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Classical Kepler varieties

hermitian vector space Z =Cn+1, rank = 2

Z1 ∶= {z = (z0, . . . , zn) ∈ Z ∶ z2
0 + . . . + z2

n = 0} complex light cone

Symplectic interpretation (cotangent bundle)

Z1 ≈ T ∗(Sn) ∖ {0} = {(x, ξ) ∶ ∥x∥ = 1, ξ ≠ 0, (x∣ξ) = 0}, z = x + iξ
2

contact manifold (cosphere bundle)

S1 ≈ S∗(Sn) = {(x, ξ) ∶ ∥x∥ = 1, ∥ξ∥ = 1, (x∣ξ) = 0}

polar decomposition
Z1 =R+ ⋅ S1
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Determinantal varieties

Z =Cr×s, rank = r ≤ s, 1 ≤ ` ≤ r

Z` ∶= {z ∈ Z ∶ rank(z) ≤ `} vanishing of all (` + 1) × (` + 1) −minors

Z̊` = {z ∈ Z ∶ rank(z) = `} = Z` ∖Z`−1 regular part

Z1 ∶= {z ∈ Z ∶ rank(z) ≤ 1} vanishing of all 2 × 2 −minors

Z̊1 ∶= {z ∈ Z ∶ rank(z) = 1} = Z1 ∖ {0}
S1 = {ξ ⊗ η∗ ∶ ξ ∈Cr, η ∈Cs ∥ξ∥ = 1 = ∥η∥}

Z̊1 =R+ ⋅ S1
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Let Z complex vector space and D ⊂ Z be a bounded domain. The group

G = Aut(D) = {g ∶D →D biholomorphic}

is a real Lie group by a deep theorem of H. Cartan. D is called
symmetric iff G acts transitively on D, and around each point o ∈D
there exists an involutive symmetry so ∈ G fixing o. By Harish-Chandra,
D can be realized as a convex circular domain, i.e. as the unit ball

D = {z ∈ Z ∶ ∥z∥ < 1}

for an (essentially unique) norm called the spectral norm. Then the
isotropy subgroup

K = {g ∈ G ∶ g(0) = 0}
is a compact group consisting of linear transformations. For domains
D = G/K of rank r > 1 the boundary ∂D will not be smooth and D is
only (weakly) pseudoconvex but not strongly pseudoconvex.
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Let Z =Cr×s, endowed with the operator norm ∥z∥ = sup spec(zz∗)1/2.
Then the matrix unit ball

D = {z ∈Cr×s ∶ ∥z∥ < 1} = {z ∈Cr×s ∶ I − zz∗ > 0}

is a symmetric domain, under the pseudo-unitary group

G = U(r, s) = {(a b
c d

) ∈ GL(r + s) ∶ (a b
c d

)(1 0
0 −1

)(a
∗ c∗

b∗ d∗
) = (1 0

0 −1
)} ,

which acts on D via Moebius transformations

(a b
c d

)(z) = (az + b)(cz + d)−1.

Its maximal compact subgroup is

K = {(a 0
0 d

) ∶ a ∈ U(r), d ∈ U(s)} .

with the linear action z ↦ azd∗.
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A basic theorem of M. Koecher characterizes hermitian symmetric
domains in Jordan algebraic terms. Let Z be a complex vector space,
endowed with a ternary composition Z ×Z ×Z → Z, denoted by

(x, y, z)↦ {x; y; z},

which is bilinear symmetric in (x, z) and anti-linear in the inner variable.
Putting D(x, y)z ∶= {x; y; z}, Z is called a hermitian Jordan triple if
the Jordan triple identity (a kind of Jacobi identity)

[D(x, y),D(u, v)] =D({x; y;u}, v) −D(u,{v;x; y})

holds, and the hermitian form

(x, y)↦ traceD(x, y)

is a positive definite. Every symmetric domain can be realized as the
unit ball of a unique hermitian Jordan triple (and conversely).
Moreover, K consists of all linear transformations preserving the Jordan
triple product.
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Classification of hermitian Jordan triples

▸ matrix triple Z =Cr×s, {x; y; z} = xy∗z + zy∗x,

K = U(r) ×U(s) ∶ z ↦ uzv, u ∈ U(r), v ∈ U(s)

rank = r ≤ s, a = 2 complex case, b = s − r
▸ r = 1, Z =C1×d, {x; y; z} = (x∣y)z + (z∣y)x, K = U(d)
▸ symmetric matrices a = 1 (real case)

▸ anti-symmetric matrices a = 4 (quaternion case)

▸ spin factor Z =Cn+1, {xy∗z} = (x ⋅ y) z + (z ⋅ y) x + (x ⋅ z)y
r = 2, a = n − 1, b = 0

K = T ⋅ SO(n + 1)

▸ exceptional Jordan triples of dimension 16 (r = 2) and 27 (r = 3),
a = 8 (octonion case), K = T ⋅E6.
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A real vector space X is a Jordan algebra iff X has a non-associative
product x, y ↦ x ○ y = y ○ x, satisfying the Jordan algebra identity

x2 ○ (x ○ y) = x ○ (x2 ○ y).

The anti-commutator product

x ○ y = (xy + yx)/2

of self-adjoint matrices satisfies the Jordan identity. By a fundamental
result of Jordan/von Neumann/Wigner (1934), every (euclidean) Jordan
algebra has a realization as self-adjoint matrices X ≈Hr(K) over
K =R,C,H (quaternions), or K =O (octonions) if r ≤ 3. For r = 2 we
obtain formal 2 × 2-matrices

H2(K) = {(α b
b∗ δ

) ∶ α, δ ∈R, b ∈K ∶=R2+a}.

Thus X is characterized by the rank r and the multiplicity a = dimR K.
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For a euclidean Jordan algebra X, the complexification Z ∶=XC becomes
a (complex) Jordan triple via

{u; v;w} = (u ○ v∗) ○w + (w ○ v∗) ○ u − v∗ ○ (u ○w).

For the spin factor we obtain

{u; v;w} = (u∣v)w + (w∣v)u − v(u∣w).

The Jordan triples arising this way are called of tube type. For example,
the matrix triple Cr×s is of tube type if and only if r = s.
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Let Z be an irreducible hermitian Jordan triple of rank r, and ` ≤ r.
Define the Kepler variety

Z` = {z ∈ Z ∶ rank(z) ≤ `}.

Its regular part (Kepler manifold)

Z̊` = {z ∈ Z` ∶ rank(z) = `}

is a KC-homogeneous manifold, not compact or symmetric. (Matsuki
dual of open G-orbits in flag manifolds).
For the spin factors (r=2) we recover classical Kepler variety. For matrix
spaces, we obtain the determinantal varieties.
Theorem: The Kepler variety Z` is a normal variety having only
rational singularities.
Remark: Result classical for spin factor (r = 2) and proved by
Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on
Kempf’s collapsing vector bundle theorem.
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An element u ∈ Z is called a tripotent if {u;u;u} = 2u. For Z =Cr×s

the tripotents satisfy uu∗u = u and are called partial isometries. The set
S` of all tripotents of fixed rank ` ≤ r is a compact K-homogeneous
manifold. In particular, S1 consists of all minimal (rank 1) tripotents. For
the spin factor, S1 is the cosphere bundle. For Z =C1×d

S1 = {u ∈ Z ∶ (u∣u) = 1} = S2d−1

is the full boundary.
Every tripotent u induces a Peirce decomposition

Z = Z(2)u ⊕Z(1)u ⊕Z(0)u , where

Z(j)u = {z ∈ Z ∶ {u;u; z} = 2jz}

is an eigenspace of D(u,u). Moreover, the Peirce 2-space Z
(2)
u becomes

a Jordan algebra with unit element u and multiplication {x;u; y}.
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The Jordan Grassmann manifold

M` = S`/ ∼= set of all Peirce 2-spaces U = Zu of rank `

is a compact hermitian symmetric space, both a K-orbit and a KC-orbit.
(Center of open G-orbit). Define the tautological vector bundle

T` ∶= ⋃
U∈M`

U →M`.

Fix a base point c ∈ S`, put V ∶= Z(2)c and let L ∶= {k ∈KC ∶ kV = V }.
Then

T` =KC ×L V
becomes a homogeneous vector bundle, and

T` → Z` ∶ U ∋ z ↦ z ∈ Z`
is a collapsing map. By Kempf’s Theorem, the range of a collapsing
map of homogeneous vector bundles is a normal variety. Let Ů denote

the invertible elements of the Jordan algebra U = Z(2)u . Then

⋃
U∈M`

Ů → Z`

is a birational isomorphism. This proves the normality theorem.
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Let (M,ω) be a compact Kähler n-manifold, with a quantizing line
bundle L→M. Consider holomorphic sections Γ(M,Lν) of a (high)
tensor power Lν . Kodaira (coherent state) embedding

κν ∶M → P(Γ(M,Lν)), z ↦ [s0
ν(z), .., sdνν (z)]

Ων =
i

2
∂∂ log

dν

∑
i=0

∣Zi∣2 Fubini-Study metric on Pdν

κ∗ν(Ων) = νω +
i

2
∂∂ logTν

Tν(z) =
dν

∑
i=0

hz(siν(z), siν(z)) Kempf distortion function

TYZ (Tian-Yau-Zelditch) expansion

∣Tν(z)
νn

−
N−1

∑
j=0

aj(z)
νj

∣ ≤ cN
νN

as ν →∞

For non-compact Kähler manifolds (such as Z`) we need
infinite-dimensional Hilbert spaces of holomorphic functions.
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Every (euclidean) Jordan algebra X has a symmetric cone

Ω = {x2 ∶ x ∈X invertible}.

In fact, another theorem of Koecher-Vinberg characterizes euclidean
Jordan algebras in terms of symmetric (i.e. self-adjoint homogeneous)
cones. For matrices X =Hr(K), Ω consists of all positive definite
matrices. For the real spin factor, we obtain the forward light cone.

For a tripotent u ∈ S` the Peirce 2-space Z
(2)
u is the complexification of a

euclidean Jordan algebra with symmetric cone

Ωu ∶= {x = {u;x;u} ∈ Z(2)u ∶ x = {y;u; y}, y invertible}.

Proposition: The Kepler manifold has a polar decomposition

Z̊` = ⋃
u∈S`

Ωu.

For ` = 1 this reduces to Z̊1 =R+ ⋅ S1, since Z
(2)
u =C ⋅ u and Ωu =R+ ⋅ u

is an open half-line.
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Choose a base point c = e1 + . . . + e` ∈ S`. Every positive density function
ρ(t) on symmetric cone Ωc induces a K-invariant radial measure

∫
Z̊`

dρ̃(z) f(z) = ∫
Ωc

dt ρ(t)∫
K

dk f(k
√
t).

For ` = 1 this simplifies to

∫
Z̊`

dρ̃(z) f(z) =
∞

∫
0

dt ρ(t)∫
S1

du f(u
√
t).

Define a Hilbert space of holomorphic functions

Hρ ∶= {f ∶ Z̊` →C holomorphic ∶ ∫
Z̊`

dρ̃(z) ∣f(z)∣2 < +∞}.
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In the trivial case, where ` = r is maximal and Z is a Jordan algebra,
negative powers of the (Jordan) determinant have no holomorphic
extension beyond Z̊. Apart from this we have
Extension Theorem: Every holomorphic function on Z̊` has a
unique extension to the closure Z`
Proof: Singular set

Z` ∖ Z̊` = ⋃
j<`

Zj

has codimension ≥ 2. By the Normality Theorem (and using Lojasiewicz),
the second Riemann extension theorem holds for holomorphic
functions on Z̊`.
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Under the natural action of K the holomorphic polynomials P(Z) on a
hermitian Jordan triple Z have a Hua-Schmid-Kostant decomposition

P(Z) = ∑
m∈Nr+

Pm(Z)

where m =m1 ≥m2 ≥ . . . ≥mr ≥ 0 ranges over all integer partitions
(Young diagrams) and each Pm(Z) is an irreducible K-module, whose
highest weight vector Nm can be uniformly described in terms of Jordan
theoretic minors. The dimension dm ∶= dimPm(Z) is explicitly known.
Let

(φ∣ψ) ∶= 1

πd
∫
Z

dz e−(z∣z) φ(z) ψ(z)

denote the Fischer-Fock inner product. Then there is an expansion

e(z∣w) =∑
m

Em(z,w)

into finite-dimensional kernel functions Em(z,w) of Pm(Z). For

r = 1, Em(z,w) = (z∣w)
m

m!
.
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Using the characteristic multiplicity a of Z, we define the Pochhammer
symbol

(ν)m ∶=
r

∏
j=1

(ν − a
2
(j − 1))mj .

Since the underlying measure ρ̃ is K-invariant, the extension theorem
implies that

Hρ =∑Pm1...,m`,0...,0(Z)
is a Hilbert sum involving only (non-negative) partitions of length ≤ `,
since the other components vanish on Z`.
Theorem: The Hilbert space Hρ has the reproducing kernel

Kρ(z,w) ∶= ∑
m∈N`+

dm

∫
Ωc

dρ(t)Em(t, e) E
m(z,w)

= ∑
m∈N`+

(d`/`)m
∫

Ωc

dρ(t)Nm(t)
dm
dcm

Em(z,w).
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Every euclidean Jordan algebra X has a Jordan algebra determinant
N(x) which is a r-homogeneous polynomial defined via Cramer’s rule

x−1 = ∇xN
N(x) .

For real or complex matrices, this is the usual determinant. For even
anti-symmetric matrices, it is the Pfaffian. In the rank 2 case,
N(x0, x) = x2

0 − (x∣x) is the Lorentz metric.
Let ∂N = N( ∂

∂x
) be the associated constant coefficient differential

operator on X. Then N(x)∂N is a kind of Euler operator, of order r.

Applying these concepts to the Jordan algebra Z
(2)
c of rank `, we define a

universal differential operator

D` ∶= N
a
2 (`−r)∂bN N

a
2 (r−`−1)+b+1 (∂N N

a
2 ∂a−1

N )r−` N a
2 (r−`+1)−1

of order `((r − `)a + b) on the symmetric cone Ωc. For ` = 1, N(t) = t
and D1 becomes a polynomial differential operator of order (r − 1)a + b
on the half-line.
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Our main result is that the reproducing kernel Kρ(z,w) can be expressed
in closed form, by

Kρ(
√
t,
√
t) = (D`Fρ)(t)

for all t ∈ Ωc, where Fρ is a special function of hypergeometric type.
Since hypergeometric functions have good asymptotic expansions (quite
difficult for ` > 1), this will lead to the desired TYZ-expansions.
Generalizing the 1-dimensional case, we define the hypergeometric
series of type (p, q)

pFq(
α1, . . . , αp
β1, . . . , βq

)(z,w) ∶=∑
m

(α1)m . . . (αp)m
(β1)m . . . (βq)m

Em(z,w),

using the Fischer-Fock reproducing kernels Em(z,w). For z,w ∈ Z`, only
partitions of length ≤ ` occur.
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Consider first a Fock space situation. For α > 0 consider the
pluri-subharmonic function φ = (z∣z)α on Z`. Let ω ∶= ∂∂φ denote the
associated Kähler form. Then we have the polar decomposition

∫
Z̊`

∣ωn∣
n!

(z) e−νφ(z)f(z) = ∫
Ωc

dt Nc(t)a(r−`)+b (t∣c)n(α−1) e−ν(t∣c)
α

,

where Nc(t) is the rank ` determinant function on Ωc. Let α = 1.
Theorem: The Hilbert space Hν =H2(e−νφ∣ωn∣/n!) has the
reproducing kernel

Kν(t, e) = D` 1F1(
d`/`
n/`)(νt)

for the confluent hypergeometric function

1F1(
σ

τ
)(z,w) =∑

m

(σ)m
(τ)m

Em(z,w).
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In order to look at a Bergman type Hilbert space, let

(u∣v) = 1

p
trZ D(u, v)

be the normalized K-invariant inner product, where p is the so-called
genus of D. Define Bergman operators

B(u, v)z = z − 2{u; v; z} + {u;{v; z; v};u}

for u, v, z ∈ Z. Then the G-invariant Bergman metric is given by

(u∣v)z = (B(z, z)−1u∣v).

For the matrix case Z =Cr×s, we have

B(u, v)z = z − uv∗z − zv∗u + u(vz∗v)∗u = (1 − uv∗)z(1 − v∗u).

and p = r + s. Therefore

(u∣v) = 1

r + strZ D(u, v) = trace uv∗

and the Bergman metric at z ∈D is

(u, v)z = trace(1 − zz∗)−1 u(1 − z∗z)−1 v∗.
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In terms of the Bergman operator, the Bergman kernel function
K ∶D ×D →C of D can be expressed as

K(z,w) = det B(z,w)−1.

It is a fundamental fact that there exists a sesqui-polynomial called the
Jordan triple determinant ∆ ∶ Z ×Z →C such that the Bergman
kernel function has the form

K(z,w) = det B(z,w)−1 = ∆(z,w)−p

for all z,w ∈D. In the matrix case Z =Cr×s we have

det B(z,w) = det(1r − zw∗)r+s.

It follows that
∆(z,w) = det(1 − zw∗).
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The Kepler ball is the intersection

{z ∈ Z̊` ∶ ∥z∥∞ < 1} = Z̊` ∩D

of Z̊` with the bounded symmetric domain D ∶= {z ∈ Z ∶ ∥z∥∞ < 1}.
Consider the pluri-subharmonic function

φ(z) = log ∆(z, z)−p = log detB(z, z)−1

on the Kepler ball, given by the Bergman kernel. As before, the
associated radial measure e−νφ∣ωn∣/n! has a nice polar decomposition,
this time involving the unit interval Ωc ∩ (c −Ωc).
Theorem: For the Kepler ball, Hν =H2(e−νφ∣ωn∣/n!) has the
reproducing kernel

Kν(t, e) = D` 2F1(
d`/`;ν
n`/`

)(t)

involving a Gauss hypergeometric function 2F1 on Ωc.
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Pattern

Fock space on Z =Cd, Kν = e(z∣w) = 0F0(z,w)
Bergman space on D, Kν = ∆(z,w)−ν = 1F0(z,w) Faraut-Koranyi formula

Kepler manifold Z̊`, Kν = D` 1F1

Kepler ball D ∩ Z̊`, Kν = D` 2F1
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Asymptotic expansion: α = 1, ` arbitrary
Theorem: Consider the Fock-type situation, α = 1, ` arbitrary. There
exist polynomials pj(x), with p0 = const, such that

1

νn
Kν(

√
x,

√
x) ≈ eν tr(x)

Nc(x)n/`
n

∑
j=0

pj(x)
νj

,

as ∣x∣→ +∞, uniformly for x in compact subsets of Ωc.
Proof: For Re(µ) > d

r
− 1 and Re(γ) > d

r
− 1, there is an asymptotic

expansion

1F1(
µ

γ
)(z) ≈ Γr(γ)

Γr(µ)
etr(z)

N(z)γ−µ 2F0(
d
r
− µ;γ − µ)(z−1)

as ∣z∣→ +∞ while z
∣z∣

stays in a compact subset of Ωc.

This expansion can be differentiated termwise any number of times.
Remark: Similar expansion for Kepler ball, based on asymptotics of

2F1.
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Asymptotic expansion: ` = 1, α arbitrary
Theorem: Radial measure dρ(t) = αe−νtαtα(p−1)−1 dt on half-line. Then,
as ν → +∞

e−ν(z∣z)
α

νp−1
Kν(z, z) =

p−2

∑
j=0

bj

νj(z∣z)jα +O(e−ην(z∣z)
α

), η > 0

Proof: The measure dρ has moments

α

∞

∫
0

dt e−νt
α

tα(p−1)+m−1 =
Γ(p − 1 + m

α
)

νp−1+mα
.

Therefore Kν = D1Fρ with

Fρ(t) = νp−1
∞

∑
m=0

(ν1/αt)m
Γ(p − 1 + m

α
) = νp−1E1/α,p−1(ν1/αt),

for the Mittag-Leffler function

EA,B(t) =
∞

∑
m=0

tm

Γ(Am +B) .
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As t→ +∞, it is known that

EA,B(t) = 1

A
t(1−B)/Aet

1/A
+O(e(1−η)t

1/A
)

with some η > 0. This remains valid for derivatives of any order. For any
polynomial P in one variable

∂kt t
γα+cP (tα)et

α

= tγα+c−kQ(tα)et
α

with another polynomial Q, where degQ = degP + k. It follows that

(tDj +Djt)tγαP (tα)et
α

= tγαQ(tα)et
α

,

with degQ = degP + a. Hence for D = D̀
r

∏
j=2

(tDj +Djt)

D̀
r

∏
j=2

(tDj +Djt)tγαet
α

= tγαQ(tα)et
α

,

where Q has degree (r − 1)a + b = p − 2 and leading coefficient 2r−1αp−2.
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Invariant volume forms and measures

Z̊` is homogeneous under KC or a suitable transitive subgroup. When
does an invariant holomorphic volume form or invariant measure exist?
Only for domains of tube type b = 0.

▸ Theorem: Let Z be of tube type and 0 < ` < r. Then there exists an
invariant holomorphic n-form Ω on Z̊` if and only if
p − a` = 2 + a(r − ` − 1) is even.

▸ Among all tube type domains, p − a` is odd only for the symmetric
matrices Z =Cr×r

sym with r − ` even.

▸ Theorem: An invariant measure µ on Z̊` exists in all cases (for
b = 0), and has polar decomposition

∫
Z̊`

dµ(z) f(z) = const ∫
Ωc

dt

Nc(t)d`/`
Nc(t)ar/2 ∫

K

dk f(k
√
t).
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Special case, r = 2, ` = 1

Englis et al, Gramchev-Loi: Lie ball r = 2

T ∗(Sn) ∖ {0} = {(x, ξ) ∶ ∥x∥ = 1, (x∣ξ) = 0, ξ ≠ 0}

Cn+1 hermitian Jordan triple, rank 2

{uv∗w} = (u∣v)w + (w∣v)u + (u∣w)v Jordan triple product

N(z) = (z∣z) Jordan algebra determinant

T ∗(Sn) ∖ {0} = {z ∈Cn+1 ∶ N(z) = 0} rank 1 elements

Tν(z)
νn

= 1 + (n − 1)(n − 2)
2∣νz∣ +

n−2

∑
j=2

2aj

∣νz∣j +Rν(∣z∣)

exponentially small error term
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