,1)-current on the total space X completing the proof.
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Application to the extension of positive line bundles on
moduli spaces

Theorem (Sch. ’10/’16)
Y reduced complex space, A ⊂ Y closed analytic,
(L′,h′) holomorphic line bundle on Y ′ = Y\A
singular hermitian metric h′ s.t. ωY ′ = 2πc1(L′,h′) is positive.

Assume ∃ desingularization of Y s.t. pull-back of ωY ′ extends as a
positive, closed (1,1)-current.

Then ∃ modification τ : Z → Y, isomorphism over Y ′ s.t. (L′,h′)
extends to Z as a holomorphic line bundle with singular hermitian
metric.

Note that the extended curvature current may be different from the
given one.
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Projective embeddings

Sch.-Tsuji 2004

Theorem (Păun-Sch. 2017)
Let X be a compact Moishezon manifold, and L a big line bundle on X .
Then the restricted volume of L along a closed, irreducible complex
subspace V is positive, if and only if V is not contained in EnK (L). For
high multiples of L, the linear system |mL| embeds the complement of
the non-Kähler locus into a projective space.
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Definition
Let m > 0, then the image of the restriction map is denoted by

H0(X |V ,mL) = Im
(

H0(X ,mL)→ H0(V ,mL|V )
)
.

The restricted volume of L on V is

volX |V (L) = lim
m→∞

(
dim H0(X |V ,mL)

md/d !

)
.

Given any positive current T , the union of all Lelong sublevel sets
Ec(T ) = {x ∈ X ; ν(x ,T ) ≥ c} is denoted by

E+(T ) =
⋃
c>0

Ec(T ).

The classes α containing Kähler currents α are called big.
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Definition
Let X be a compact, complex manifold. The non-Kähler locus of a big
class equals

EnK (α) :=
⋂

E+(T ),

where T runs through all Kähler currents representing α.

Proposition

Let X be a compact, complex manifold, and L a big line bundle. Let
V ⊂ X denote an irreducible, reduced, closed, complex subspace,
whose restricted volume is positive

volX |V (L) > 0.

Then for m� 0 the linear system |Wm| with Wm = H0(X |V ,mL) yields
a map that is birational onto the image.
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