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Classical Weil-Petersson metric

Let X, — 7p be the Teichmdiller family of (marked) compact Riemann
surfaces of genus p.

Let the surface X represent a point in 7.

Then the tangent space of 7, at X can be identified with the space of
harmonic Beltrami differentials on X

Tx(Tp) = H'(X, Tx) =~ H(X, Q%?)"
André Weil (1958)

Hermitian metric on Teichmiller space, L2-inner product for harmonic
Beltrami differentials induced by Poincaré metric on fibers.

Previously introduced by Hans Petersson.

a2y _ [P
d422, ) py = | 202D :/ ~—dzdz
(9pdz=,dz%) p . gdzdx e

(where gdzdz Poincaré metric) i d
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The Weil-Petersson form w"F is I',-invariant, descends to moduli
space My = Tp/Ip as orbifold metric.
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Generalized Petersson-Weil metrics

Approach

Given a holomorphic family (of vector bundles, complex manifolds,
etc.) parameterized by S.
Kodaira-Spencer map for s € S

ps : TsS — {infinitesimal deformations} = Def(D)

Equip the vector space of infinitesimal deformations with natural
L2-inner product (typically induced on a cohomology group by
distinguished metric on given object).
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Generalized Petersson-Weil metrics

Approach

Given a holomorphic family (of vector bundles, complex manifolds,
etc.) parameterized by S.
Kodaira-Spencer map for s € S

ps : TsS — {infinitesimal deformations} = Def(D)

Equip the vector space of infinitesimal deformations with natural
L2-inner product (typically induced on a cohomology group by
distinguished metric on given object).

Generalizations to moduli spaces of stable holomorphic vector
bundles, to Douady spaces, moduli space of canonically polarized
manifolds, and for families of polarized Calabi-Yau manifghligpss.
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=intrinsically defined hermitian metric G"* on parameter space S.

=Kahler property of G"F, Kahler form w"* descending to
corresponding moduli space.
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Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)

(f: X — S,9x/s) holomorphic family of compact Riemann surfaces
{Xs = f~1(8)}ses, With Poincaré metrics gs. Then

wWP

cf(¥/S.9).

T or X/S

implies Kahler property.
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Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)
(f: X — S,9x/s) holomorphic family of compact Riemann surfaces
{Xs = f~1(8)}ses, With Poincaré metrics gs. Then

wWP

cf(¥/S.9).

T 2r X/S

implies Kahler property.

Idea: Realize w"F as integral of a real, closed (n+1,n+ 1) over
family of compact n-dimensional manifolds.
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Moduli of stable holomorphic vector bundles on Kahler
manifolds

(X, wx) compact Kéhler manifold
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Moduli of stable holomorphic vector bundles on Kahler
manifolds

(X,wx) compact Kahler manifold
S (reduced) complex analytic space.

& — X x S hol. family of stable vector bundles, & = £|X x {s}.
h hermitian metric on & s.t.

hs = h|Es Hermite-Einstein metric on &s.
F curvature form of h

Kodaira-Spencer map

ps : TsS — H'(X, End(&s)),

with L2-inner product of harmonic Kodaira-Spencer tensors w.r. hs.

Fact:
TsS> v (ViF)|X x {s}

harmonic representative of ps(v).
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Fix det(&s), r = rk(&), then simplest form (A = 0):

Fiber integral formula

dowe_ 1 / Cho(End(€), B) A ™.
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Fix det(&s), r = rk(&), then simplest form (A = 0):

Fiber integral formula

dowe_ 1 / cha(End(€), h) A w™!
2m XxS/S

where = ST
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Theorem (Biswas-Sch.)

Let £ € Coh(X x S), Os-flat, S a polydisk. Let £ be stable and locally
free for s € S\A. Then w"P extends to S as a closed, positive
(1,1)-current.
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Fiber integral formula:

1
(,UWPSIZ——/ tr(F/\F)/\w”_1+>\/ tI'(F)/\UJn
’ 2 Jxxss Xx5'/8'
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Fiber integral formula:
1
wiwp,s :—2/ tr(FAF)Aw™ T 4+ ) tr(F) Aw"
XxS'/S XxS'/8

Second term: det(h(t)) =1 = tr(F) = tr(Fp)
For t = 0 initial metric =3ws 4. (local) Kéhler form on all of S.
First term: Use secondary Bott-Chern form.

t
Ro(t) :/0 tr(F(T)-AxF(T))dT

overallof X x &

(tr(F(t) A F(t)) = tr(Fo A Fg)) + v—=1 00Rx(1)

N —
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Boundedness of Donaldson functional
M(t):/ Ro() Awf <0 0<t<oo
X

= claim
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Douady spaces (Axelsson-Biswas-Sch.)

Given Ké&hler manifold (Z,wz), Douady space D of embedded
n-dimensional subspaces:

X' 7D

fL prz

D

universal, flat embedded family.
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Douady spaces (Axelsson-Biswas-Sch.)

Given Ké&hler manifold (Z,wz), Douady space D of embedded
n-dimensional subspaces:

X' 7D

fL prz

D

universal, flat embedded family. Over smooth locus D':

wWP:/ Wit
x/D

Varouchas = continuous potential for w"/F.
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Hurwitz space (Axelsson-Biswas-Sch.)

Objects

Riemann surfaces pr : X — Py simple coverings. J

Introduce a Weil-Petersson form, extend to compactified moduli space
as a current.

Fiber integral

1P / c1(X/S.g) A prici(Py, h)
x/S

Extension Theorem holds

Philipps (
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Moduli of canonically polarized manifolds (Sch.)
Objects
(X,wx), s.t. Kx ample
wx Kéhler-Einstein: Ric(wx) = —wx
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Monge-Ampére equation

Wy = eU+F(wgc/s)n
with B
Wy /s = Wy + vV—100U

CO-estimates
ulXs < sup(—F|X5s)
Let f: X — S be singular over S' = S\ V(o). Then (from embedding)
lo(8)|¥ - sup(—F|Xs) < C for some k > 0.
Consequence:

wxr /s Possesses bounded potentials (locally w.r. to X
Philipps
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Descend to moduli space

Finally

WP

WP / ()™ = / (% + v=T00u)™
x/S X/S

n
= / (W)™ + =760 > u(wY (WS + v=100u)" .
x/8 X/855%

First integral possesses continuous potential by Varouchas’ theorem.
Second integral defines a bounded function. Hence w'"F is a positive
closed current.

Present work for SLC singularities by Takayama, Tosatti, Rong-Zhang,
a.o.
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Let f: X — S be a (polarized) family of Calabi-Yau manifolds with
family of Ricci-flat relative volume forms

Let
Ox :=2m¢1(Kx/s, 9™ 1y = v=79dlog g

be the curvature form of (Ky,s,97").

We know that © y is equal to zero on the fibers, and that its
push-forward to the base is wyp:

Fujiki-Sch. '90

WwWP — _/ 2rci(X/S, g) A wh with norm. / w’,}“ =0
x/s X/S
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Proposition
f: X — S (polarized) family of Calabi-Yau manifolds
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Let

Gs(z, w) the Green’s functions for Laplacians O on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. ’16)
Assume
(@) \v/s € RPLR(S) is the image of some Ay € Hy'(X)
or
(b) b1(Xs) =0
Assume
Gs(z,w)>—-c VseS

Then 3 Kahler form wy s.t. Wy|Xs = wy, Ricci flat.

S
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Validity of the assumptions

Cheeger ’70, Cheeger-Yau ‘80

The Green’s function is bounded, if the diameter (of the fibers X5) is
bounded from above.
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Validity of the assumptions

Cheeger ’70, Cheeger-Yau ‘80

The Green’s function is bounded, if the diameter (of the fibers X%)
bounded from above.

is

Sh. Takayama ’15, X. Rong-Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau
manifolds.

Y. Zhang '16, V. Tosatti '15

The diameter is bounded for polarized families of Calabi-Yau
manifolds, under mild assumptions for the type of degeneration.

v
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Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W

Georg Schumacher Marburg

25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wy+ according to Theorem 1.

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Theorem 2. (Choi-Sch. ’17)

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Theorem 2. (Choi-Sch. ’17)

(1) The metric h* on the relative canonical bundle Ky s extends to
Kx /s as a singular hermitian metric, and

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Theorem 2. (Choi-Sch. ’17)

(1) The metric h* on the relative canonical bundle Ky s extends to
Kx /s as a singular hermitian metric, and

(2) the curvature ehg,/s,(KX’/S’) of the relative canonical line bundle
extends to X’ as a d-closed positive (1, 1)-current.

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Theorem 2. (Choi-Sch. ’17)

(1) The metric h* on the relative canonical bundle Ky s extends to
Kx /s as a singular hermitian metric, and

(2) the curvature ehg,/s,(KX’/S’) of the relative canonical line bundle
extends to X’ as a d-closed positive (1, 1)-current.

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let wyr according to Theorem 1. Normalize

p=wy + g st / pn+1 =0.
x'/8

Theorem 2. (Choi-Sch. ’17)

(1) The metric h* on the relative canonical bundle Ky s extends to
Kx /s as a singular hermitian metric, and

(2) the curvature ehg,/s,(KX’/S’) of the relative canonical line bundle
extends to X’ as a d-closed positive (1, 1)-current.

Philipps (s

Georg Schumacher Marburg 25



Let f: X — S be a proper, open, surjective holomorphic mapping of
Ké&hler manifolds (X',wx) and (S,ws). Suppose that every regular fiber
Xs is a Calabi-Yau manifold for s € &' = S\W. Then wy|X’ defines a
polarization in the sense Theorem 1.

Let Wy according to Theorem 1. Normalize

p=wy + g st / P =0.
X'/S

Theorem 2. (Choi-Sch. '17)

(1) The metric h* on the relative canonical bundle Ky:,s extends to
Kx /s as a singular hermitian metric, and

(2) the curvature @hﬁa (Kx1/s) of the relative canonical line bundle

/s
extends to X’ as a d-closed positive (1, 1)-current.

M. Paun: Demailly’s approximation theorem of psh. functions by fctns.
with algebraic singularities. Ohsawa-Takegoshi Thm.
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On S’ for any form representing the polarization, in particular for w:

wWP:f*(f*(wWP)/\w”):/ FP) AW = vol(Xs) [ © AW
X'/S X/

Theorem 2 and wedge product of currents Bedford-Taylor.

Corollary
w"P extends to S as a positive, closed current. J
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Kahler form w = wy
Relative canonical bundle
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Extension Theorem
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Extension Theorem
Kahler form w = wy
Relative canonical bundle

Ky/s = Ky @ FKS'

Local coordinates

U={(z',....,2"%}cxand(s',...,s% on S

In terms of Euclidean volume forms

WA FdVs = x - dVy = 6%V - dVy )

with ¢y = —oo at singular points of f.

Georg Schumacher Marburg 27



Corresponding curvature form on X':

O

X /s

Georg Schumacher Marburg

(Kx/s) = V=100py| X' = v=100log (W A F*dVs).
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Corresponding curvature form on X’:

O

X /s

(Kx/s) = v=100¢y| X' = V=100 log (" A f*dVs).

Ricci-flat volume form
exists a unique function ns € C*(X;) s.t.

—/~108ns = Ric(ws)

/e’%g = /wgzvol(Xs).
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Corresponding curvature form on X’:

O

X /s

(Kx/s) = v=100¢y| X' = V=100 log (" A f*dVs).

Ricci-flat volume form
exists a unique function ns € C*(X;) s.t.

/e’%g = /szvol(XS).

ps = ws—+V—=100ps fiberwise Ricci-flat
p = w+/=100¢ extends in natural way to total space X

Here the Kahler property of X is being used.

Georg Schumacher Marburg

28
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e™w] = pl foreachse S
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Monge-Ampére equation

e™w] = pl foreachse S

e"w A (dVs) = p" A f*(dVs) on X'

Hence

V=100 log (e"w" A f*(dVs)) = v=100log (p" A F*(dVs))

Curvature of relative canonical bundle near singular points

ﬁ@g(n + qu) = ﬁ&gn + @h‘;’(,/s,(KX’/S’) = @hp (KX’/S’)'

X! /8!

Aim.
Bound the potential 6 :=n + ¢y
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Ohsawa-Takegoshi Extension Theorem

Lety : Q c C" - RU{—o0} a psh. function on a bounded
pseudoconvex domain. Then there exists a constant C > 0 (only
depending on diam(Q2)) s.t. given a hyperplane H ¢ C"

Vf € O(Q N H) with e ¥|f|2d\ < oo
QNH
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Ohsawa-Takegoshi Extension Theorem

Lety : Q c C" - RU{—o0} a psh. function on a bounded
pseudoconvex domain. Then there exists a constant C > 0 (only
depending on diam(Q2)) s.t. given a hyperplane H ¢ C"

Vf € O(Q N H) with e ¥|f|2d\ < oo
QNH

JF e 0O(Q)s.t. FIQNH=fand

/e—¢|F|2dA < c/ e Y|f]2d).
Q QNH
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Idea

@ Approximate psh. function by a function of the form

log } ~ |ok|? with o holomorphic
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Idea

@ Approximate psh. function by a function of the form
log >~ |ok|? with o holomorphic

@ Apply the Ohsawa-Takegoshi Theorem to |o|2.

Georg Schumacher Marburg
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Idea

@ Approximate psh. function by a function of the form
log >~ |ok|? with o holomorphic

@ Apply the Ohsawa-Takegoshi Theorem to |o|2.
@ Use extra variable Z 3 m — oo in weight function e=™.

Georg Schumacher Marburg 31



Hilbert space of holomorphic functions

Definition
m > 1, s € S’ weighted norm on O(Us):

1612, = / 62 &=, for ¢ € O(Us).

Hilbert space
H = {6 € O(Us): 19,6 <

oo}
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Hilbert space of holomorphic functions

Definition
m > 1, s € S’ weighted norm on O(Us):

1612, = / 62 &=, for ¢ € O(Us).

Hilbert space

H™ = {¢ € O(Us); | ]I2, s < o0}

e’dVy/f*(dVs) = pl on X’
sothat [l¢1%s = [ Joff e (™ Meal,

where dVx, = dVx/f*dVs on Us.

Georg Schumacher Marburg
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Theorem (cf. Demailly)

050 = Jim_(sup { 7 log 6% 6 € H{”

forevery x € Us, s € S'.

with (6|2, ; < 1})
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Theorem (cf. Demailly)

0s(x) = fim_(sup { L 10g o)1 € H™ with ol < 1})

forevery x € Us, s € S'.

Namely for an ON-basis {o}} of %' the Bergman kernel is given by

1
Ym= |092 lok[?
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Theorem (cf. Demailly)

0s(x) = fim_(sup { L 10g o)1 € H™ with ol < 1})

forevery x € Us, s € S'.

Namely for an ON-basis {o}} of %' the Bergman kernel is given by

1
Ym= |092 lok[?
k
By general theory

1
(0 = sup{ L loaloC0f® o € W7 st ol <1}

Philipps (S5@3%2) Universitit
{ 42’5/ Marburg
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Apply the mean-value inequality to a ball B..
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Apply the mean-value inequality to a ball B..
6 € H{™ with )7, < 1,

n!

600F < vz [ 16(OP 9O

nt mos 2 \—mbs
< o s (€7 [ 100 & ™))
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Apply the mean-value inequality to a ball B..
¢ € HY with [|g]2, ¢ < 1,

|
600 < s [ 1001 A(Q)
nt mos 2 \—mbs
< W?gg (e )/B [6(Q)7 e ™=dA(().

Let Cs := supg, dA/(ps)". Then it follows that

B)P < sup( e [ 100 e ()"
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Hence

1 5 1
1081600 < sup 0:(0)+ (Iog . log cs).
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Hence
1 2 1
m P9 100I" < supbs(C) + o) (Iog 7 +log Cs) :

Let m — oo.
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Hence

%Iog lp(x)|? < sup 0s(C) + 1 <|og — + log cs> .

ceB:

Let m — .
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the
extension of functions to the ambient space that are given at a point.
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Hence

L log (012 < sup 0s(c) + 1(log +Iong>-

ceB:

Let m — .

Conversely, the Ohsawa-Takegoshi Theorem will be applied to the
extension of functions to the ambient space that are given at a point.
3¢ € O(Us) s.t. ¢(x) =aand

/ 6|2 €25 (ps)" < Cs|al2 & 2T,
Us

Now

Philipps (554

Finally let m — oc.
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Note the order of limit processes: First let m — oo. The constants Cs,
which are unbounded as the singular figers are approached, are
eliminated in this way.
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Note the order of limit processes: First let m — oo. The constants Cs,
which are unbounded as the singular figers are approached, are
eliminated in this way.

Proof of the Extension Theorem
Let ¢s € HS™ with [|¢s]|2 < 1. Holder inequality:

/U (6sl2/™ AV, /U PRI
s s B et
s( / |¢s|2e"’95p2) ( / p;')

(Vol(XS)) <C

C = max(1, vol(Xy)), independent of m and s.
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The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.
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submanifolds of bounded domains:

Philipps (s

Georg Schumacher Marburg 37



The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:

3 holomorphic function F on U s.t.

Philipps (s

Georg Schumacher Marburg 37



The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:

3 holomorphic function F on U s.t.

@ The restriction of F to Us is equal to ¢.

Philipps (s

Georg Schumacher Marburg 37



The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:

3 holomorphic function F on U s.t.

@ The restriction of F to Us is equal to ¢.

@ There exists a numerical constant Cy > 0 independent of mand s
such that

dav.
2/m < 2/m zZ .C.
| JFEmave < o [ 1o 2 < G-

Georg Schumacher Marburg 37



The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:

3 holomorphic function F on U s.t.

@ The restriction of F to Us is equal to ¢.

@ There exists a numerical constant Cy > 0 independent of mand s
such that

dav.
2/m < 2/m zZ .C.
| JFEmave < o [ 1o 2 < G-

Georg Schumacher Marburg 37
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@ The restriction of F to Us is equal to ¢.

@ There exists a numerical constant Cy > 0 independent of mand s
such that

dav.
2/m < 2/m zZ .C.
| JFEmave < o [ 1o 2 < G-

Mean value inequality applicable

FP/™ < ¢, / ARV, < G- Co- C

Philipps niversitat
on B;(x).

Georg Schumacher Marburg 37



The mean value inequality cannot be applied directly, since fibers
degenerate to singular fibers.

L2/m version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:

3 holomorphic function F on U s.t.

@ The restriction of F to Us is equal to ¢.

@ There exists a numerical constant Cy > 0 independent of mand s
such that

dav.
2/m < 2/m zZ .C.
| JFEmave < o [ 1o 2 < G-

Mean value inequality applicable

FP/™ < ¢, / ARV, < G- Co- C

Philipps niversitat

on B;(x).
Use argument for all fixed 05, s € S'.
7



s are uniformly bounded on W n X’ where W cc U.
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6s are uniformly bounded on W n X’ where W cc U.
= curvature @hf(/y(KX/y)’ x, extends as a d-closed positive real

(1, 1)-current on the total space X completing the proof.
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Application to the extension of positive line bundles on
moduli spaces
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moduli spaces

Theorem (Sch. ’10/°16)
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Projective embeddings

Sch.-Tsuji 2004
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Projective embeddings

Sch.-Tsuji 2004

Theorem (Paun-Sch. 2017)

Let X be a compact Moishezon manifold, and L a big line bundle on X.
Then the restricted volume of L along a closed, irreducible complex
subspace V is positive, if and only if V is not contained in E,«(L). For
high multiples of L, the linear system |mL| embeds the complement of
the non-Kahler locus into a projective space.
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Definition
Let m > 0, then the image of the restriction map is denoted by

HO(X|V, mL) = Im (HO(X, mL) — HO(V, mL| V)) .

The restricted volume of L on V' is

(dim H;(d)jb\!/, mL)) ‘

V01X| V(L) = ﬁ

m—o0
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Definition
Let m > 0, then the image of the restriction map is denoted by

HO(X|V, mL) = Im (HO(X, mL) — HO(V, mL| V)) .

The restricted volume of L on V' is

L i 140
volyu(t) = T, <d|m Hm(d)jld \I/ mL)) .

Given any positive current T, the union of all Lelong sublevel sets
Ec(T)={x € X;v(x,T) > c} is denoted by

= U EC(T)

c>0

The classes « containing Kahler currents « are called bigyliiees

Georg Schumacher Marburg
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Definition
Let X be a compact, complex manifold. The non-Kahler locus of a big

class equals
Enx() := () Ex(T),

where T runs through all K&hler currents representing o.
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Definition
Let X be a compact, complex manifold. The non-Kahler locus of a big
class equals

Enc(a) = [ Ex(T),

where T runs through all K&hler currents representing «.

Proposition

Let X be a compact, complex manifold, and L a big line bundle. Let
V C X denote an irreducible, reduced, closed, complex subspace,
whose restricted volume is positive

Vle| v(L) > 0.

Then for m > 0 the linear system |Wp,| with W, = H°(X|V, mL) yields
a map that is birational onto the image.
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42



