Analysis and TYZ expansions for Kepler manifolds

Harald Upmeier (joint work with Miroslav Englis)

University of Marburg, Germany

Bengaluru, March 2018

Classical Kepler varieties

hermitian vector space $Z = \mathbf{C}^{n+1}$, rank = 2

 $Z_1 := \{ z = (z_0, \dots, z_n) \in Z : z_0^2 + \dots + z_n^2 = 0 \}$ complex light cone

Symplectic interpretation (cotangent bundle)

$$Z_1 \approx T^*(\mathbf{S}^n) \setminus \{0\} = \{(x,\xi) : ||x|| = 1, \ \xi \neq 0, \ (x|\xi) = 0\}, \ z = \frac{x + i\xi}{2}$$

contact manifold (cosphere bundle)

$$S_1 \approx S^*(\mathbf{S}^n) = \{(x,\xi) : ||x|| = 1, ||\xi|| = 1, (x|\xi) = 0\}$$

polar decomposition

$$Z_1 = \mathbf{R}^+ \cdot S_1$$

Determinantal varieties

$$Z = \mathbf{C}^{r \times s}, \ rank = r \le s, \ 1 \le \ell \le r$$

$$Z_{\ell} \coloneqq \{z \in Z : \ rank(z) \le \ell\} \quad \text{vanishing of all } (\ell + 1) \times (\ell + 1) - \text{minors}$$

$$\mathring{Z}_{\ell} = \{z \in Z : \ rank(z) = \ell\} = Z_{\ell} \setminus Z_{\ell-1} \quad \text{regular part}$$

$$Z_{1} \coloneqq \{z \in Z : \ rank(z) \le 1\} \quad \text{vanishing of all } 2 \times 2 - \text{minors}$$

$$\mathring{Z}_{1} \coloneqq \{z \in Z : \ rank(z) \le 1\} = Z_{1} \setminus \{0\}$$

$$S_{1} = \{\xi \otimes \eta^{*} : \ \xi \in \mathbf{C}^{r}, \eta \in \mathbf{C}^{s} \ \|\xi\| = 1 = \|\eta\|\}$$

$$\mathring{Z}_{1} = \mathbf{R}^{+} \cdot S_{1}$$

Let Z complex vector space and $D \subset Z$ be a bounded domain. The group

$$G = Aut(D) = \{g : D \rightarrow D \text{ biholomorphic}\}\$$

is a real Lie group by a deep theorem of H. Cartan. D is called **symmetric** iff G acts **transitively** on D^{i} and around each point $o \in D$ there exists an involutive **symmetry** $s_o \in G$ fixing o. By Harish-Chandra, D can be realized as a convex circular domain, i.e. as the unit ball

$$D = \{z \in Z: \ \|z\| < 1\}$$

for an (essentially unique) norm called the **spectral norm**. Then the isotropy subgroup

$$K = \{g \in G : g(0) = 0\}$$

is a compact group consisting of linear transformations. For domains D = G/K of rank r > 1 the boundary ∂D will not be smooth and D is only (weakly) pseudoconvex but not strongly pseudoconvex.

Let $Z = \mathbf{C}^{r \times s}$, endowed with the operator norm $||z|| = \sup \operatorname{spec}(zz^*)^{1/2}$. Then the **matrix unit ball**

$$D = \{ z \in \mathbf{C}^{r \times s} : \|z\| < 1 \} = \{ z \in \mathbf{C}^{r \times s} : I - zz^* > 0 \}$$

is a symmetric domain, under the pseudo-unitary group

$$G = U(r,s) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(r+s) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\},$$

which acts on D via Moebius transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}(z) = (az+b)(cz+d)^{-1}.$$

Its maximal compact subgroup is

$$K = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a \in U(r), d \in U(s) \right\}.$$

with the linear action $z \mapsto azd^*$.

A basic theorem of M. Koecher characterizes hermitian symmetric domains in **Jordan algebraic** terms. Let Z be a complex vector space, endowed with a ternary composition $Z \times Z \times Z \rightarrow Z$, denoted by

$$(x, y, z) \mapsto \{x; y; z\},\$$

which is bilinear symmetric in (x, z) and anti-linear in the inner variable. Putting $D(x,y)z \coloneqq \{x; y; z\}$, Z is called a **hermitian Jordan triple** if the Jordan triple identity (a kind of Jacobi identity)

$$\left[D(x,y), D(u,v)\right] = D(\{x;y;u\},v) - D(u,\{v;x;y\})$$

holds, and the hermitian form

$$(x,y) \mapsto traceD(x,y)$$

is a positive definite. Every symmetric domain can be realized as the unit ball of a unique hermitian Jordan triple (and conversely). Moreover, K consists of all linear transformations preserving the Jordan triple product.

Classification of hermitian Jordan triples

• matrix triple $Z = \mathbf{C}^{r \times s}$, $\{x; y; z\} = xy^*z + zy^*x$,

 $K = U(r) \times U(s): \ z \mapsto uzv, \ u \in U(r), \ v \in U(s)$

 $rank = r \le s, \ a = 2 \text{ complex case}, \ b = s - r$

- ▶ $r = 1, Z = \mathbf{C}^{1 \times d}, \{x; y; z\} = (x|y)z + (z|y)x, K = U(d)$
- symmetric matrices a = 1 (real case)
- anti-symmetric matrices a = 4 (quaternion case)
- ▶ spin factor $Z = \mathbf{C}^{n+1}$, $\{xy^*z\} = (x \cdot \overline{y}) \ z + (z \cdot \overline{y}) \ x + (x \cdot z)\overline{y}$ $r = 2, \ a = n - 1, \ b = 0$

$$K = \mathbf{T} \cdot SO(n+1)$$

• exceptional Jordan triples of dimension 16 (r = 2) and 27 (r = 3), a = 8 (octonion case), $K = \mathbf{T} \cdot E_6$.

A real vector space X is a **Jordan algebra** iff X has a non-associative product $x, y \mapsto x \circ y = y \circ x$, satisfying the Jordan algebra identity

$$x^2 \circ (x \circ y) = x \circ (x^2 \circ y).$$

The anti-commutator product

$$x \circ y = (xy + yx)/2$$

of self-adjoint matrices satisfies the Jordan identity. By a fundamental result of Jordan/von Neumann/Wigner (1934), every (euclidean) Jordan algebra has a realization as self-adjoint matrices $X \approx \mathcal{H}_r(\mathbf{K})$ over $\mathbf{K} = \mathbf{R}, \mathbf{C}, \mathbf{H}$ (quaternions), or $\mathbf{K} = \mathbf{O}$ (octonions) if $r \leq 3$. For r = 2 we obtain formal 2×2 -matrices

$$\mathcal{H}_{2}(\mathbf{K}) = \{ \begin{pmatrix} \alpha & b \\ b^{*} & \delta \end{pmatrix} : \alpha, \delta \in \mathbf{R}, b \in \mathbf{K} \coloneqq \mathbf{R}^{2+a} \}.$$

Thus X is characterized by the rank r and the multiplicity $a = \dim_{\mathbf{R}} \mathbf{K}$.

For a euclidean Jordan algebra X, the complexification $Z \coloneqq X^{\mathbf{C}}$ becomes a (complex) Jordan triple via

$$\{u;v;w\} = (u \circ v^*) \circ w + (w \circ v^*) \circ u - v^* \circ (u \circ w).$$

For the spin factor we obtain

$$\{u; v; w\} = (u|v)w + (w|v)u - \overline{v}(u|\overline{w}).$$

The Jordan triples arising this way are called of **tube type**. For example, the matrix triple $\mathbf{C}^{r \times s}$ is of tube type if and only if r = s.

Let Z be an irreducible hermitian Jordan triple of rank r, and $\ell \leq r.$ Define the Kepler variety

 $Z_{\ell} = \{ z \in Z : rank(z) \leq \ell \}.$

Its regular part (Kepler manifold)

$$\mathring{Z}_{\ell} = \{ z \in Z_{\ell} : rank(z) = \ell \}$$

is a $K^{\mathbf{C}}$ -homogeneous manifold, not compact or symmetric. (Matsuki dual of open G-orbits in flag manifolds).

For the spin factors (r=2) we recover classical Kepler variety. For matrix spaces, we obtain the determinantal varieties.

Theorem: The Kepler variety Z_{ℓ} is a normal variety having only rational singularities.

Remark: Result classical for spin factor (r = 2) and proved by Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on Kempf's collapsing vector bundle theorem.

An element $u \in Z$ is called a **tripotent** if $\{u; u; u\} = 2u$. For $Z = \mathbb{C}^{r \times s}$ the tripotents satisfy $uu^*u = u$ and are called partial isometries. The set S_ℓ of all tripotents of fixed rank $\ell \leq r$ is a compact K-homogeneous manifold. In particular, S_1 consists of all minimal (rank 1) tripotents. For the spin factor, S_1 is the cosphere bundle. For $Z = \mathbb{C}^{1 \times d}$

$$S_1 = \{u \in Z : (u|u) = 1\} = \mathbf{S}^{2d-1}$$

is the full boundary.

Every tripotent u induces a **Peirce decomposition** $Z = Z_u^{(2)} \oplus Z_u^{(1)} \oplus Z_u^{(0)}$, where

$$Z_u^{(j)} = \{ z \in Z : \{u; u; z\} = 2jz \}$$

is an eigenspace of D(u, u). Moreover, the Peirce 2-space $Z_u^{(2)}$ becomes a Jordan algebra with unit element u and multiplication $\{x; u; y\}$.

The Jordan Grassmann manifold

$$M_\ell$$
 = S_ℓ/\sim = set of all Peirce 2-spaces U = Z_u of rank ℓ

is a compact hermitian symmetric space, both a K-orbit and a $K^{\mathbf{C}}$ -orbit. (Center of open G-orbit). Define the **tautological vector bundle**

$$\mathcal{T}_{\ell} \coloneqq \bigcup_{U \in M_{\ell}} U \to M_{\ell}.$$

Fix a base point $c \in S_{\ell}$, put $V \coloneqq Z_c^{(2)}$ and let $L \coloneqq \{k \in K^{\mathbb{C}} : kV = V\}$. Then

$$\mathcal{T}_{\ell} = K^{\mathbf{C}} \times_L V$$

becomes a homogeneous vector bundle, and

$$\mathcal{T}_{\ell} \to Z_{\ell} : \ U \ni z \mapsto z \in Z_{\ell}$$

is a collapsing map. By **Kempf's Theorem**, the range of a collapsing map of homogeneous vector bundles is a normal variety. Let \mathring{U} denote the invertible elements of the Jordan algebra $U = Z_u^{(2)}$. Then

$$\bigcup_{U \in M_{\ell}} \mathring{U} \to Z_{\ell}$$

is a birational isomorphism. This proves the normality theorem.

Let (M, ω) be a compact Kähler *n*-manifold, with a quantizing line bundle $\mathcal{L} \to M$. Consider holomorphic sections $\Gamma(M, \mathcal{L}^{\nu})$ of a (high) tensor power \mathcal{L}^{ν} . Kodaira (coherent state) embedding

$$\kappa_{\nu}: M \to \mathbf{P}(\Gamma(M, \mathcal{L}^{\nu})), \ z \mapsto [s_{\nu}^{0}(z), .., s_{\nu}^{d_{\nu}}(z)]$$

$$\Omega_{\nu} = \frac{i}{2} \partial \overline{\partial} \log \sum_{i=0}^{d_{\nu}} |Z^i|^2 \text{ Fubini-Study metric on } \mathbf{P}^{d_{\nu}}$$

$$\kappa_{\nu}^{*}(\Omega_{\nu}) = \nu\omega + \frac{i}{2}\partial\overline{\partial}\log T_{\nu}$$

$$T_{
u}(z)$$
 = $\sum_{i=0}^{d_{\nu}} h_z(s^i_{\nu}(z), s^i_{\nu}(z))$ Kempf distortion function

TYZ (Tian-Yau-Zelditch) expansion

$$\Big|\frac{T_{\nu}(z)}{\nu^n} - \sum_{j=0}^{N-1} \frac{a_j(z)}{\nu^j}\Big| \le \frac{c_N}{\nu^N} \text{ as } \nu \to \infty$$

For non-compact Kähler manifolds (such as Z_{ℓ}) we need infinite-dimensional Hilbert spaces of holomorphic functions.

Every (euclidean) Jordan algebra X has a symmetric cone

 $\Omega = \{ x^2 : x \in X \text{ invertible} \}.$

In fact, another theorem of Koecher-Vinberg characterizes euclidean Jordan algebras in terms of symmetric (i.e. self-adjoint homogeneous) cones. For matrices $X = \mathcal{H}_r(\mathbf{K})$, Ω consists of all positive definite matrices. For the real spin factor, we obtain the forward light cone. For a tripotent $u \in S_\ell$ the Peirce 2-space $Z_u^{(2)}$ is the complexification of a euclidean Jordan algebra with symmetric cone

$$\Omega_u \coloneqq \{x = \{u; x; u\} \in Z_u^{(2)} \colon x = \{y; u; y\}, y \text{ invertible}\}.$$

Proposition: The Kepler manifold has a polar decomposition

$$\mathring{Z}_{\ell} = \bigcup_{u \in S_{\ell}} \Omega_u.$$

For $\ell = 1$ this reduces to $\mathring{Z}_1 = \mathbf{R}_+ \cdot S_1$, since $Z_u^{(2)} = \mathbf{C} \cdot u$ and $\Omega_u = \mathbf{R}_+ \cdot u$ is an open half-line.

Choose a base point $c = e_1 + \ldots + e_\ell \in S_\ell$. Every positive density function $\rho(t)$ on symmetric cone Ω_c induces a *K*-invariant radial measure

$$\int_{\tilde{Z}_{\ell}} d\tilde{\rho}(z) f(z) = \int_{\Omega_{c}} dt \rho(t) \int_{K} dk f(k\sqrt{t}).$$

For $\ell = 1$ this simplifies to

$$\int_{\mathring{Z}_{\ell}} d\tilde{\rho}(z) \ f(z) = \int_{0}^{\infty} dt \ \rho(t) \int_{S_{1}} du \ f(u\sqrt{t}).$$

Define a Hilbert space of holomorphic functions

$$\mathcal{H}_{\rho} \coloneqq \{f : \mathring{Z}_{\ell} \to \mathbf{C} \text{ holomorphic} : \int_{\mathring{Z}_{\ell}} d\tilde{\rho}(z) |f(z)|^2 < +\infty\}.$$

In the trivial case, where $\ell = r$ is maximal and Z is a Jordan algebra, negative powers of the (Jordan) determinant have no holomorphic extension beyond \mathring{Z} . Apart from this we have **Extension Theorem: Every holomorphic function on** \mathring{Z}_{ℓ} has a **unique extension to the closure** Z_{ℓ} Proof: Singular set

$$Z_\ell \smallsetminus \mathring{Z}_\ell = \bigcup_{j < \ell} Z_j$$

has codimension ≥ 2 . By the Normality Theorem (and using Lojasiewicz), the **second Riemann extension theorem** holds for holomorphic functions on \mathring{Z}_{ℓ} .

Under the natural action of K the holomorphic polynomials $\mathcal{P}(Z)$ on a hermitian Jordan triple Z have a Hua-Schmid-Kostant decomposition

$$\mathcal{P}(Z) = \sum_{\boldsymbol{m} \in \mathbf{N}_+^r} \mathcal{P}_{\boldsymbol{m}}(Z)$$

where $m = m_1 \ge m_2 \ge \ldots \ge m_r \ge 0$ ranges over all **integer partitions** (Young diagrams) and each $\mathcal{P}_m(Z)$ is an irreducible K-module, whose highest weight vector N_m can be uniformly described in terms of Jordan theoretic minors. The **dimension** $d_m := \dim \mathcal{P}_m(Z)$ is explicitly known. Let

$$(\phi|\psi) \coloneqq \frac{1}{\pi^d} \int_Z dz \ e^{-(z|z)} \ \overline{\phi(z)} \ \psi(z)$$

denote the Fischer-Fock inner product. Then there is an expansion

$$e^{(z|w)} = \sum_{m} E^{m}(z,w)$$

into finite-dimensional kernel functions $E^{\boldsymbol{m}}(z,w)$ of $\mathcal{P}_{\boldsymbol{m}}(Z)$. For r = 1, $E^{\boldsymbol{m}}(z,w) = \frac{(z|w)^m}{m!}$.

Using the characteristic multiplicity a of Z, we define the **Pochhammer** symbol

$$(\nu)_{\boldsymbol{m}} \coloneqq \prod_{j=1}^r (\nu - \frac{a}{2}(j-1))_{m_j}.$$

Since the underlying measure $\tilde{\rho}$ is K-invariant, the extension theorem implies that

$$\mathcal{H}_{\rho} = \sum \mathcal{P}_{m_1...,m_{\ell},0...,0}(Z)$$

is a Hilbert sum involving only (non-negative) partitions of length $\leq \ell$, since the other components vanish on Z_{ℓ} .

Theorem: The Hilbert space \mathcal{H}_{ρ} has the **reproducing kernel**

$$\mathcal{K}^{\rho}(z,w) \coloneqq \sum_{\boldsymbol{m} \in \mathbf{N}^{\ell}_{+}} \frac{d_{\boldsymbol{m}}}{\int_{\Omega_{c}}} d\rho(t) E^{\boldsymbol{m}}(t,e)} E^{\boldsymbol{m}}(z,w)$$

$$= \sum_{\boldsymbol{m}\in\mathbf{N}_{+}^{\ell}} \frac{(d_{\ell}/\ell)_{\boldsymbol{m}}}{\int_{\Omega_{c}} d\rho(t) N_{\boldsymbol{m}}(t)} \frac{d_{\boldsymbol{m}}}{d_{\boldsymbol{m}}^{c}} E^{\boldsymbol{m}}(z,w).$$

Every euclidean Jordan algebra X has a **Jordan algebra determinant** N(x) which is a *r*-homogeneous polynomial defined via Cramer's rule

$$x^{-1} = \frac{\nabla_x N}{N(x)}.$$

For real or complex matrices, this is the usual determinant. For even anti-symmetric matrices, it is the Pfaffian. In the rank 2 case, $N(x_0, x) = x_0^2 - (x|x)$ is the Lorentz metric. Let $\partial_N = N(\frac{\partial}{\partial x})$ be the associated constant coefficient differential operator on X. Then $N(x)\partial_N$ is a kind of Euler operator, of order r. Applying these concepts to the Jordan algebra $Z_c^{(2)}$ of rank ℓ , we define a **universal differential operator**

$$\mathcal{D}_{\ell} \coloneqq N^{\frac{a}{2}(\ell-r)} \partial_{N}^{b} N^{\frac{a}{2}(r-\ell-1)+b+1} \left(\partial_{N} N^{\frac{a}{2}} \partial_{N}^{a-1} \right)^{r-\ell} N^{\frac{a}{2}(r-\ell+1)-1}$$

of order $\ell((r-\ell)a+b)$ on the symmetric cone Ω_c . For $\ell = 1$, N(t) = tand \mathcal{D}_1 becomes a polynomial differential operator of order (r-1)a+bon the half-line. Our main result is that the reproducing kernel $\mathcal{K}_{\rho}(z,w)$ can be expressed in closed form, by

$$\mathcal{K}_{\rho}(\sqrt{t},\sqrt{t}) = (\mathcal{D}_{\ell}F_{\rho})(t)$$

for all $t \in \Omega_c$, where F_ρ is a special function of **hypergeometric type**. Since hypergeometric functions have good asymptotic expansions (quite difficult for $\ell > 1$), this will lead to the desired TYZ-expansions. Generalizing the 1-dimensional case, we define the **hypergeometric series** of type (p,q)

$${}_{p}F_{q}\binom{\alpha_{1},\ldots,\alpha_{p}}{\beta_{1},\ldots,\beta_{q}}(z,w) \coloneqq \sum_{\boldsymbol{m}} \frac{(\alpha_{1})_{\boldsymbol{m}}\ldots(\alpha_{p})_{\boldsymbol{m}}}{(\beta_{1})_{\boldsymbol{m}}\ldots(\beta_{q})_{\boldsymbol{m}}}E^{\boldsymbol{m}}(z,w),$$

using the Fischer-Fock reproducing kernels $E^{\boldsymbol{m}}(z,w)$. For $z, w \in \mathbb{Z}_{\ell}$, only partitions of length $\leq \ell$ occur.

Consider first a Fock space situation. For $\alpha > 0$ consider the **pluri-subharmonic function** $\phi = (z|z)^{\alpha}$ on Z_{ℓ} . Let $\omega := \partial \overline{\partial} \phi$ denote the associated Kähler form. Then we have the polar decomposition

$$\int_{\tilde{Z}_{\ell}} \frac{|\omega^{n}|}{n!} (z) \ e^{-\nu\phi(z)} f(z) = \int_{\Omega_{c}} dt \ N_{c}(t)^{a(r-\ell)+b} \ (t|c)^{n(\alpha-1)} \ e^{-\nu(t|c)^{\alpha}},$$

where $N_c(t)$ is the rank ℓ determinant function on Ω_c . Let $\alpha = 1$. Theorem: The Hilbert space $\mathcal{H}_{\nu} = H^2(e^{-\nu\phi}|\omega^n|/n!)$ has the reproducing kernel

$$\mathcal{K}_{\nu}(t,e) = \mathcal{D}_{\ell-1} F_1 \binom{d_{\ell}/\ell}{n/\ell} (\nu t)$$

for the confluent hypergeometric function

$$_{1}F_{1}\binom{\sigma}{\tau}(z,w) = \sum_{\boldsymbol{m}} \frac{(\sigma)_{\boldsymbol{m}}}{(\tau)_{\boldsymbol{m}}} E^{\boldsymbol{m}}(z,w).$$

In order to look at a Bergman type Hilbert space, let

$$(u|v) = \frac{1}{p} tr_Z D(u,v)$$

be the normalized K-invariant inner product, where p is the so-called genus of D. Define **Bergman operators**

$$B(u,v)z = z - 2\{u;v;z\} + \{u;\{v;z;v\};u\}$$

for $u, v, z \in Z$. Then the G-invariant **Bergman metric** is given by

$$(u|v)_z = (B(z,z)^{-1}u|v).$$

For the matrix case Z = $\mathbf{C}^{r\times s}$, we have

$$B(u,v)z = z - uv^*z - zv^*u + u(vz^*v)^*u = (1 - uv^*)z(1 - v^*u).$$

and p = r + s. Therefore

$$(u|v) = \frac{1}{r+s} tr_Z \ D(u,v) = trace \ uv^*$$

and the Bergman metric at $z \in D$ is

$$(u, v)_z = trace(1 - zz^*)^{-1} u(1 - z^*z)^{-1} v^*.$$

In terms of the Bergman operator, the **Bergman kernel function** $K: D \times \overline{D} \to \mathbf{C}$ of D can be expressed as

$$K(z,w) = \det B(z,w)^{-1}$$

It is a fundamental fact that there exists a sesqui-polynomial called the **Jordan triple determinant** $\Delta: Z \times \overline{Z} \to \mathbf{C}$ such that the Bergman kernel function has the form

$$K(z,w) = \det B(z,w)^{-1} = \Delta(z,w)^{-p}$$

for all $z, w \in D$. In the matrix case $Z = \mathbf{C}^{r \times s}$ we have

$$\det B(z,w) = \det(1_r - zw^*)^{r+s}.$$

It follows that

$$\Delta(z,w) = \det(1-zw^*).$$

The Kepler ball is the intersection

$$\{z\in \mathring{Z}_\ell:\ \|z\|_\infty<1\}=\mathring{Z}_\ell\cap D$$

of Z_{ℓ} with the bounded symmetric domain $D := \{z \in Z : ||z||_{\infty} < 1\}$. Consider the pluri-subharmonic function

$$\phi(z) = \log \Delta(z, z)^{-p} = \log \det B(z, z)^{-1}$$

on the Kepler ball, given by the Bergman kernel. As before, the associated radial measure $e^{-\nu\phi}|\omega^n|/n!$ has a nice polar decomposition, this time involving the unit interval $\Omega_c \cap (c - \Omega_c)$. **Theorem: For the Kepler ball,** $\mathcal{H}_{\nu} = H^2(e^{-\nu\phi}|\omega^n|/n!)$ has the reproducing kernel

$$\mathcal{K}_{\nu}(t,e) = \mathcal{D}_{\ell} \ _{2}F_{1} \binom{d_{\ell}/\ell;\nu}{n_{\ell}/\ell}(t)$$

involving a Gauss hypergeometric function $_2F_1$ on Ω_c .

Pattern

Fock space on $Z = \mathbf{C}^d$, $\mathcal{K}_{\nu} = e^{(z|w)} = {}_0F_0(z,w)$ Bergman space on D, $\mathcal{K}_{\nu} = \Delta(z,w)^{-\nu} = {}_1F_0(z,w)$ Faraut-Koranyi formula Kepler manifold \mathring{Z}_{ℓ} , $\mathcal{K}_{\nu} = \mathcal{D}_{\ell-1}F_1$ Kepler ball $D \cap \mathring{Z}_{\ell}$, $\mathcal{K}_{\nu} = \mathcal{D}_{\ell-2}F_1$

Asymptotic expansion: $\alpha = 1$, ℓ arbitrary

Theorem: Consider the Fock-type situation, $\alpha = 1$, ℓ arbitrary. There exist polynomials $p_j(x)$, with $p_0 = const$, such that

$$\frac{1}{\nu^n} \mathcal{K}_{\nu}(\sqrt{x}, \sqrt{x}) \approx \frac{e^{\nu tr(x)}}{N_c(x)^{n/\ell}} \sum_{j=0}^n \frac{p_j(x)}{\nu^j},$$

as $|x| \to +\infty$, uniformly for x in compact subsets of Ω_c . Proof: For $Re(\mu) > \frac{d}{r} - 1$ and $Re(\gamma) > \frac{d}{r} - 1$, there is an asymptotic expansion

$${}_{1}F_{1}\binom{\mu}{\gamma}(z) \approx \frac{\Gamma_{r}(\gamma)}{\Gamma_{r}(\mu)} \frac{e^{tr(z)}}{N(z)^{\gamma-\mu}} {}_{2}F_{0}\binom{\frac{d}{r}-\mu;\gamma-\mu}{2}(z^{-1})$$

as $|z| \rightarrow +\infty$ while $\frac{z}{|z|}$ stays in a compact subset of Ω_c . This expansion can be differentiated termwise any number of times. **Remark: Similar expansion for Kepler ball, based on asymptotics of** $_2F_1$. **Asymptotic expansion:** $\ell = 1$, α arbitrary **Theorem:** Radial measure $d\rho(t) = \alpha e^{-\nu t^{\alpha}} t^{\alpha(p-1)-1} dt$ on half-line. Then, as $\nu \to +\infty$

$$\frac{e^{-\nu(z|z)^{\alpha}}}{\nu^{p-1}}\mathcal{K}_{\nu}(z,z) = \sum_{j=0}^{p-2} \frac{b_j}{\nu^j(z|z)^{j\alpha}} + O(e^{-\eta\nu(z|z)^{\alpha}}), \ \eta > 0$$

Proof: The measure $d\rho$ has moments

$$\alpha \int_{0}^{\infty} dt \ e^{-\nu t^{\alpha}} \ t^{\alpha(p-1)+m-1} = \frac{\Gamma(p-1+\frac{m}{\alpha})}{\nu^{p-1+\frac{m}{\alpha}}}.$$

Therefore \mathcal{K}_{ν} = $\mathcal{D}_1 F_{\rho}$ with

$$F_{\rho}(t) = \nu^{p-1} \sum_{m=0}^{\infty} \frac{(\nu^{1/\alpha} t)^m}{\Gamma(p-1+\frac{m}{\alpha})} = \nu^{p-1} E_{1/\alpha,p-1}(\nu^{1/\alpha} t),$$

for the Mittag-Leffler function

$$E_{A,B}(t) = \sum_{m=0}^{\infty} \frac{t^m}{\Gamma(Am+B)}$$

As $t \to +\infty$, it is known that

$$E_{A,B}(t) = \frac{1}{A} t^{(1-B)/A} e^{t^{1/A}} + O(e^{(1-\eta)t^{1/A}})$$

with some $\eta > 0$. This remains valid for derivatives of any order. For any polynomial P in one variable

$$\partial_t^k t^{\gamma \alpha + c} P(t^\alpha) e^{t^\alpha} = t^{\gamma \alpha + c - k} Q(t^\alpha) e^{t^\alpha}$$

with another polynomial Q, where deg Q = deg P + k. It follows that

$$(tD_j + D_jt)t^{\gamma\alpha}P(t^{\alpha})e^{t^{\alpha}} = t^{\gamma\alpha}Q(t^{\alpha})e^{t^{\alpha}},$$

with deg Q = deg P + a. Hence for $\mathcal{D} = D \prod_{j=2}^{r} (tD_j + D_jt)$

$$\dot{D}\prod_{j=2}^{\prime}(tD_j+D_jt)t^{\gamma\alpha}e^{t^{\alpha}}=t^{\gamma\alpha}Q(t^{\alpha})e^{t^{\alpha}},$$

where Q has degree (r-1)a + b = p - 2 and leading coefficient $2^{r-1}\alpha^{p-2}$.

Invariant volume forms and measures

 \mathring{Z}_{ℓ} is homogeneous under $K^{\mathbf{C}}$ or a suitable transitive subgroup. When does an invariant holomorphic volume form or invariant measure exist? Only for domains of tube type b = 0.

- ▶ **Theorem:** Let Z be of tube type and $0 < \ell < r$. Then there exists an invariant holomorphic *n*-form Ω on \mathring{Z}_{ℓ} if and only if $p a\ell = 2 + a(r \ell 1)$ is even.
- Among all tube type domains, p − aℓ is odd only for the symmetric matrices Z = C^{r×r}_{sym} with r − ℓ even.
- **Theorem:** An invariant measure μ on \mathring{Z}_{ℓ} exists in all cases (for b = 0), and has polar decomposition

$$\int_{\hat{Z}_{\ell}} d\mu(z) f(z) = const \int_{\Omega_c} \frac{dt}{N_c(t)^{d_{\ell}/\ell}} N_c(t)^{ar/2} \int_{K} dk f(k\sqrt{t}).$$

Special case, $r = 2, \ell = 1$

Englis et al, Gramchev-Loi: Lie ball
$$r = 2$$

$$T^*(\mathbf{S}^n) \smallsetminus \{0\} = \{(x,\xi) : ||x|| = 1, (x|\xi) = 0, \xi \neq 0\}$$

$$\mathbf{C}^{n+1} \text{ hermitian Jordan triple, rank 2}$$

$$\{uv^*w\} = (u|v)w + (w|v)u + (u|\overline{w})\overline{v} \text{ Jordan triple product}$$

$$N(z) = (z|\overline{z}) \text{ Jordan algebra determinant}$$

$$T^*(\mathbf{S}^n) \smallsetminus \{0\} = \{z \in \mathbf{C}^{n+1} : N(z) = 0\} \text{ rank 1 elements}$$

$$\frac{T_{\nu}(z)}{\nu^n} = 1 + \frac{(n-1)(n-2)}{2|\nu z|} + \sum_{j=2}^{n-2} \frac{2a_j}{|\nu z|^j} + R_{\nu}(|z|)$$

exponentially small error term