Weil-Petersson Currents ICTS 2018

Georg Schumacher

Marburg

Classical Weil-Petersson metric

Let $\mathcal{X}_{p} \rightarrow \mathcal{T}_{p}$ be the Teichmüller family of (marked) compact Riemann surfaces of genus p.

Classical Weil-Petersson metric

Let $\mathcal{X}_{p} \rightarrow \mathcal{T}_{p}$ be the Teichmüller family of (marked) compact Riemann surfaces of genus p.
Let the surface X represent a point in \mathcal{T}_{p}.
Then the tangent space of \mathcal{T}_{p} at X can be identified with the space of harmonic Beltrami differentials on X

$$
T_{X}\left(\mathcal{T}_{p}\right)=H^{1}\left(X, \mathcal{T}_{X}\right) \simeq H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{\vee}
$$

Classical Weil-Petersson metric

Let $\mathcal{X}_{p} \rightarrow \mathcal{T}_{p}$ be the Teichmüller family of (marked) compact Riemann surfaces of genus p.
Let the surface X represent a point in \mathcal{T}_{p}.
Then the tangent space of \mathcal{T}_{p} at X can be identified with the space of harmonic Beltrami differentials on X

$$
T_{X}\left(\mathcal{T}_{p}\right)=H^{1}\left(X, \mathcal{T}_{X}\right) \simeq H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{\vee}
$$

André Weil (1958)

Hermitian metric on Teichmüller space, L^{2}-inner product for harmonic Beltrami differentials induced by Poincaré metric on fibers.

Classical Weil-Petersson metric

Let $\mathcal{X}_{p} \rightarrow \mathcal{T}_{p}$ be the Teichmüller family of (marked) compact Riemann surfaces of genus p.
Let the surface X represent a point in \mathcal{T}_{p}.
Then the tangent space of \mathcal{T}_{p} at X can be identified with the space of harmonic Beltrami differentials on X

$$
T_{X}\left(\mathcal{T}_{p}\right)=H^{1}\left(X, \mathcal{T}_{X}\right) \simeq H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{\vee}
$$

André Weil (1958)

Hermitian metric on Teichmüller space, L^{2}-inner product for harmonic Beltrami differentials induced by Poincaré metric on fibers.

Classical Weil-Petersson metric

Let $\mathcal{X}_{p} \rightarrow \mathcal{T}_{p}$ be the Teichmüller family of (marked) compact Riemann surfaces of genus p.
Let the surface X represent a point in \mathcal{T}_{p}.
Then the tangent space of \mathcal{T}_{p} at X can be identified with the space of harmonic Beltrami differentials on X

$$
T_{X}\left(\mathcal{T}_{p}\right)=H^{1}\left(X, \mathcal{T}_{X}\right) \simeq H^{0}\left(X, \Omega_{X}^{\otimes 2}\right)^{\vee}
$$

André Weil (1958)

Hermitian metric on Teichmüller space, L^{2}-inner product for harmonic Beltrami differentials induced by Poincaré metric on fibers.

Previously introduced by Hans Petersson.

$$
\left\langle\phi d z^{2}, \psi d z^{2}\right\rangle_{P W}=\int_{X} \frac{\phi d z^{2} \bar{\psi} \overline{d z}{ }^{2}}{g d z \overline{d x}}=\int_{X} \frac{\phi \bar{\psi}}{g} d z \overline{d z}
$$

(where $g d z \overline{d z}$ Poincaré metric)

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

- The Weil-Petersson form extends to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{p}$ as a positive current.

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

- The Weil-Petersson form extends to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{p}$ as a positive current.
- The Weil-Petersson current possesses a continuous potential, given by a continuous hermitian metric on λ_{p}.

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

- The Weil-Petersson form extends to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{p}$ as a positive current.
- The Weil-Petersson current possesses a continuous potential, given by a continuous hermitian metric on λ_{p}.

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

- The Weil-Petersson form extends to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{p}$ as a positive current.
- The Weil-Petersson current possesses a continuous potential, given by a continuous hermitian metric on λ_{p}.

Note: $\overline{\mathcal{M}}_{p} \backslash \mathcal{M}_{p}$ "consists" of moduli spaces of punctured Riemann surfaces of lower genus.

The Weil-Petersson form $\omega^{W P}$ is Γ_{p}-invariant, descends to moduli space $\mathcal{M}_{p}=\mathcal{T}_{p} / \Gamma_{p}$ as orbifold metric.

Wolpert

- The Weil-Petersson form is the curvature form of Mumford's line bundle λ_{p}

$$
\omega^{W P} \simeq c_{1}\left(h^{Q}, \lambda\right)
$$

- The Weil-Petersson form extends to the Deligne-Mumford compactification $\overline{\mathcal{M}}_{p}$ as a positive current.
- The Weil-Petersson current possesses a continuous potential, given by a continuous hermitian metric on λ_{p}.

Note: $\overline{\mathcal{M}}_{p} \backslash \mathcal{M}_{p}$ "consists" of moduli spaces of punctured Riemann surfaces of lower genus.

Moduli spaces: Analytic Program

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

- Extend $\omega^{W P}$ to a compactification $\overline{\mathcal{M}}$ of the moduli space as a positive current.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

- Extend $\omega^{W P}$ to a compactification $\overline{\mathcal{M}}$ of the moduli space as a positive current.
- Application: Extend $\left(\lambda, h^{Q}\right)$ to $\overline{\mathcal{M}}=\mathcal{M} \cap \mathcal{D}$ (after modification of the boundary).

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

- Extend $\omega^{W P}$ to a compactification $\overline{\mathcal{M}}$ of the moduli space as a positive current.
- Application: Extend $\left(\lambda, h^{Q}\right)$ to $\overline{\mathcal{M}}=\mathcal{M} \cap \mathcal{D}$ (after modification of the boundary).
- Application: Projective embedding of \mathcal{M}, i.e. λ ample modulo \mathcal{D}.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

- Extend $\omega^{W P}$ to a compactification $\overline{\mathcal{M}}$ of the moduli space as a positive current.
- Application: Extend $\left(\lambda, h^{Q}\right)$ to $\overline{\mathcal{M}}=\mathcal{M} \cap \mathcal{D}$ (after modification of the boundary).
- Application: Projective embedding of \mathcal{M}, i.e. λ ample modulo \mathcal{D}.

Moduli spaces: Analytic Program

- Equip analytic objects (e.g. complex manifolds, holomorphic line bundles) with distinguished metrics.
- Define natural/intrinsic hermitian metric (with form $\omega^{W P}$) on the base of a holomorphic family (descending to the moduli space).
- Prove a fiber integral formula for $\omega^{W P}$ implying Kähler property.
- Compute curvature of $\omega^{W P}$.
- Construct a holomorphic, hermitian line bundle on the moduli space \mathcal{M} s.t.

$$
c_{1}\left(\lambda, h^{Q}\right) \simeq \omega^{W P}
$$

- Extend $\omega^{W P}$ to a compactification $\overline{\mathcal{M}}$ of the moduli space as a positive current.
- Application: Extend $\left(\lambda, h^{Q}\right)$ to $\overline{\mathcal{M}}=\mathcal{M} \cap \mathcal{D}$ (after modification of the boundary).
- Application: Projective embedding of \mathcal{M}, i.e. λ ample modulo \mathcal{D}.

Substantially different methods

Generalized Petersson-Weil metrics

Approach

Given a holomorphic family (of vector bundles, complex manifolds, etc.) parameterized by S.
Kodaira-Spencer map for $s \in S$

$$
\rho_{s}: T_{s} S \rightarrow\{\text { infinitesimal deformations }\}=\operatorname{Def}(D)
$$

Equip the vector space of infinitesimal deformations with natural L^{2}-inner product (typically induced on a cohomology group by distinguished metric on given object).

Generalized Petersson-Weil metrics

Approach

Given a holomorphic family (of vector bundles, complex manifolds, etc.) parameterized by S.
Kodaira-Spencer map for $s \in S$

$$
\rho_{s}: T_{s} S \rightarrow\{\text { infinitesimal deformations }\}=\operatorname{Def}(D)
$$

Equip the vector space of infinitesimal deformations with natural L^{2}-inner product (typically induced on a cohomology group by distinguished metric on given object).

Generalized Petersson-Weil metrics

Approach

Given a holomorphic family (of vector bundles, complex manifolds, etc.) parameterized by S.
Kodaira-Spencer map for $s \in S$

$$
\rho_{s}: T_{s} S \rightarrow\{\text { infinitesimal deformations }\}=\operatorname{Def}(D)
$$

Equip the vector space of infinitesimal deformations with natural L^{2}-inner product (typically induced on a cohomology group by distinguished metric on given object).

Generalizations to moduli spaces of stable holomorphic vector bundles, to Douady spaces, moduli space of canonically polarized manifolds, and for families of polarized Calabi-Yau manifolds.
\Rightarrow intrinsically defined hermitian metric $G^{W P}$ on parameter space S.
\Rightarrow intrinsically defined hermitian metric $G^{W P}$ on parameter space S.
\Rightarrow Kähler property of $G^{W P}$, Kähler form $\omega^{W P}$ descending to corresponding moduli space.

Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)

($f: \mathcal{X} \rightarrow S, g_{\mathcal{X} / S}$) holomorphic family of compact Riemann surfaces $\left\{\mathcal{X}_{s}=f^{-1}(s)\right\}_{s \in \mathcal{S}}$, with Poincaré metrics g_{s}. Then

$$
\omega^{W P}=\frac{1}{2 \pi} \int_{\mathcal{X} / S} C_{1}^{2}(\mathcal{X} / S, g) .
$$

implies Kähler property.

Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)

($f: \mathcal{X} \rightarrow S, g_{\mathcal{X} / S}$) holomorphic family of compact Riemann surfaces $\left\{\mathcal{X}_{s}=f^{-1}(s)\right\}_{s \in \mathcal{S}}$, with Poincaré metrics g_{s}. Then

$$
\omega^{W P}=\frac{1}{2 \pi} \int_{\mathcal{X} / S} C_{1}^{2}(\mathcal{X} / S, g) .
$$

implies Kähler property.

Synopsis: Fiber integrals for Weil-Petersson forms

Wolpert (1986)

($f: \mathcal{X} \rightarrow S, g_{\mathcal{X} / S}$) holomorphic family of compact Riemann surfaces $\left\{\mathcal{X}_{s}=f^{-1}(s)\right\}_{s \in \mathcal{S}}$, with Poincaré metrics g_{s}. Then

$$
\omega^{W P}=\frac{1}{2 \pi} \int_{\mathcal{X} / S} C_{1}^{2}(\mathcal{X} / S, g) .
$$

implies Kähler property.
Idea: Realize $\omega^{W P}$ as integral of a real, closed ($n+1, n+1$) over family of compact n-dimensional manifolds.

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold S (reduced) complex analytic space.

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.
F curvature form of h

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.
F curvature form of h

Kodaira-Spencer map

$$
\rho_{s}: \mathcal{T}_{s} S \rightarrow H^{1}\left(X, \operatorname{End}\left(\mathcal{E}_{s}\right)\right)
$$

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.
F curvature form of h

Kodaira-Spencer map

$$
\rho_{s}: \mathcal{T}_{s} S \rightarrow H^{1}\left(X, \operatorname{End}\left(\mathcal{E}_{s}\right)\right)
$$

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.
F curvature form of h
Kodaira-Spencer map

$$
\rho_{s}: \mathcal{T}_{s} S \rightarrow H^{1}\left(X, \operatorname{End}\left(\mathcal{E}_{s}\right)\right)
$$

with L^{2}-inner product of harmonic Kodaira-Spencer tensors w.r. h_{s}.

Moduli of stable holomorphic vector bundles on Kähler manifolds

(X, ω_{X}) compact Kähler manifold
S (reduced) complex analytic space.
$\mathcal{E} \rightarrow X \times S$ hol. family of stable vector bundles, $\mathcal{E}_{s}=\mathcal{E} \mid X \times\{s\}$.
h hermitian metric on \mathcal{E} s.t.
$h_{s}=h \mid \mathcal{E}_{s}$ Hermite-Einstein metric on \mathcal{E}_{s}.
F curvature form of h
Kodaira-Spencer map

$$
\rho_{s}: \mathcal{T}_{s} S \rightarrow H^{1}\left(X, \operatorname{End}\left(\mathcal{E}_{s}\right)\right)
$$

with L^{2}-inner product of harmonic Kodaira-Spencer tensors w.r. h_{s}.
Fact:

$$
\left.T_{s} S \ni v \mapsto(v\lrcorner F\right) \mid X \times\{s\}
$$

harmonic representative of $\rho_{s}(v)$.

Fix $\operatorname{det}\left(\mathcal{E}_{s}\right), r=r k(\mathcal{E})$, then simplest form $(\lambda=0)$:
Fiber integral formula

$$
\frac{1}{2 \pi^{2}} \omega^{W P}=-\frac{1}{r} \int_{X \times S / S} c h_{2}(E n d(\mathcal{E}), h) \wedge \omega^{n-1}
$$

Fix $\operatorname{det}\left(\mathcal{E}_{s}\right), r=r k(\mathcal{E})$, then simplest form $(\lambda=0)$:
Fiber integral formula

$$
\frac{1}{2 \pi^{2}} \omega^{W P}=-\frac{1}{r} \int_{X \times S / S} c h_{2}(E n d(\mathcal{E}), h) \wedge \omega^{n-1}
$$

Fix $\operatorname{det}\left(\mathcal{E}_{s}\right), r=r k(\mathcal{E})$, then simplest form $(\lambda=0)$:
Fiber integral formula

$$
\frac{1}{2 \pi^{2}} \omega^{W P}=-\frac{1}{r} \int_{X \times S / S} c h_{2}(E n d(\mathcal{E}), h) \wedge \omega^{n-1}
$$

where

$$
c h_{2}(E n d(\mathcal{E}), h)=\frac{1}{2} \operatorname{tr}\left(\frac{\sqrt{-1}}{2 \pi} F \wedge \frac{\sqrt{-1}}{2 \pi} F\right) .
$$

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, $\mathcal{O}_{S^{-f}}$ flat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1,1)-current.

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, $\mathcal{O}_{S^{-f}}$ flat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1,1)-current.

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S), \mathcal{O}_{S_{-}}$-lat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1, 1)-current.

Approach: Bound the Donaldson invariant.

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, $\mathcal{O}_{S^{-}}$flat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1,1)-current.

Approach: Bound the Donaldson invariant. Simple case: \mathcal{E} locally free:

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, \mathcal{O}_{S}-flat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1,1)-current.

Approach: Bound the Donaldson invariant. Simple case: \mathcal{E} locally free:

Heat equation

Let $s \in S^{\prime}=S \backslash$. For all $t \geq 0$ there a differentiable endomorphisms $h(t)$ of \mathcal{E}_{s} with $\operatorname{det}(h(t))=1$ s.t.

$$
\begin{aligned}
\frac{\partial h}{\partial t} h^{-1} & =-\left(\Lambda_{x} F_{s}-\lambda i d_{\varepsilon_{s}}\right) . \\
h(0) & =h_{0} \text { initial metric }
\end{aligned}
$$

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, \mathcal{O}_{S}-flat, S a polydisk. Let \mathcal{E}_{s} be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1,1)-current.

Approach: Bound the Donaldson invariant. Simple case: \mathcal{E} locally free:

Heat equation

Let $s \in S^{\prime}=S \backslash$. For all $t \geq 0$ there a differentiable endomorphisms $h(t)$ of \mathcal{E}_{s} with $\operatorname{det}(h(t))=1$ s.t.

$$
\begin{aligned}
\frac{\partial h}{\partial t} h^{-1} & =-\left(\Lambda_{x} F_{s}-\lambda i d_{\varepsilon_{s}}\right) . \\
h(0) & =h_{0} \text { initial metric }
\end{aligned}
$$

Theorem (Biswas-Sch.)

Let $\mathcal{E} \in \operatorname{Coh}(X \times S)$, $\mathcal{O}_{S_{-}}$-flat, S a polydisk. Let $\mathcal{E}_{\mathcal{S}}$ be stable and locally free for $s \in S \backslash A$. Then $\omega^{W P}$ extends to S as a closed, positive (1, 1)-current.

Approach: Bound the Donaldson invariant. Simple case: \mathcal{E} locally free:

Heat equation

Let $s \in S^{\prime}=S \backslash$. For all $t \geq 0$ there a differentiable endomorphisms $h(t)$ of \mathcal{E}_{s} with $\operatorname{det}(h(t))=1$ s.t.

$$
\begin{aligned}
\frac{\partial h}{\partial t} h^{-1} & =-\left(\Lambda_{x} F_{s}-\lambda i d_{\varepsilon_{s}}\right) . \\
h(0) & =h_{0} \text { initial metric }
\end{aligned}
$$

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$
For $t=0$ initial metric $\Rightarrow \exists \omega_{S, \text { aux }}$ (local) Kähler form on all of S.

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$ For $t=0$ initial metric $\Rightarrow \exists \omega_{S, \text { aux }}$ (local) Kähler form on all of S. First term: Use secondary Bott-Chern form.

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$
For $t=0$ initial metric $\Rightarrow \exists \omega_{S, \text { aux }}$ (local) Kähler form on all of S.
First term: Use secondary Bott-Chern form.

$$
R_{2}(t)=\int_{0}^{t} \operatorname{tr}\left(F(\tau) \cdot \Lambda_{X} F(\tau)\right) d \tau
$$

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$
For $t=0$ initial metric $\Rightarrow \exists \omega_{S, \text { aux }}$ (local) Kähler form on all of S.
First term: Use secondary Bott-Chern form.

$$
R_{2}(t)=\int_{0}^{t} \operatorname{tr}\left(F(\tau) \cdot \Lambda_{X} F(\tau)\right) d \tau
$$

Fiber integral formula:

$$
\omega_{W P, S^{\prime}} \simeq-\frac{1}{2} \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F \wedge F) \wedge \omega^{n-1}+\lambda \int_{X \times S^{\prime} / S^{\prime}} \operatorname{tr}(F) \wedge \omega^{n}
$$

Second term: $\operatorname{det}(h(t))=1 \Rightarrow \operatorname{tr}(F)=\operatorname{tr}\left(F_{0}\right)$
For $t=0$ initial metric $\Rightarrow \exists \omega_{S, \text { aux }}$ (local) Kähler form on all of S.
First term: Use secondary Bott-Chern form.

$$
R_{2}(t)=\int_{0}^{t} \operatorname{tr}\left(F(\tau) \cdot \Lambda_{X} F(\tau)\right) d \tau
$$

over all of $X \times S^{\prime}$

$$
\frac{1}{2}\left(\operatorname{tr}(F(t) \wedge F(t))=\operatorname{tr}\left(F_{0} \wedge F_{0}\right)\right)+\sqrt{-1} \bar{\partial} \partial R_{2}(t)
$$

Boundedness of Donaldson functional

$$
M(t)=\int_{X} R_{2}(t) \wedge \omega_{X}^{n} \leq 0 \quad 0 \leq t<\infty
$$

\Rightarrow claim

Douady spaces (Axelsson-Biswas-Sch.)

Given Kähler manifold $\left(Z, \omega_{Z}\right)$, Douady space D of embedded n-dimensional subspaces:

universal, flat embedded family.

Douady spaces (Axelsson-Biswas-Sch.)

Given Kähler manifold $\left(Z, \omega_{Z}\right)$, Douady space \mathbf{D} of embedded n-dimensional subspaces:

universal, flat embedded family. Over smooth locus \mathbf{D}^{\prime} :

$$
\omega^{W P}=\int_{\mathcal{X} / \mathbf{D}} \omega_{Z}^{n+1}
$$

Douady spaces (Axelsson-Biswas-Sch.)

Given Kähler manifold $\left(Z, \omega_{Z}\right)$, Douady space \mathbf{D} of embedded n-dimensional subspaces:

universal, flat embedded family. Over smooth locus \mathbf{D}^{\prime} :

$$
\omega^{W P}=\int_{\mathcal{X} / \mathbf{D}} \omega_{Z}^{n+1}
$$

Douady spaces (Axelsson-Biswas-Sch.)

Given Kähler manifold (Z, ω_{Z}), Douady space \mathbf{D} of embedded n-dimensional subspaces:

universal, flat embedded family. Over smooth locus \mathbf{D}^{\prime} :

$$
\omega^{W P}=\int_{\mathcal{X} / \mathbf{D}} \omega_{Z}^{n+1}
$$

Varouchas \Rightarrow continuous potential for $\omega^{W P}$.

Hurwitz space (Axelsson-Biswas-Sch.)

Objects

Riemann surfaces $p r: X \rightarrow \mathbb{P}_{1}$ simple coverings.

Hurwitz space (Axelsson-Biswas-Sch.)

Objects

Riemann surfaces $p r: X \rightarrow \mathbb{P}_{1}$ simple coverings.

Hurwitz space (Axelsson-Biswas-Sch.)

Objects

Riemann surfaces $p r: X \rightarrow \mathbb{P}_{1}$ simple coverings.
Introduce a Weil-Petersson form, extend to compactified moduli space as a current.

Hurwitz space (Axelsson-Biswas-Sch.)

Objects

Riemann surfaces $p r: X \rightarrow \mathbb{P}_{1}$ simple coverings.
Introduce a Weil-Petersson form, extend to compactified moduli space as a current.

Fiber integral

$$
\omega^{W P} \simeq \int_{\mathcal{X} / S} c_{1}(\mathcal{X} / S, g) \wedge p r^{*} c_{1}\left(\mathbb{P}_{1}, h\right)
$$

Extension Theorem holds

Moduli of canonically polarized manifolds (Sch.)

Objects
$\left(X, \omega_{X}\right)$, s.t. K_{X} ample
ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Moduli of canonically polarized manifolds (Sch.)

Objects
$\left(X, \omega_{X}\right)$, s.t. K_{X} ample
ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$

$$
\omega_{X} \text { Kähler-Einstein: } \operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}
$$

Kodaira-Spencer map

Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$

ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$
Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$

ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$
Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / S}$ relative Kähler-Einstein form

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$

ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$
Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / \mathcal{S}}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$ ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / \mathrm{S}}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$
- $\omega_{\mathcal{X}}=\sqrt{-1} \partial \bar{\partial} \log g$ curvature of $K_{\mathcal{X} / S}$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$ ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / \mathrm{S}}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$
- $\omega_{\mathcal{X}}=\sqrt{-1} \partial \bar{\partial} \log g$ curvature of $K_{\mathcal{X} / S}$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$ ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / S}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$
- $\omega_{\mathcal{X}}=\sqrt{-1} \partial \bar{\partial} \log g$ curvature of $K_{\mathcal{X} / \mathcal{S}}$

Then

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} \text { (Kähler-Einstein cdtn.) }
$$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$ ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / S}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$
- $\omega_{\mathcal{X}}=\sqrt{-1} \partial \bar{\partial} \log g$ curvature of $K_{\mathcal{X} / \mathcal{S}}$

Then

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} \text { (Kähler-Einstein cdtn.) }
$$

Moduli of canonically polarized manifolds (Sch.)

Objects

$$
\left(X, \omega_{X}\right) \text {, s.t. } K_{X} \text { ample }
$$ ω_{X} Kähler-Einstein: $\operatorname{Ric}\left(\omega_{X}\right)=-\omega_{X}$

Kodaira-Spencer map
Family $\mathcal{X} \rightarrow S, s \in S$

$$
\rho_{s}: T_{s} S \rightarrow H^{1}\left(\mathcal{X}_{s}, \mathcal{T}_{\mathcal{X}_{s}}\right)
$$

Curvature of the relative canonical bundle

- $\omega_{\mathcal{X} / S}$ relative Kähler-Einstein form
- $g=\omega_{\mathcal{X} / S}^{n}$ relative volume form, with metric g^{-1} on $K_{\mathcal{X} / S}$
- $\omega_{\mathcal{X}}=\sqrt{-1} \partial \bar{\partial} \log g$ curvature of $K_{\mathcal{X} / \mathcal{S}}$

Then

$$
\omega_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}} \text { (Kähler-Einstein cdtn.) }
$$

Fiber integral formula

$$
\omega^{W P} \simeq \int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}
$$

Fiber integral formula

$$
\omega^{W P} \simeq \int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}
$$

Fiber integral formula

$$
\omega^{W P} \simeq \int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}
$$

Degenerating families:

- Extend $\omega_{\mathcal{X}}$ as a positive current

Fiber integral formula

$$
\omega^{W P} \simeq \int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}
$$

Degenerating families:

- Extend $\omega_{\mathcal{X}}$ as a positive current
- Push forward to parameter space

Universal (degenerating) family

$$
\text { for } \Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}
$$

Universität
Marburg

Universal (degenerating) family

$$
\text { for } \Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}
$$

Universität
Marburg

Universal (degenerating) family

for $\Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}$
Fubini-Study metric $h^{F S}$ on $\mathcal{O}_{\mathbb{P}_{N}}(1)$, induces $\left(\Phi^{*} h^{F S}\right)^{1 / m}$ on $K_{\mathcal{X} / S}$, i.e. relative (initial) volume form $\Omega_{\mathcal{X} / \mathcal{S}}^{0}$,

Universal (degenerating) family

for $\Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}$
Fubini-Study metric $h^{F S}$ on $\mathcal{O}_{\mathbb{P}_{N}}(1)$, induces $\left(\Phi^{*} h^{F S}\right)^{1 / m}$ on $K_{\mathcal{X} / S}$, i.e. relative (initial) volume form $\Omega_{\mathcal{X} / S}^{0}$,
with curvature

$$
\omega_{\mathcal{X}}^{0}=\sqrt{-1} \partial \bar{\partial} \log \Omega_{\mathcal{X} / S}^{0}
$$

s.t.

Universal (degenerating) family

for $\Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}$
Fubini-Study metric $h^{F S}$ on $\mathcal{O}_{\mathbb{P}_{N}}(1)$, induces $\left(\Phi^{*} h^{F S}\right)^{1 / m}$ on $K_{\mathcal{X} / S}$, i.e. relative (initial) volume form $\Omega_{\mathcal{X} / S}^{0}$,
with curvature

$$
\omega_{\mathcal{X}}^{0}=\sqrt{-1} \partial \bar{\partial} \log \Omega_{\mathcal{X} / S}^{0}
$$

s.t.

$$
\omega_{\mathcal{X}}^{0}=\omega^{F S} \mid \mathcal{X}
$$

Universal (degenerating) family

for $\Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}$
Fubini-Study metric $h^{F S}$ on $\mathcal{O}_{\mathbb{P}_{N}}(1)$, induces $\left(\Phi^{*} h^{F S}\right)^{1 / m}$ on $K_{\mathcal{X} / S}$, i.e. relative (initial) volume form $\Omega_{\mathcal{X} / S}^{0}$,
with curvature

$$
\omega_{\mathcal{X}}^{0}=\sqrt{-1} \partial \bar{\partial} \log \Omega_{\mathcal{X} / S}^{0}
$$

s.t.

$$
\omega_{\mathcal{X}}^{0}=\omega^{F S} \mid \mathcal{X}
$$

The form $\omega_{\mathcal{X}}^{0}$ fails to be Kähler-Einstein

$$
\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}=e^{-F} \Omega_{\mathcal{X} / S}^{0}
$$

Universal (degenerating) family

for $\Phi=\Phi_{\left|m K_{\mathcal{X} / s}\right|}$
Fubini-Study metric $h^{F S}$ on $\mathcal{O}_{\mathbb{P}_{N}}(1)$, induces $\left(\Phi^{*} h^{F S}\right)^{1 / m}$ on $K_{\mathcal{X} / S}$, i.e. relative (initial) volume form $\Omega_{\mathcal{X} / S}^{0}$,
with curvature

$$
\omega_{\mathcal{X}}^{0}=\sqrt{-1} \partial \bar{\partial} \log \Omega_{\mathcal{X} / S}^{0}
$$

s.t.

$$
\omega_{\mathcal{X}}^{0}=\omega^{F S} \mid \mathcal{X}
$$

The form $\omega_{\mathcal{X}}^{0}$ fails to be Kähler-Einstein

$$
\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}=e^{-F} \Omega_{\mathcal{X} / S}^{0}
$$

Monge-Ampère equation

$$
\omega_{\mathcal{X} / \mathcal{S}}^{n}=e^{u+F}\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}
$$

with

$$
\omega_{\mathcal{X} / S}=\omega_{r e l}^{0}+\sqrt{-1} \partial \bar{\partial} u
$$

Monge-Ampère equation

$$
\omega_{\mathcal{X} / \mathcal{S}}^{n}=e^{u+F}\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}
$$

with

$$
\omega_{\mathcal{X} / S}=\omega_{r e l}^{0}+\sqrt{-1} \partial \bar{\partial} u
$$

Monge-Ampère equation

$$
\omega_{\mathcal{X} / S}^{n}=e^{u+F}\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}
$$

with

$$
\omega_{\mathcal{X} / S}=\omega_{r e l}^{0}+\sqrt{-1} \partial \bar{\partial} u
$$

C^{0}-estimates

$$
u \mid \mathcal{X}_{s} \leq \sup \left(-F \mid \mathcal{X}_{s}\right)
$$

Monge-Ampère equation

$$
\omega_{\mathcal{X} / S}^{n}=e^{u+F}\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}
$$

with

$$
\omega_{\mathcal{X} / S}=\omega_{r e l}^{0}+\sqrt{-1} \partial \bar{\partial} u
$$

C^{0}-estimates

$$
u \mid \mathcal{X}_{s} \leq \sup \left(-F \mid \mathcal{X}_{s}\right)
$$

Let $f: \mathcal{X} \rightarrow S$ be singular over $S^{\prime}=S \backslash V(\sigma)$. Then (from embedding)

$$
|\sigma(s)|^{k} \cdot \sup \left(-F \mid \mathcal{X}_{s}\right) \leq C \text { for some } k>0
$$

Monge-Ampère equation

$$
\omega_{\mathcal{X} / S}^{n}=e^{u+F}\left(\omega_{\mathcal{X} / S}^{0}\right)^{n}
$$

with

$$
\omega_{\mathcal{X} / S}=\omega_{r e l}^{0}+\sqrt{-1} \partial \bar{\partial} u
$$

C^{0}-estimates

$$
u \mid \mathcal{X}_{s} \leq \sup \left(-F \mid \mathcal{X}_{s}\right)
$$

Let $f: \mathcal{X} \rightarrow S$ be singular over $S^{\prime}=S \backslash V(\sigma)$. Then (from embedding)

$$
|\sigma(s)|^{k} \cdot \sup \left(-F \mid \mathcal{X}_{s}\right) \leq C \text { for some } k>0
$$

Consequence:

$\omega_{\mathcal{X}^{\prime} / S^{\prime}}$ possesses bounded potentials (locally w.r. to \mathcal{X})
hence extends as a positive current.

Descend to moduli space

Finally

$$
\begin{gathered}
\omega^{W P}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}\right)^{n+1}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n+1} \\
=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}\right)^{n+1}+\sqrt{-1} \partial \bar{\partial} \int_{\mathcal{X} / S} \sum_{j=0}^{n} u\left(\omega_{\mathcal{X}}^{0}\right)^{j}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n-j}
\end{gathered}
$$

Descend to moduli space

Finally

$$
\begin{gathered}
\omega^{W P}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}\right)^{n+1}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n+1} \\
=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}\right)^{n+1}+\sqrt{-1} \partial \bar{\partial} \int_{\mathcal{X} / S} \sum_{j=0}^{n} u\left(\omega_{\mathcal{X}}^{0}\right)^{j}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n-j}
\end{gathered}
$$

First integral possesses continuous potential by Varouchas' theorem.

Descend to moduli space

Finally

$$
\begin{gathered}
\omega^{W P}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}\right)^{n+1}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n+1} \\
=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}\right)^{n+1}+\sqrt{-1} \partial \bar{\partial} \int_{\mathcal{X} / S} \sum_{j=0}^{n} u\left(\omega_{\mathcal{X}}^{0}\right)^{j}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n-j}
\end{gathered}
$$

First integral possesses continuous potential by Varouchas' theorem. Second integral defines a bounded function. Hence $\omega^{W P}$ is a positive closed current.

Descend to moduli space

Finally

$$
\begin{gathered}
\omega^{W P}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}\right)^{n+1}=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n+1} \\
=\int_{\mathcal{X} / S}\left(\omega_{\mathcal{X}}^{0}\right)^{n+1}+\sqrt{-1} \partial \bar{\partial} \int_{\mathcal{X} / S} \sum_{j=0}^{n} u\left(\omega_{\mathcal{X}}^{0}\right)^{j}\left(\omega_{\mathcal{X}}^{0}+\sqrt{-1} \partial \bar{\partial} u\right)^{n-j}
\end{gathered}
$$

First integral possesses continuous potential by Varouchas' theorem. Second integral defines a bounded function. Hence $\omega^{W P}$ is a positive closed current.
Present work for SLC singularities by Takayama, Tosatti, Rong-Zhang, a.o.

Degenerating families of Calabi-Yau manifolds

Definition
Calabi-Yau manifold X :

$$
c_{1, \mathbb{R}}(X)=0
$$

Degenerating families of Calabi-Yau manifolds

Definition
Calabi-Yau manifold X :

$$
c_{1, \mathbb{R}}(X)=0
$$

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Definition

Let X Kähler. A polarization $\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})$ is a Kähler class.

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Definition

Let X Kähler. A polarization $\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})$ is a Kähler class.

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Definition

Let X Kähler. A polarization $\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})$ is a Kähler class.
A polarized family ($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) defined by
$\lambda_{\mathcal{X} / s} \in R^{1} f_{*}\left(\Omega_{\mathcal{X} / S}^{1}\right)(S)$ s.t. $\lambda_{\mathcal{X} / S} \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Degenerating families of Calabi-Yau manifolds

Definition

Calabi-Yau manifold $X: \quad c_{1, \mathbb{R}}(X)=0$
Denote by ω_{X} a Ricci-flat Kähler metric according to Yau's theorem:

$$
\begin{aligned}
\omega_{X}^{n} & =g d V \quad \text { Ricci-flat volume form } \\
0 & =\operatorname{Ric}\left(\omega_{X}\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{X}^{n}\right)
\end{aligned}
$$

Definition

Let X Kähler. A polarization $\lambda_{X} \in H^{1}\left(X, \Omega_{X}^{1}\right) \cap H^{2}(X, \mathbb{R})$ is a Kähler class.
A polarized family ($f: \mathcal{X} \rightarrow S, \lambda_{\mathcal{X} / S}$) defined by
$\lambda_{\mathcal{X} / s} \in R^{1} f_{*}\left(\Omega_{\mathcal{X} / S}^{1}\right)(S)$ s.t. $\lambda_{\mathcal{X} / S} \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Let

$$
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) .
$$

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Let

$$
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) .
$$

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Let

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)$.

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Let

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$:

Fujiki-Sch. '90

Equivalent: $\lambda \in R^{2} f_{*} \mathbb{R}(S)$ s.t. $\lambda \mid \mathcal{X}_{s}$ are polarizations for the fibers \mathcal{X}_{s}.
Let $f: \mathcal{X} \rightarrow S$ be a (polarized) family of Calabi-Yau manifolds with family of Ricci-flat relative volume forms

Let

$$
\begin{gathered}
\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z) \\
\Theta_{\mathcal{X}}:=2 \pi c_{1}\left(\mathcal{K}_{\mathcal{X} / \mathcal{S}}, g^{-1}\right)=\sqrt{-1} \partial \bar{\partial} \log g
\end{gathered}
$$

be the curvature form of $\left(\mathcal{K}_{\mathcal{X} / S}, g^{-1}\right)$.
We know that $\Theta_{\mathcal{X}}$ is equal to zero on the fibers, and that its push-forward to the base is $\omega_{W P}$:
Fujiki-Sch. '90

$$
\omega^{W P}=-\int_{\mathcal{X} / S} 2 \pi c_{1}(\mathcal{X} / S, g) \wedge \omega_{\mathcal{X}}^{n} \text { with norm. } \int_{\mathcal{X} / S} \omega_{\mathcal{X}}^{n+1}=0
$$

More is true:

More is true:

Proposition

$f: \mathcal{X} \rightarrow S$ (polarized) family of Calabi-Yau manifolds
Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$ (with normalization).

More is true:

Proposition

$f: \mathcal{X} \rightarrow S$ (polarized) family of Calabi-Yau manifolds
Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$ (with normalization).

More is true:

Proposition

$f: \mathcal{X} \rightarrow S$ (polarized) family of Calabi-Yau manifolds
Ricci-flat relative volume forms $\omega_{\mathcal{X} / S}^{n}=g(z, s) d V(z)$ (with normalization).
Then

$$
\Theta_{\mathcal{X}}=\frac{1}{\operatorname{vol}\left(\mathcal{X}_{s}\right)} f^{*} \omega_{W P}
$$

$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume

Let
$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume
(a) $\lambda_{\mathcal{X} / S} \in R^{2} f_{*} \mathbb{R}(S)$ is the image of some $\lambda_{\mathcal{X}} \in H_{\mathbb{R}}^{1,1}(\mathcal{X})$ or
$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume
(a) $\lambda_{\mathcal{X} / S} \in R^{2} f_{*} \mathbb{R}(S)$ is the image of some $\lambda_{\mathcal{X}} \in H_{\mathbb{R}}^{1,1}(\mathcal{X})$ or
(b) $b_{1}\left(\mathcal{X}_{s}\right)=0$
$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume
(a) $\lambda_{\mathcal{X} / S} \in R^{2} f_{*} \mathbb{R}(S)$ is the image of some $\lambda_{\mathcal{X}} \in H_{\mathbb{R}}^{1,1}(\mathcal{X})$ or
(b) $b_{1}\left(\mathcal{X}_{s}\right)=0$
$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume
(a) $\lambda_{\mathcal{X} / S} \in R^{2} f_{*} \mathbb{R}(S)$ is the image of some $\lambda_{\mathcal{X}} \in H_{\mathbb{R}}^{1,1}(\mathcal{X})$ or
(b) $b_{1}\left(\mathcal{X}_{s}\right)=0$

Assume

$$
G_{s}(z, w)>-c \quad \forall s \in S
$$

Let
$G_{s}(z, w)$ the Green's functions for Laplacians \square_{s} on fibers.

Theorem 1. (M. Braun - Y.J. Choi - G. Sch. '16)
Assume
(a) $\lambda_{\mathcal{X} / S} \in R^{2} f_{*} \mathbb{R}(S)$ is the image of some $\lambda_{\mathcal{X}} \in H_{\mathbb{R}}^{1,1}(\mathcal{X})$ or
(b) $b_{1}\left(\mathcal{X}_{s}\right)=0$

Assume

$$
G_{s}(z, w)>-c \quad \forall s \in S
$$

Then \exists Kähler form $\widetilde{\omega}_{\mathcal{X}}$ s.t. $\widetilde{\omega}_{\mathcal{X}} \mid \mathcal{X}_{s}=\omega_{\mathcal{X}_{s}}$ Ricci flat.

Validity of the assumptions

Cheeger '70, Cheeger-Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Validity of the assumptions

Cheeger '70, Cheeger-Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Sh. Takayama '15, X. Rong-Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Validity of the assumptions

Cheeger '70, Cheeger-Yau '80

The Green's function is bounded, if the diameter (of the fibers \mathcal{X}_{s}) is bounded from above.

Sh. Takayama '15, X. Rong-Y. Zhang '11

The diameter is bounded for projective families of Calabi-Yau manifolds.

Y. Zhang '16, V. Tosatti '15

The diameter is bounded for polarized families of Calabi-Yau manifolds, under mild assumptions for the type of degeneration.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{s} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0
$$

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0
$$

Theorem 2. (Choi-Sch. '17)

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{s} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0 .
$$

Theorem 2. (Choi-Sch. '17)

(1) The metric h^{ρ} on the relative canonical bundle $K_{\mathcal{X}^{\prime} / S^{\prime}}$ extends to $K_{\mathcal{X} / S}$ as a singular hermitian metric, and

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0 .
$$

Theorem 2. (Choi-Sch. '17)

(1) The metric h^{ρ} on the relative canonical bundle $K_{\mathcal{X}^{\prime} / S^{\prime}}$ extends to $K_{\mathcal{X} / S}$ as a singular hermitian metric, and
(2) the curvature $\Theta_{h_{\mathcal{X}^{\prime} / S^{\prime}}^{\rho}}\left(K_{\mathcal{X}^{\prime} / S^{\prime}}\right)$ of the relative canonical line bundle extends to \mathcal{X} as a d-closed positive (1,1)-current.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0 .
$$

Theorem 2. (Choi-Sch. '17)

(1) The metric h^{ρ} on the relative canonical bundle $K_{\mathcal{X}^{\prime} / S^{\prime}}$ extends to $K_{\mathcal{X} / S}$ as a singular hermitian metric, and
(2) the curvature $\Theta_{h_{\mathcal{X}^{\prime} / S^{\prime}}^{\rho}}\left(K_{\mathcal{X}^{\prime} / S^{\prime}}\right)$ of the relative canonical line bundle extends to \mathcal{X} as a d-closed positive (1,1)-current.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0 .
$$

Theorem 2. (Choi-Sch. '17)

(1) The metric h^{ρ} on the relative canonical bundle $K_{\mathcal{X}^{\prime} / S^{\prime}}$ extends to $K_{\mathcal{X} / S}$ as a singular hermitian metric, and
(2) the curvature $\Theta_{h_{\mathcal{X}^{\prime} / S^{\prime}}^{\rho}}\left(K_{\mathcal{X}^{\prime} / S^{\prime}}\right)$ of the relative canonical line bundle extends to \mathcal{X} as a d-closed positive (1,1)-current.

Let $f: \mathcal{X} \rightarrow S$ be a proper, open, surjective holomorphic mapping of Kähler manifolds $\left(\mathcal{X}, \omega_{\mathcal{X}}\right)$ and $\left(S, \omega_{S}\right)$. Suppose that every regular fiber X_{S} is a Calabi-Yau manifold for $s \in S^{\prime}=S \backslash W$. Then $\omega_{\mathcal{X}} \mid \mathcal{X}^{\prime}$ defines a polarization in the sense Theorem 1.
Let $\widetilde{\omega}_{\mathcal{X}^{\prime}}$ according to Theorem 1. Normalize

$$
\rho=\widetilde{\omega}_{\mathcal{X}^{\prime}}+f^{*} \widetilde{\omega}_{S^{\prime}} \quad \text { s.t. } \int_{\mathcal{X}^{\prime} / S^{\prime}} \rho^{n+1}=0 .
$$

Theorem 2. (Choi-Sch. '17)

(1) The metric h^{ρ} on the relative canonical bundle $K_{\mathcal{X}^{\prime} / S^{\prime}}$ extends to $K_{\mathcal{X} / S}$ as a singular hermitian metric, and
(2) the curvature $\Theta_{h_{\mathcal{X}^{\prime} / S^{\prime}}^{\rho}}\left(K_{\mathcal{X}^{\prime} / S^{\prime}}\right)$ of the relative canonical line bundle extends to \mathcal{X} as a d-closed positive (1,1)-current.
M. Păun: Demailly's approximation theorem of psh. functions by fctns. with algebraic singularities. Ohsawa-Takegoshi Thm.

On S^{\prime} for any form representing the polarization, in particular for ω :
$\omega^{W P}=f_{*}\left(f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}\right)=\int_{\mathcal{X}^{\prime} / S^{\prime}} f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}=\operatorname{vol}\left(\mathcal{X}_{S}\right) \int_{\mathcal{X} / S} \Theta \wedge \omega^{n}$

On S^{\prime} for any form representing the polarization, in particular for ω :
$\omega^{W P}=f_{*}\left(f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}\right)=\int_{\mathcal{X}^{\prime} / S^{\prime}} f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}=\operatorname{vol}\left(\mathcal{X}_{s}\right) \int_{\mathcal{X} / S} \Theta \wedge \omega^{n}$
Theorem 2 and wedge product of currents Bedford-Taylor.

On S^{\prime} for any form representing the polarization, in particular for ω :
$\omega^{W P}=f_{*}\left(f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}\right)=\int_{\mathcal{X}^{\prime} / S^{\prime}} f^{*}\left(\omega^{W P}\right) \wedge \omega^{n}=\operatorname{vol}\left(\mathcal{X}_{s}\right) \int_{\mathcal{X} / S} \Theta \wedge \omega^{n}$
Theorem 2 and wedge product of currents Bedford-Taylor.

Corollary

$\omega^{W P}$ extends to S as a positive, closed current.

Extension Theorem

Kähler form $\omega=\omega_{\mathcal{X}}$

Extension Theorem

Kähler form $\omega=\omega_{\mathcal{X}}$
Relative canonical bundle

$$
K_{\mathcal{X} / S}=K_{\mathcal{X}} \otimes f^{*} K_{S}^{-1}
$$

Extension Theorem

Kähler form $\omega=\omega_{\mathcal{X}}$
Relative canonical bundle

$$
K_{\mathcal{X} / S}=K_{\mathcal{X}} \otimes f^{*} K_{S}^{-1}
$$

Local coordinates

$$
U=\left\{\left(z^{1}, \ldots, z^{n+d}\right)\right\} \subset \mathcal{X} \text { and }\left(s^{1}, \ldots, s^{d}\right) \text { on } S
$$

Extension Theorem

Kähler form $\omega=\omega_{\mathcal{X}}$
Relative canonical bundle

$$
K_{\mathcal{X} / S}=K_{\mathcal{X}} \otimes f^{*} K_{S}^{-1}
$$

Local coordinates

$$
U=\left\{\left(z^{1}, \ldots, z^{n+d}\right)\right\} \subset \mathcal{X} \text { and }\left(s^{1}, \ldots, s^{d}\right) \text { on } S
$$

In terms of Euclidean volume forms

$$
\omega^{n} \wedge f^{*} d V_{S}=\chi \cdot d V_{\mathcal{X}}=e^{\psi u} \cdot d V_{\mathcal{X}}
$$

with $\psi_{U}=-\infty$ at singular points of f.

Corresponding curvature form on X^{\prime} :

$$
\Theta_{h_{X / S}^{\omega}}^{\omega}\left(K_{X / S}\right)=\sqrt{-1} \partial \bar{\partial} \psi u \mid X^{\prime}=\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n} \wedge f^{*} d V_{S}\right) .
$$

Corresponding curvature form on X^{\prime} :

$$
\Theta_{h_{\chi / s}}\left(K_{X / S}\right)=\sqrt{-1} \partial \bar{\partial} \psi_{U} \mid X^{\prime}=\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n} \wedge f^{*} d V_{S}\right) .
$$

Ricci-flat volume form

exists a unique function $\eta_{s} \in C^{\infty}\left(X_{s}\right)$ s.t.

$$
\begin{aligned}
-\sqrt{-1} \partial \bar{\partial} \eta_{s} & =\operatorname{Ric}\left(\omega_{s}\right) \\
\int_{X_{s}} e^{\eta_{s}} \omega_{s}^{n} & =\int_{X_{s}} \omega_{s}^{n}=\operatorname{vol}\left(X_{s}\right) .
\end{aligned}
$$

Corresponding curvature form on X^{\prime} :

$$
\Theta_{h_{X / S}}\left(K_{X / S}\right)=\sqrt{-1} \partial \bar{\partial} \psi_{u} \mid X^{\prime}=\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n} \wedge f^{*} d V_{S}\right) .
$$

Ricci-flat volume form

exists a unique function $\eta_{s} \in C^{\infty}\left(X_{s}\right)$ s.t.

$$
\begin{aligned}
-\sqrt{-1} \partial \bar{\partial} \eta_{s} & =\operatorname{Ric}\left(\omega_{s}\right) \\
\int_{X_{s}} e^{\eta_{s}} \omega_{s}^{n} & =\int_{X_{s}} \omega_{s}^{n}=\operatorname{vol}\left(X_{s}\right) .
\end{aligned}
$$

$\rho_{s}=\omega_{s}+\sqrt{-1} \partial \bar{\partial} \varphi_{s}$ fiberwise Ricci-flat
$\rho=\omega+\sqrt{-1} \partial \bar{\partial} \varphi$ extends in natural way to total space \mathcal{X}

Corresponding curvature form on X^{\prime} :

$$
\Theta_{h_{X / S}}\left(K_{X / S}\right)=\sqrt{-1} \partial \bar{\partial} \psi_{u} \mid X^{\prime}=\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n} \wedge f^{*} d V_{S}\right) .
$$

Ricci-flat volume form

exists a unique function $\eta_{s} \in C^{\infty}\left(X_{s}\right)$ s.t.

$$
\begin{aligned}
-\sqrt{-1} \partial \bar{\partial} \eta_{s} & =\operatorname{Ric}\left(\omega_{s}\right) \\
\int_{X_{s}} e^{\eta_{s}} \omega_{s}^{n} & =\int_{X_{s}} \omega_{s}^{n}=\operatorname{vol}\left(X_{s}\right) .
\end{aligned}
$$

$\rho_{s}=\omega_{s}+\sqrt{-1} \partial \bar{\partial} \varphi_{s}$ fiberwise Ricci-flat
$\rho=\omega+\sqrt{-1} \partial \bar{\partial} \varphi$ extends in natural way to total space \mathcal{X}

Corresponding curvature form on X^{\prime} :

$$
\Theta_{h_{X / S}}^{\omega}\left(K_{X / S}\right)=\sqrt{-1} \partial \bar{\partial} \psi_{U} \mid X^{\prime}=\sqrt{-1} \partial \bar{\partial} \log \left(\omega^{n} \wedge f^{*} d V_{S}\right) .
$$

Ricci-flat volume form

exists a unique function $\eta_{s} \in C^{\infty}\left(X_{s}\right)$ s.t.

$$
\begin{aligned}
-\sqrt{-1} \partial \bar{\partial} \eta_{s} & =\operatorname{Ric}\left(\omega_{s}\right) \\
\int_{X_{s}} e^{\eta_{s}} \omega_{s}^{n} & =\int_{X_{s}} \omega_{s}^{n}=\operatorname{vol}\left(X_{s}\right) .
\end{aligned}
$$

$\rho_{s}=\omega_{s}+\sqrt{-1} \partial \bar{\partial} \varphi_{s}$ fiberwise Ricci-flat
$\rho=\omega+\sqrt{-1} \partial \bar{\partial} \varphi$ extends in natural way to total space \mathcal{X}
Here the Kähler property of \mathcal{X} is being used.

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

$$
e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)=\rho^{n} \wedge f^{*}\left(d V_{S}\right) \quad \text { on } \mathcal{X}^{\prime}
$$

Hence

$$
\sqrt{-1} \partial \bar{\partial} \log \left(e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\rho^{n} \wedge f^{*}\left(d V_{S}\right)\right)
$$

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

$$
e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)=\rho^{n} \wedge f^{*}\left(d V_{S}\right) \quad \text { on } \mathcal{X}^{\prime}
$$

Hence

$$
\sqrt{-1} \partial \bar{\partial} \log \left(e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\rho^{n} \wedge f^{*}\left(d V_{S}\right)\right)
$$

Curvature of relative canonical bundle near singular points

$$
\sqrt{-1} \partial \bar{\partial}(\eta+\psi u)=\sqrt{-1} \partial \bar{\partial} \eta+\Theta_{h_{X^{\prime} / S^{\prime}}^{\prime}}\left(K_{X^{\prime} / S^{\prime}}^{\prime}\right)=\Theta_{h_{x^{\prime} / S^{\prime}}^{\rho}}\left(K_{X^{\prime} / S^{\prime}}\right) .
$$

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

$$
e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)=\rho^{n} \wedge f^{*}\left(d V_{S}\right) \quad \text { on } \mathcal{X}^{\prime}
$$

Hence

$$
\sqrt{-1} \partial \bar{\partial} \log \left(e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\rho^{n} \wedge f^{*}\left(d V_{S}\right)\right)
$$

Curvature of relative canonical bundle near singular points

$$
\sqrt{-1} \partial \bar{\partial}(\eta+\psi u)=\sqrt{-1} \partial \bar{\partial} \eta+\Theta_{h_{X^{\prime} / S^{\prime}}^{\prime}}\left(K_{X^{\prime} / S^{\prime}}^{\prime}\right)=\Theta_{h_{x^{\prime} / S^{\prime}}^{\rho}}\left(K_{X^{\prime} / S^{\prime}}\right) .
$$

Monge-Ampère equation

$$
e^{\eta_{s}} \omega_{s}^{n}=\rho_{s}^{n} \quad \text { for each } s \in S^{\prime}
$$

$$
e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)=\rho^{n} \wedge f^{*}\left(d V_{S}\right) \quad \text { on } \mathcal{X}^{\prime}
$$

Hence

$$
\sqrt{-1} \partial \bar{\partial} \log \left(e^{\eta} \omega^{n} \wedge f^{*}\left(d V_{S}\right)\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\rho^{n} \wedge f^{*}\left(d V_{S}\right)\right)
$$

Curvature of relative canonical bundle near singular points

$$
\sqrt{-1} \partial \bar{\partial}(\eta+\psi u)=\sqrt{-1} \partial \bar{\partial} \eta+\Theta_{h_{X^{\prime} / S^{\prime}}^{\prime}}\left(K_{X^{\prime} / S^{\prime}}^{\prime}\right)=\Theta_{h_{x^{\prime} / S^{\prime}}^{\rho}}\left(K_{X^{\prime} / S^{\prime}}\right) .
$$

Aim.
Bound the potential $\quad \theta:=\eta+\psi_{u}$

Ohsawa-Takegoshi Extension Theorem

Let $\psi: \Omega \subset \mathbb{C}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ a psh. function on a bounded pseudoconvex domain. Then there exists a constant $C>0$ (only depending on $\operatorname{diam}(\Omega))$ s.t. given a hyperplane $H \subset \mathbb{C}^{n}$

$$
\forall f \in \mathcal{O}(\Omega \cap H) \text { with } \int_{\Omega \cap H} e^{-\psi}|f|^{2} d \lambda<\infty
$$

Ohsawa-Takegoshi Extension Theorem

Let $\psi: \Omega \subset \mathbb{C}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ a psh. function on a bounded pseudoconvex domain. Then there exists a constant $C>0$ (only depending on $\operatorname{diam}(\Omega))$ s.t. given a hyperplane $H \subset \mathbb{C}^{n}$

$$
\forall f \in \mathcal{O}(\Omega \cap H) \text { with } \int_{\Omega \cap H} e^{-\psi}|f|^{2} d \lambda<\infty
$$

Ohsawa-Takegoshi Extension Theorem

Let $\psi: \Omega \subset \mathbb{C}^{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ a psh. function on a bounded pseudoconvex domain. Then there exists a constant $C>0$ (only depending on $\operatorname{diam}(\Omega))$ s.t. given a hyperplane $H \subset \mathbb{C}^{n}$

$$
\forall f \in \mathcal{O}(\Omega \cap H) \text { with } \int_{\Omega \cap H} e^{-\psi \mid}|f|^{2} d \lambda<\infty
$$

$\exists F \in \mathcal{O}(\Omega)$ s.t. $F \mid \Omega \cap H=f$ and

$$
\int_{\Omega} e^{-\psi}|F|^{2} d \lambda \leq C \int_{\Omega \cap H} e^{-\psi}|f|^{2} d \lambda .
$$

Idea

Idea

- Approximate psh. function by a function of the form

$$
\log \sum\left|\sigma_{k}\right|^{2} \text { with } \sigma_{k} \text { holomorphic }
$$

Idea

- Approximate psh. function by a function of the form

$$
\log \sum\left|\sigma_{k}\right|^{2} \text { with } \sigma_{k} \text { holomorphic }
$$

- Apply the Ohsawa-Takegoshi Theorem to $\left|\sigma_{k}\right|^{2}$.

Idea

- Approximate psh. function by a function of the form

$$
\log \sum\left|\sigma_{k}\right|^{2} \text { with } \sigma_{k} \text { holomorphic }
$$

- Apply the Ohsawa-Takegoshi Theorem to $\left|\sigma_{k}\right|^{2}$.
- Use extra variable $\mathbb{Z} \ni m \rightarrow \infty$ in weight function $e^{-m \theta}$.

Hilbert space of holomorphic functions

Definition

$m>1, s \in S^{\prime}$ weighted norm on $\mathcal{O}\left(U_{s}\right)$:

$$
\|\phi\|_{m, s}^{2}:=\int_{U_{s}}|\phi|^{2} e^{-m \theta_{s}} \rho_{s}^{n} . \quad \text { for } \phi \in \mathcal{O}\left(U_{s}\right)
$$

Hilbert space

$$
\mathcal{H}_{s}^{(m)}=\left\{\phi \in \mathcal{O}\left(U_{s}\right) ;\|\phi\|_{m, s}^{2}<\infty\right\}
$$

Hilbert space of holomorphic functions

Definition

$m>1, s \in S^{\prime}$ weighted norm on $\mathcal{O}\left(U_{s}\right)$:

$$
\|\phi\|_{m, s}^{2}:=\int_{U_{s}}|\phi|^{2} e^{-m \theta_{s}} \rho_{s}^{n} . \quad \text { for } \phi \in \mathcal{O}\left(U_{s}\right)
$$

Hilbert space

$$
\mathcal{H}_{s}^{(m)}=\left\{\phi \in \mathcal{O}\left(U_{s}\right) ;\|\phi\|_{m, s}^{2}<\infty\right\}
$$

Hilbert space of holomorphic functions

Definition

$m>1, s \in S^{\prime}$ weighted norm on $\mathcal{O}\left(U_{s}\right)$:

$$
\|\phi\|_{m, s}^{2}:=\int_{U_{s}}|\phi|^{2} e^{-m \theta_{s}} \rho_{s}^{n} . \quad \text { for } \phi \in \mathcal{O}\left(U_{s}\right)
$$

Hilbert space

$$
\mathcal{H}_{s}^{(m)}=\left\{\phi \in \mathcal{O}\left(U_{s}\right) ;\|\phi\|_{m, s}^{2}<\infty\right\} .
$$

$$
e^{\theta_{s}} d V_{X} / f^{*}\left(d V_{S}\right)=\rho_{s}^{n} \text { on } \mathcal{X}^{\prime}
$$

so that $\|\phi\|_{m, s}^{2}=\int_{U_{s}}|\phi|^{2} e^{-(m-1) \theta_{s}} d V_{X_{s}}$
where $d V_{X_{s}}=d V_{X} / f^{*} d V_{S}$ on U_{s}.

Theorem (cf. Demailly)

$$
\theta_{s}(x)=\lim _{m \rightarrow \infty}\left(\sup \left\{\frac{1}{m} \log |\phi(x)|^{2} ; \phi \in \mathcal{H}_{s}^{(m)} \text { with }\|\phi\|_{m, s}^{2} \leq 1\right\}\right)
$$ for every $x \in U_{s}, s \in S^{\prime}$.

Theorem (cf. Demailly)

$$
\theta_{s}(x)=\lim _{m \rightarrow \infty}\left(\sup \left\{\frac{1}{m} \log |\phi(x)|^{2} ; \phi \in \mathcal{H}_{s}^{(m)} \text { with }\|\phi\|_{m, s}^{2} \leq 1\right\}\right)
$$ for every $x \in U_{s}, s \in S^{\prime}$.

Theorem (cf. Demailly)

$$
\theta_{s}(x)=\lim _{m \rightarrow \infty}\left(\sup \left\{\frac{1}{m} \log |\phi(x)|^{2} ; \phi \in \mathcal{H}_{s}^{(m)} \text { with }\|\phi\|_{m, s}^{2} \leq 1\right\}\right)
$$

for every $x \in U_{s}, s \in S^{\prime}$.
Namely for an ON-basis $\left\{\sigma_{k}^{s}\right\}$ of \mathcal{H}_{s}^{m} the Bergman kernel is given by

$$
\varphi_{m}=\frac{1}{m} \log \sum_{k}\left|\sigma_{k}^{s}\right|^{2}
$$

Theorem (cf. Demailly)

$$
\theta_{s}(x)=\lim _{m \rightarrow \infty}\left(\sup \left\{\frac{1}{m} \log |\phi(x)|^{2} ; \phi \in \mathcal{H}_{s}^{(m)} \text { with }\|\phi\|_{m, s}^{2} \leq 1\right\}\right)
$$

for every $x \in U_{s}, s \in S^{\prime}$.
Namely for an ON-basis $\left\{\sigma_{k}^{s}\right\}$ of \mathcal{H}_{s}^{m} the Bergman kernel is given by

$$
\varphi_{m}=\frac{1}{m} \log \sum_{k}\left|\sigma_{k}^{s}\right|^{2}
$$

By general theory

$$
\varphi_{m}^{s}(x)=\sup \left\{\frac{1}{m} \log |\phi(x)|^{2}: \phi \in \mathcal{H}_{s}^{(m)} \text { s.t. }\|\phi\|_{m, s}^{2} \leq 1\right\}
$$

Apply the mean-value inequality to a ball B_{ϵ}.

Apply the mean-value inequality to a ball B_{ϵ}.
$\phi \in \mathcal{H}_{s}^{(m)}$ with $\|\phi\|_{m, s}^{2} \leq 1$,

$$
\begin{aligned}
|\phi(x)|^{2} & \leq \frac{n!}{\pi^{n} r^{2 n}} \int_{B_{\varepsilon}}|\phi(\zeta)|^{2} d \lambda(\zeta) \\
& \leq \frac{n!}{\pi^{n} r^{2 n}} \sup _{\zeta \in B_{r}}\left(e^{m \theta_{s}}\right) \int_{B_{\varepsilon}}|\phi(\zeta)|^{2} e^{-m \theta_{s}} d \lambda(\zeta)
\end{aligned}
$$

Apply the mean-value inequality to a ball B_{ϵ}.
$\phi \in \mathcal{H}_{s}^{(m)}$ with $\|\phi\|_{m, s}^{2} \leq 1$,

$$
\begin{aligned}
|\phi(x)|^{2} & \leq \frac{n!}{\pi^{n} r^{2 n}} \int_{B_{\varepsilon}}|\phi(\zeta)|^{2} d \lambda(\zeta) \\
& \leq \frac{n!}{\pi^{n} r^{2 n}} \sup _{\zeta \in B_{r}}\left(e^{m \theta_{s}}\right) \int_{B_{\varepsilon}}|\phi(\zeta)|^{2} e^{-m \theta_{s}} d \lambda(\zeta)
\end{aligned}
$$

Let $C_{s}:=\sup _{B_{r}} d \lambda /\left(\rho_{s}\right)^{n}$. Then it follows that

$$
\begin{aligned}
|\phi(x)|^{2} & \leq \frac{n!C_{s}}{\pi^{n} \varepsilon^{2 n}} \sup _{\zeta \in B_{\varepsilon}}\left(e^{m \theta_{s}} \int_{B_{\varepsilon}}|\phi(\zeta)|^{2} e^{-m \theta_{s}}\left(\rho_{s}\right)^{n}\right) \\
& \leq \frac{n!C_{s}}{\pi^{n} \varepsilon^{2 n}} \sup _{\zeta \in B_{\varepsilon}}\left(e^{m \theta_{s}}\right) .
\end{aligned}
$$

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the extension of functions to the ambient space that are given at a point.

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the extension of functions to the ambient space that are given at a point.
$\exists \phi \in \mathcal{O}\left(U_{s}\right)$ s.t. $\phi(x)=a$ and

$$
\int_{U_{s}}|\phi|^{2} e^{-2 m \theta_{s}}\left(\rho_{s}\right)^{n} \leq C_{s}|a|^{2} e^{-2 m \theta_{s}(x)}
$$

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the extension of functions to the ambient space that are given at a point.
$\exists \phi \in \mathcal{O}\left(U_{s}\right)$ s.t. $\phi(x)=a$ and

$$
\int_{U_{s}}|\phi|^{2} e^{-2 m \theta_{s}}\left(\rho_{s}\right)^{n} \leq C_{s}|a|^{2} e^{-2 m \theta_{s}(x)}
$$

Now

$$
\varphi_{m}^{s}(x) \geq \theta_{s}(x)-\frac{\log C_{s}}{m}
$$

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the extension of functions to the ambient space that are given at a point.
$\exists \phi \in \mathcal{O}\left(U_{s}\right)$ s.t. $\phi(x)=a$ and

$$
\int_{U_{s}}|\phi|^{2} e^{-2 m \theta_{s}}\left(\rho_{s}\right)^{n} \leq C_{s}|a|^{2} e^{-2 m \theta_{s}(x)}
$$

Now

$$
\varphi_{m}^{s}(x) \geq \theta_{s}(x)-\frac{\log C_{s}}{m}
$$

Hence

$$
\frac{1}{m} \log |\phi(x)|^{2} \leq \sup _{\zeta \in B_{\varepsilon}} \theta_{s}(\zeta)+\frac{1}{m}\left(\log \frac{n!}{\pi^{n} \varepsilon^{2 n}}+\log C_{s}\right)
$$

Let $m \rightarrow \infty$.
Conversely, the Ohsawa-Takegoshi Theorem will be applied to the extension of functions to the ambient space that are given at a point.
$\exists \phi \in \mathcal{O}\left(U_{s}\right)$ s.t. $\phi(x)=a$ and

$$
\int_{U_{s}}|\phi|^{2} e^{-2 m \theta_{s}}\left(\rho_{s}\right)^{n} \leq C_{s}|a|^{2} e^{-2 m \theta_{s}(x)}
$$

Now

$$
\varphi_{m}^{s}(x) \geq \theta_{s}(x)-\frac{\log C_{s}}{m}
$$

Finally let $m \rightarrow \infty$.

Note the order of limit processes: First let $m \rightarrow \infty$. The constants C_{s}, which are unbounded as the singular figers are approached, are eliminated in this way.

Note the order of limit processes: First let $m \rightarrow \infty$. The constants C_{s}, which are unbounded as the singular figers are approached, are eliminated in this way.

Note the order of limit processes: First let $m \rightarrow \infty$. The constants C_{s}, which are unbounded as the singular figers are approached, are eliminated in this way.

Proof of the Extension Theorem
Let $\phi_{s} \in \mathcal{H}_{s}^{(m)}$ with $\left\|\phi_{s}\right\|_{s}^{2} \leq 1$. Hölder inequality:

$$
\begin{array}{rl}
\int_{U_{s}}\left|\phi_{s}\right|^{2 / m} & d V_{X_{s}}=\int_{U_{s}}\left|\phi_{s}\right|^{2 / m} e^{-\theta_{s}} \rho_{s}^{n} \\
& \leq\left(\int_{U_{s}}\left|\phi_{s}\right|^{2} e^{-m \theta_{s}} \rho_{s}^{n}\right)^{\frac{1}{m}}\left(\int_{U_{s}} \rho_{s}^{n}\right)^{\frac{m-1}{m}} \\
& \leq\left(\operatorname{vol}\left(X_{s}\right)\right)^{\frac{m-1}{m}} \leq C
\end{array}
$$

$C=\max \left(1, \operatorname{vol}\left(\mathrm{X}_{\mathrm{s}}\right)\right)$, independent of m and s.

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers.

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers. $L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for submanifolds of bounded domains:

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers. $L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers. $L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

- The restriction of F to U_{s} is equal to ϕ.

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers.
$L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

- The restriction of F to U_{s} is equal to ϕ.
- There exists a numerical constant $C_{0}>0$ independent of m and s such that

$$
\int_{U}|F|^{2 / m} d V_{z} \leq C_{0} \int_{U_{s}}|\phi|^{2 / m} \frac{d V_{z}}{p^{*} d V_{s}} \leq C_{0} \cdot C
$$

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers.
$L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

- The restriction of F to U_{s} is equal to ϕ.
- There exists a numerical constant $C_{0}>0$ independent of m and s such that

$$
\int_{U}|F|^{2 / m} d V_{z} \leq C_{0} \int_{U_{s}}|\phi|^{2 / m} \frac{d V_{z}}{p^{*} d V_{s}} \leq C_{0} \cdot C
$$

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers.
$L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

- The restriction of F to U_{s} is equal to ϕ.
- There exists a numerical constant $C_{0}>0$ independent of m and s such that

$$
\int_{U}|F|^{2 / m} d V_{z} \leq C_{0} \int_{U_{s}}|\phi|^{2 / m} \frac{d V_{z}}{p^{*} d V_{s}} \leq C_{0} \cdot C
$$

Mean value inequality applicable

$$
|F(x)|^{2 / m} \leq C_{r} \int_{B_{r}(x)}|F(z)|^{2 / m} d V_{z} \leq C_{r} \cdot C_{0} \cdot C
$$

on $B_{r}(x)$.

The mean value inequality cannot be applied directly, since fibers degenerate to singular fibers.
$L^{2 / m}$ version of the Ohsawa-Takegoshi extension theorem for
submanifolds of bounded domains:
\exists holomorphic function F on U s.t.

- The restriction of F to U_{s} is equal to ϕ.
- There exists a numerical constant $C_{0}>0$ independent of m and s such that

$$
\int_{U}|F|^{2 / m} d V_{z} \leq C_{0} \int_{U_{s}}|\phi|^{2 / m} \frac{d V_{z}}{p^{*} d V_{s}} \leq C_{0} \cdot C
$$

Mean value inequality applicable

$$
|F(x)|^{2 / m} \leq C_{r} \int_{B_{r}(x)}|F(z)|^{2 / m} d V_{z} \leq C_{r} \cdot C_{0} \cdot C
$$

on $B_{r}(x)$.
Use argument for all fixed $\theta_{s}, s \in S^{\prime}$.

θ_{s} are uniformly bounded on $W \cap X^{\prime}$ where $W \subset \subset U$.

θ_{s} are uniformly bounded on $W \cap X^{\prime}$ where $W \subset \subset U$. \Rightarrow curvature $\Theta_{h_{X / Y}^{\rho}}\left(K_{X / Y}\right) \mid x_{0}$ extends as a d-closed positive real $(1,1)$-current on the total space X completing the proof.

Application to the extension of positive line bundles on moduli spaces

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)
Y reduced complex space, $A \subset Y$ closed analytic,

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)
Y reduced complex space, $A \subset Y$ closed analytic,

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)
Y reduced complex space, $A \subset Y$ closed analytic,
(L^{\prime}, h^{\prime}) holomorphic line bundle on $Y^{\prime}=Y \backslash A$ singular hermitian metric h^{\prime} s.t. $\omega_{Y^{\prime}}=2 \pi c_{1}\left(L^{\prime}, h^{\prime}\right)$ is positive.

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)

Y reduced complex space, $A \subset Y$ closed analytic,
(L^{\prime}, h^{\prime}) holomorphic line bundle on $Y^{\prime}=Y \backslash A$ singular hermitian metric h^{\prime} s.t. $\omega_{Y^{\prime}}=2 \pi c_{1}\left(L^{\prime}, h^{\prime}\right)$ is positive.

Assume \exists desingularization of Y s.t. pull-back of $\omega_{Y^{\prime}}$ extends as a positive, closed $(1,1)$-current.

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)

Y reduced complex space, $A \subset Y$ closed analytic,
(L^{\prime}, h^{\prime}) holomorphic line bundle on $Y^{\prime}=Y \backslash A$ singular hermitian metric h^{\prime} s.t. $\omega_{Y^{\prime}}=2 \pi c_{1}\left(L^{\prime}, h^{\prime}\right)$ is positive.
Assume \exists desingularization of Y s.t. pull-back of $\omega_{Y^{\prime}}$ extends as a positive, closed (1, 1)-current.
Then \exists modification $\tau: Z \rightarrow Y$, isomorphism over Y^{\prime} s.t. $\left(L^{\prime}, h^{\prime}\right)$ extends to Z as a holomorphic line bundle with singular hermitian metric.

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)

Y reduced complex space, $A \subset Y$ closed analytic,
(L^{\prime}, h^{\prime}) holomorphic line bundle on $Y^{\prime}=Y \backslash A$ singular hermitian metric h^{\prime} s.t. $\omega_{Y^{\prime}}=2 \pi c_{1}\left(L^{\prime}, h^{\prime}\right)$ is positive.
Assume \exists desingularization of Y s.t. pull-back of $\omega_{Y^{\prime}}$ extends as a positive, closed (1, 1)-current.
Then \exists modification $\tau: Z \rightarrow Y$, isomorphism over Y^{\prime} s.t. $\left(L^{\prime}, h^{\prime}\right)$ extends to Z as a holomorphic line bundle with singular hermitian metric.

Note that the extended curvature current may be different from the given one.

Application to the extension of positive line bundles on moduli spaces

Theorem (Sch. '10/'16)

Y reduced complex space, $A \subset Y$ closed analytic,
(L^{\prime}, h^{\prime}) holomorphic line bundle on $Y^{\prime}=Y \backslash A$ singular hermitian metric h^{\prime} s.t. $\omega_{Y^{\prime}}=2 \pi c_{1}\left(L^{\prime}, h^{\prime}\right)$ is positive.
Assume \exists desingularization of Y s.t. pull-back of $\omega_{Y^{\prime}}$ extends as a positive, closed (1, 1)-current.
Then \exists modification $\tau: Z \rightarrow Y$, isomorphism over Y^{\prime} s.t. $\left(L^{\prime}, h^{\prime}\right)$ extends to Z as a holomorphic line bundle with singular hermitian metric.

Note that the extended curvature current may be different from the given one.

Projective embeddings

Sch.-Tsuji 2004

Projective embeddings

Sch.-Tsuji 2004
Theorem (Păun-Sch. 2017)
Let X be a compact Moishezon manifold, and L a big line bundle on X. Then the restricted volume of L along a closed, irreducible complex subspace V is positive, if and only if V is not contained in $E_{n K}(L)$. For high multiples of L, the linear system $|\mathrm{mL}|$ embeds the complement of the non-Kähler locus into a projective space.

Definition

Let $m>0$, then the image of the restriction map is denoted by

$$
H^{0}(X \mid V, m L)=\operatorname{Im}\left(H^{0}(X, m L) \rightarrow H^{0}(V, m L \mid V)\right) .
$$

The restricted volume of L on V is

$$
\operatorname{vol}_{X \mid V}(L)=\overline{\lim }_{m \rightarrow \infty}\left(\frac{\operatorname{dim} H^{0}(X \mid V, m L)}{m^{d} / d!}\right) .
$$

Definition

Let $m>0$, then the image of the restriction map is denoted by

$$
H^{0}(X \mid V, m L)=\operatorname{Im}\left(H^{0}(X, m L) \rightarrow H^{0}(V, m L \mid V)\right) .
$$

The restricted volume of L on V is

$$
\operatorname{vol}_{X \mid V}(L)=\overline{\lim }_{m \rightarrow \infty}\left(\frac{\operatorname{dim} H^{0}(X \mid V, m L)}{m^{d} / d!}\right) .
$$

Definition

Let $m>0$, then the image of the restriction map is denoted by

$$
H^{0}(X \mid V, m L)=\operatorname{Im}\left(H^{0}(X, m L) \rightarrow H^{0}(V, m L \mid V)\right)
$$

The restricted volume of L on V is

$$
\operatorname{vol}_{X \mid V}(L)=\overline{\lim }_{m \rightarrow \infty}\left(\frac{\operatorname{dim} H^{0}(X \mid V, m L)}{m^{d} / d!}\right)
$$

Given any positive current T, the union of all Lelong sublevel sets $E_{c}(T)=\{x \in X ; \nu(x, T) \geq c\}$ is denoted by

$$
E_{+}(T)=\bigcup_{c>0} E_{c}(T)
$$

The classes α containing Kähler currents α are called bigilipps

Definition

Let X be a compact, complex manifold. The non-Kähler locus of a big class equals

$$
E_{n K}(\alpha):=\bigcap E_{+}(T),
$$

where T runs through all Kähler currents representing α.

Definition

Let X be a compact, complex manifold. The non-Kähler locus of a big class equals

$$
E_{n K}(\alpha):=\bigcap E_{+}(T),
$$

where T runs through all Kähler currents representing α.

Definition

Let X be a compact, complex manifold. The non-Kähler locus of a big class equals

$$
E_{n K}(\alpha):=\bigcap E_{+}(T),
$$

where T runs through all Kähler currents representing α.

Proposition

Let X be a compact, complex manifold, and L a big line bundle. Let $V \subset X$ denote an irreducible, reduced, closed, complex subspace, whose restricted volume is positive

$$
\operatorname{vol}_{X \mid V}(L)>0
$$

Then for $m \gg 0$ the linear system $\left|W_{m}\right|$ with $W_{m}=H^{0}(X \mid V, m L)$ yields a map that is birational onto the image.

