Analysis and TYZ expansions for Kepler manifolds

Harald Upmeier (joint work with Miroslav Englis)
University of Marburg, Germany
Bengaluru, March 2018

Classical Kepler varieties

hermitian vector space $Z=\mathbf{C}^{n+1}$, rank $=2$

$$
Z_{1}:=\left\{z=\left(z_{0}, \ldots, z_{n}\right) \in Z: z_{0}^{2}+\ldots+z_{n}^{2}=0\right\} \text { complex light cone }
$$

Symplectic interpretation (cotangent bundle)

$$
Z_{1} \approx T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\{(x, \xi):\|x\|=1, \xi \neq 0,(x \mid \xi)=0\}, z=\frac{x+i \xi}{2}
$$

contact manifold (cosphere bundle)

$$
S_{1} \approx S^{*}\left(\mathbf{S}^{n}\right)=\{(x, \xi):\|x\|=1,\|\xi\|=1,(x \mid \xi)=0\}
$$

polar decomposition

$$
Z_{1}=\mathbf{R}^{+} \cdot S_{1}
$$

Determinantal varieties

$$
\begin{gathered}
Z=\mathbf{C}^{r \times s}, \operatorname{rank}=r \leq s, 1 \leq \ell \leq r \\
Z_{\ell}:=\{z \in Z: \operatorname{rank}(z) \leq \ell\} \quad \text { vanishing of all }(\ell+1) \times(\ell+1) \text { - minors } \\
\dot{Z}_{\ell}=\{z \in Z: \operatorname{rank}(z)=\ell\}=Z_{\ell} \backslash Z_{\ell-1} \quad \text { regular part } \\
Z_{1}:=\{z \in Z: \operatorname{rank}(z) \leq 1\} \text { vanishing of all } 2 \times 2-\text { minors } \\
\dot{Z}_{1}:=\{z \in Z: \operatorname{rank}(z)=1\}=Z_{1} \backslash\{0\} \\
S_{1}=\left\{\xi \otimes \eta^{*}: \xi \in \mathbf{C}^{r}, \eta \in \mathbf{C}^{s}\|\xi\|=1=\|\eta\|\right\} \\
\dot{Z}_{1}=\mathbf{R}^{+} \cdot S_{1}
\end{gathered}
$$

Let Z complex vector space and $D \subset Z$ be a bounded domain. The group

$$
G=A u t(D)=\{g: D \rightarrow D \text { biholomorphic }\}
$$

is a real Lie group by a deep theorem of H . Cartan. D is called symmetric iff G acts transitively on D, and around each point $o \in D$ there exists an involutive symmetry $s_{o} \in G$ fixing o. By Harish-Chandra, D can be realized as a convex circular domain, i.e. as the unit ball

$$
D=\{z \in Z:\|z\|<1\}
$$

for an (essentially unique) norm called the spectral norm. Then the isotropy subgroup

$$
K=\{g \in G: g(0)=0\}
$$

is a compact group consisting of linear transformations. For domains $D=G / K$ of rank $r>1$ the boundary ∂D will not be smooth and D is only (weakly) pseudoconvex but not strongly pseudoconvex.

Let $Z=\mathbf{C}^{r \times s}$, endowed with the operator norm $\|z\|=\sup \operatorname{spec}\left(z z^{*}\right)^{1 / 2}$. Then the matrix unit ball

$$
D=\left\{z \in \mathbf{C}^{r \times s}:\|z\|<1\right\}=\left\{z \in \mathbf{C}^{r \times s}: I-z z^{*}>0\right\}
$$

is a symmetric domain, under the pseudo-unitary group
$G=U(r, s)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(r+s):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{ll}a^{*} & c^{*} \\ b^{*} & d^{*}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$,
which acts on D via Moebius transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)=(a z+b)(c z+d)^{-1} .
$$

Its maximal compact subgroup is

$$
K=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right): a \in U(r), d \in U(s)\right\} .
$$

with the linear action $z \mapsto a z d^{*}$.

A basic theorem of M. Koecher characterizes hermitian symmetric domains in Jordan algebraic terms. Let Z be a complex vector space, endowed with a ternary composition $Z \times Z \times Z \rightarrow Z$, denoted by

$$
(x, y, z) \mapsto\{x ; y ; z\},
$$

which is bilinear symmetric in (x, z) and anti-linear in the inner variable. Putting $D(x, y) z:=\{x ; y ; z\}, Z$ is called a hermitian Jordan triple if the Jordan triple identity (a kind of Jacobi identity)

$$
[D(x, y), D(u, v)]=D(\{x ; y ; u\}, v)-D(u,\{v ; x ; y\})
$$

holds, and the hermitian form

$$
(x, y) \mapsto \operatorname{trace} D(x, y)
$$

is a positive definite. Every symmetric domain can be realized as the unit ball of a unique hermitian Jordan triple (and conversely). Moreover, K consists of all linear transformations preserving the Jordan triple product.

Classification of hermitian Jordan triples

- matrix triple $Z=\mathbf{C}^{r \times s}, \quad\{x ; y ; z\}=x y^{*} z+z y^{*} x$,

$$
K=U(r) \times U(s): z \mapsto u z v, u \in U(r), v \in U(s)
$$

rank $=r \leq s, a=2$ complex case, $b=s-r$

- $r=1, Z=\mathbf{C}^{1 \times d},\{x ; y ; z\}=(x \mid y) z+(z \mid y) x, \quad K=U(d)$
- symmetric matrices $a=1$ (real case)
- anti-symmetric matrices $a=4$ (quaternion case)
- spin factor $Z=\mathbf{C}^{n+1},\left\{x y^{*} z\right\}=(x \cdot \bar{y}) z+(z \cdot \bar{y}) x+(x \cdot z) \bar{y}$ $r=2, a=n-1, b=0$

$$
K=\mathbf{T} \cdot S O(n+1)
$$

- exceptional Jordan triples of dimension $16(r=2)$ and $27(r=3)$, $a=8$ (octonion case), $K=\mathbf{T} \cdot E_{6}$.

A real vector space X is a Jordan algebra iff X has a non-associative product $x, y \mapsto x \circ y=y \circ x$, satisfying the Jordan algebra identity

$$
x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right) .
$$

The anti-commutator product

$$
x \circ y=(x y+y x) / 2
$$

of self-adjoint matrices satisfies the Jordan identity. By a fundamental result of Jordan/von Neumann/Wigner (1934), every (euclidean) Jordan algebra has a realization as self-adjoint matrices $X \approx \mathcal{H}_{r}(\mathbf{K})$ over $\mathbf{K}=\mathbf{R}, \mathbf{C}, \mathbf{H}$ (quaternions), or $\mathbf{K}=\mathbf{O}$ (octonions) if $r \leq 3$. For $r=2$ we obtain formal 2×2-matrices

$$
\mathcal{H}_{2}(\mathbf{K})=\left\{\left(\begin{array}{ll}
\alpha & b \\
b^{*} & \delta
\end{array}\right): \alpha, \delta \in \mathbf{R}, b \in \mathbf{K}:=\mathbf{R}^{2+a}\right\} .
$$

Thus X is characterized by the rank r and the multiplicity $a=\operatorname{dim}_{\mathbf{R}} \mathbf{K}$.

For a euclidean Jordan algebra X, the complexification $Z:=X^{\mathbf{C}}$ becomes a (complex) Jordan triple via

$$
\{u ; v ; w\}=\left(u \circ v^{*}\right) \circ w+\left(w \circ v^{*}\right) \circ u-v^{*} \circ(u \circ w) .
$$

For the spin factor we obtain

$$
\{u ; v ; w\}=(u \mid v) w+(w \mid v) u-\bar{v}(u \mid \bar{w}) .
$$

The Jordan triples arising this way are called of tube type. For example, the matrix triple $\mathbf{C}^{r \times s}$ is of tube type if and only if $r=s$.

Let Z be an irreducible hermitian Jordan triple of rank r, and $\ell \leq r$. Define the Kepler variety

$$
Z_{\ell}=\{z \in Z: \operatorname{rank}(z) \leq \ell\} .
$$

Its regular part (Kepler manifold)

$$
\dot{Z}_{\ell}=\left\{z \in Z_{\ell}: \operatorname{rank}(z)=\ell\right\}
$$

is a K^{C}-homogeneous manifold, not compact or symmetric. (Matsuki dual of open G-orbits in flag manifolds).
For the spin factors ($r=2$) we recover classical Kepler variety. For matrix spaces, we obtain the determinantal varieties.
Theorem: The Kepler variety Z_{ℓ} is a normal variety having only rational singularities.
Remark: Result classical for spin factor ($r=2$) and proved by Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on Kempf's collapsing vector bundle theorem.

An element $u \in Z$ is called a tripotent if $\{u ; u ; u\}=2 u$. For $Z=\mathbf{C}^{r \times s}$ the tripotents satisfy $u u^{*} u=u$ and are called partial isometries. The set S_{ℓ} of all tripotents of fixed rank $\ell \leq r$ is a compact K-homogeneous manifold. In particular, S_{1} consists of all minimal (rank 1) tripotents. For the spin factor, S_{1} is the cosphere bundle. For $Z=\mathbf{C}^{1 \times d}$

$$
S_{1}=\{u \in Z: \quad(u \mid u)=1\}=\mathbf{S}^{2 d-1}
$$

is the full boundary.
Every tripotent u induces a Peirce decomposition
$Z=Z_{u}^{(2)} \oplus Z_{u}^{(1)} \oplus Z_{u}^{(0)}$, where

$$
Z_{u}^{(j)}=\{z \in Z:\{u ; u ; z\}=2 j z\}
$$

is an eigenspace of $D(u, u)$. Moreover, the Peirce 2-space $Z_{u}^{(2)}$ becomes a Jordan algebra with unit element u and multiplication $\{x ; u ; y\}$.

The Jordan Grassmann manifold

$$
M_{\ell}=S_{\ell} / \sim=\text { set of all Peirce 2-spaces } U=Z_{u} \text { of rank } \ell
$$

is a compact hermitian symmetric space, both a K-orbit and a K^{C}-orbit. (Center of open G-orbit). Define the tautological vector bundle

$$
\mathcal{T}_{\ell}:=\bigcup_{U \in M_{\ell}} U \rightarrow M_{\ell} .
$$

Fix a base point $c \in S_{\ell}$, put $V:=Z_{c}^{(2)}$ and let $L:=\left\{k \in K^{\mathbf{C}}: k V=V\right\}$. Then

$$
\mathcal{T}_{\ell}=K^{\mathbf{C}}{ }_{\times_{L} V}
$$

becomes a homogeneous vector bundle, and

$$
\mathcal{T}_{\ell} \rightarrow Z_{\ell}: U \ni z \mapsto z \in Z_{\ell}
$$

is a collapsing map. By Kempf's Theorem, the range of a collapsing map of homogeneous vector bundles is a normal variety. Let \dot{U} denote the invertible elements of the Jordan algebra $U=Z_{u}^{(2)}$. Then

$$
\bigcup_{U \in M_{\ell}} \stackrel{\circ}{U} \rightarrow Z_{\ell}
$$

is a birational isomorphism. This proves the normality theorem.

Let (M, ω) be a compact Kähler n-manifold, with a quantizing line bundle $\mathcal{L} \rightarrow M$. Consider holomorphic sections $\Gamma\left(M, \mathcal{L}^{\nu}\right)$ of a (high) tensor power \mathcal{L}^{ν}. Kodaira (coherent state) embedding

$$
\begin{gathered}
\kappa_{\nu}: M \rightarrow \mathbf{P}\left(\Gamma\left(M, \mathcal{L}^{\nu}\right)\right), z \mapsto\left[s_{\nu}^{0}(z), . ., s_{\nu}^{d_{\nu}}(z)\right] \\
\Omega_{\nu}=\frac{i}{2} \partial \bar{\partial} \log \sum_{i=0}^{d_{\nu}}\left|Z^{i}\right|^{2} \text { Fubini-Study metric on } \mathbf{P}^{d_{\nu}} \\
\kappa_{\nu}^{*}\left(\Omega_{\nu}\right)=\nu \omega+\frac{i}{2} \partial \bar{\partial} \log T_{\nu} \\
T_{\nu}(z)=\sum_{i=0}^{d_{\nu}} h_{z}\left(s_{\nu}^{i}(z), s_{\nu}^{i}(z)\right) \text { Kempf distortion function }
\end{gathered}
$$

TYZ (Tian-Yau-Zelditch) expansion

$$
\left|\frac{T_{\nu}(z)}{\nu^{n}}-\sum_{j=0}^{N-1} \frac{a_{j}(z)}{\nu^{j}}\right| \leq \frac{c_{N}}{\nu^{N}} \text { as } \nu \rightarrow \infty
$$

For non-compact Kähler manifolds (such as Z_{ℓ}) we need infinite-dimensional Hilbert spaces of holomorphic functions.

Every (euclidean) Jordan algebra X has a symmetric cone

$$
\Omega=\left\{x^{2}: x \in X \text { invertible }\right\} .
$$

In fact, another theorem of Koecher-Vinberg characterizes euclidean Jordan algebras in terms of symmetric (i.e. self-adjoint homogeneous) cones. For matrices $X=\mathcal{H}_{r}(\mathbf{K}), \Omega$ consists of all positive definite matrices. For the real spin factor, we obtain the forward light cone. For a tripotent $u \in S_{\ell}$ the Peirce 2-space $Z_{u}^{(2)}$ is the complexification of a euclidean Jordan algebra with symmetric cone

$$
\Omega_{u}:=\left\{x=\{u ; x ; u\} \in Z_{u}^{(2)}: x=\{y ; u ; y\}, y \text { invertible }\right\} .
$$

Proposition: The Kepler manifold has a polar decomposition

$$
\dot{Z}_{\ell}=\bigcup_{u \in S_{\ell}} \Omega_{u} .
$$

For $\ell=1$ this reduces to $\check{Z}_{1}=\mathbf{R}_{+} \cdot S_{1}$, since $Z_{u}^{(2)}=\mathbf{C} \cdot u$ and $\Omega_{u}=\mathbf{R}_{+} \cdot u$ is an open half-line.

Choose a base point $c=e_{1}+\ldots+e_{\ell} \in S_{\ell}$. Every positive density function $\rho(t)$ on symmetric cone Ω_{c} induces a K-invariant radial measure

$$
\int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z) f(z)=\int_{\Omega_{c}} d t \rho(t) \int_{K} d k f(k \sqrt{t}) .
$$

For $\ell=1$ this simplifies to

$$
\int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z) f(z)=\int_{0}^{\infty} d t \rho(t) \int_{S_{1}} d u f(u \sqrt{t}) .
$$

Define a Hilbert space of holomorphic functions

$$
\mathcal{H}_{\rho}:=\left\{f: \AA_{\ell} \rightarrow \mathbf{C} \text { holomorphic : } \int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z)|f(z)|^{2}<+\infty\right\} .
$$

In the trivial case, where $\ell=r$ is maximal and Z is a Jordan algebra, negative powers of the (Jordan) determinant have no holomorphic extension beyond \dot{Z}. Apart from this we have Extension Theorem: Every holomorphic function on \dot{Z}_{ℓ} has a unique extension to the closure Z_{ℓ}
Proof: Singular set

$$
Z_{\ell} \backslash \dot{Z}_{\ell}=\bigcup_{j<\ell} Z_{j}
$$

has codimension ≥ 2. By the Normality Theorem (and using Lojasiewicz), the second Riemann extension theorem holds for holomorphic functions on $\stackrel{\Sigma}{\ell}_{\ell}$.

Under the natural action of K the holomorphic polynomials $\mathcal{P}(Z)$ on a hermitian Jordan triple Z have a Hua-Schmid-Kostant decomposition

$$
\mathcal{P}(Z)=\sum_{m \in \mathbf{N}_{+}^{r}} \mathcal{P}_{\boldsymbol{m}}(Z)
$$

where $\boldsymbol{m}=m_{1} \geq m_{2} \geq \ldots \geq m_{r} \geq 0$ ranges over all integer partitions (Young diagrams) and each $\mathcal{P}_{m}(Z)$ is an irreducible K-module, whose highest weight vector N_{m} can be uniformly described in terms of Jordan theoretic minors. The dimension $d_{\boldsymbol{m}}:=\operatorname{dim} \mathcal{P}_{\boldsymbol{m}}(Z)$ is explicitly known. Let

$$
(\phi \mid \psi):=\frac{1}{\pi^{d}} \int_{Z} d z e^{-(z \mid z)} \overline{\phi(z)} \psi(z)
$$

denote the Fischer-Fock inner product. Then there is an expansion

$$
e^{(z \mid w)}=\sum_{m} E^{m}(z, w)
$$

into finite-dimensional kernel functions $E^{\boldsymbol{m}}(z, w)$ of $\mathcal{P}_{\boldsymbol{m}}(Z)$. For $r=1, E^{m}(z, w)=\frac{(z \mid w)^{m}}{m!}$.

Using the characteristic multiplicity a of Z, we define the Pochhammer symbol

$$
(\nu)_{m}:=\prod_{j=1}^{r}\left(\nu-\frac{a}{2}(j-1)\right)_{m_{j}} .
$$

Since the underlying measure $\tilde{\rho}$ is K-invariant, the extension theorem implies that

$$
\mathcal{H}_{\rho}=\sum \mathcal{P}_{m_{1} \ldots, m_{\ell}, 0 \ldots, 0}(Z)
$$

is a Hilbert sum involving only (non-negative) partitions of length $\leq \ell$, since the other components vanish on Z_{ℓ}.
Theorem: The Hilbert space \mathcal{H}_{ρ} has the reproducing kernel

$$
\begin{gathered}
\mathcal{K}^{\rho}(z, w):=\sum_{m \in \mathbf{N}_{+}^{e}} \frac{d_{\boldsymbol{m}}}{\int_{\Omega_{c}} d \rho(t) E^{m}(t, e)} E^{m}(z, w) \\
=\sum_{m \in \mathbf{N}_{+}^{\ell}} \frac{\left(d_{\ell} / \ell\right)_{\boldsymbol{m}}}{\int_{\Omega_{c}} d \rho(t) N_{m}(t)} \frac{d_{\boldsymbol{m}}}{d_{\boldsymbol{m}}^{c}} E^{m}(z, w)
\end{gathered}
$$

Every euclidean Jordan algebra X has a Jordan algebra determinant $N(x)$ which is a r-homogeneous polynomial defined via Cramer's rule

$$
x^{-1}=\frac{\nabla_{x} N}{N(x)}
$$

For real or complex matrices, this is the usual determinant. For even anti-symmetric matrices, it is the Pfaffian. In the rank 2 case, $N\left(x_{0}, x\right)=x_{0}^{2}-(x \mid x)$ is the Lorentz metric.
Let $\partial_{N}=N\left(\frac{\partial}{\partial x}\right)$ be the associated constant coefficient differential operator on X. Then $N(x) \partial_{N}$ is a kind of Euler operator, of order r. Applying these concepts to the Jordan algebra $Z_{c}^{(2)}$ of rank ℓ, we define a universal differential operator

$$
\mathcal{D}_{\ell}:=N^{\frac{a}{2}(\ell-r)} \partial_{N}^{b} N^{\frac{a}{2}(r-\ell-1)+b+1}\left(\partial_{N} N^{\frac{a}{2}} \partial_{N}^{a-1}\right)^{r-\ell} N^{\frac{a}{2}(r-\ell+1)-1}
$$

of order $\ell((r-\ell) a+b)$ on the symmetric cone Ω_{c}. For $\ell=1, N(t)=t$ and \mathcal{D}_{1} becomes a polynomial differential operator of order $(r-1) a+b$ on the half-line.

Our main result is that the reproducing kernel $\mathcal{K}_{\rho}(z, w)$ can be expressed in closed form, by

$$
\mathcal{K}_{\rho}(\sqrt{t}, \sqrt{t})=\left(\mathcal{D}_{\ell} F_{\rho}\right)(t)
$$

for all $t \in \Omega_{c}$, where F_{ρ} is a special function of hypergeometric type. Since hypergeometric functions have good asymptotic expansions (quite difficult for $\ell>1$), this will lead to the desired TYZ-expansions. Generalizing the 1 -dimensional case, we define the hypergeometric series of type (p, q)

$$
{ }_{p} F_{q}\binom{\alpha_{1}, \ldots, \alpha_{p}}{\beta_{1}, \ldots, \beta_{q}}(z, w):=\sum_{m} \frac{\left(\alpha_{1}\right)_{m} \ldots\left(\alpha_{p}\right)_{m}}{\left(\beta_{1}\right)_{m} \ldots\left(\beta_{q}\right)_{m}} E^{m}(z, w),
$$

using the Fischer-Fock reproducing kernels $E^{m}(z, w)$. For $z, w \in Z_{\ell}$, only partitions of length $\leq \ell$ occur.

Consider first a Fock space situation. For $\alpha>0$ consider the pluri-subharmonic function $\phi=(z \mid z)^{\alpha}$ on Z_{ℓ}. Let $\omega:=\partial \bar{\partial} \phi$ denote the associated Kähler form. Then we have the polar decomposition

$$
\int_{\dot{Z}_{\ell}} \frac{\left|\omega^{n}\right|}{n!}(z) e^{-\nu \phi(z)} f(z)=\int_{\Omega_{c}} d t N_{c}(t)^{a(r-\ell)+b}(t \mid c)^{n(\alpha-1)} e^{-\nu(t \mid c)^{\alpha}}
$$

where $N_{c}(t)$ is the rank ℓ determinant function on Ω_{c}. Let $\alpha=1$. Theorem: The Hilbert space $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has the reproducing kernel

$$
\mathcal{K}_{\nu}(t, e)=\mathcal{D}_{\ell}{ }_{1} F_{1}\binom{d_{\ell} / \ell}{n / \ell}(\nu t)
$$

for the confluent hypergeometric function

$$
{ }_{1} F_{1}\binom{\sigma}{\tau}(z, w)=\sum_{m} \frac{(\sigma)_{m}}{(\tau)_{m}} E^{m}(z, w)
$$

In order to look at a Bergman type Hilbert space, let

$$
(u \mid v)=\frac{1}{p} t r_{Z} D(u, v)
$$

be the normalized K-invariant inner product, where p is the so-called genus of D. Define Bergman operators

$$
B(u, v) z=z-2\{u ; v ; z\}+\{u ;\{v ; z ; v\} ; u\}
$$

for $u, v, z \in Z$. Then the G-invariant Bergman metric is given by

$$
(u \mid v)_{z}=\left(B(z, z)^{-1} u \mid v\right) .
$$

For the matrix case $Z=\mathbf{C}^{r \times s}$, we have

$$
B(u, v) z=z-u v^{*} z-z v^{*} u+u\left(v z^{*} v\right)^{*} u=\left(1-u v^{*}\right) z\left(1-v^{*} u\right)
$$

and $p=r+s$. Therefore

$$
(u \mid v)=\frac{1}{r+s} \operatorname{tr}_{Z} D(u, v)=\text { trace } u v^{*}
$$

and the Bergman metric at $z \in D$ is

$$
(u, v)_{z}=\operatorname{trace}\left(1-z z^{*}\right)^{-1} u\left(1-z^{*} z\right)^{-1} v^{*}
$$

In terms of the Bergman operator, the Bergman kernel function $K: D \times \bar{D} \rightarrow \mathbf{C}$ of D can be expressed as

$$
K(z, w)=\operatorname{det} B(z, w)^{-1}
$$

It is a fundamental fact that there exists a sesqui-polynomial called the Jordan triple determinant $\Delta: Z \times \bar{Z} \rightarrow \mathbf{C}$ such that the Bergman kernel function has the form

$$
K(z, w)=\operatorname{det} B(z, w)^{-1}=\Delta(z, w)^{-p}
$$

for all $z, w \in D$. In the matrix case $Z=\mathbf{C}^{r \times s}$ we have

$$
\operatorname{det} B(z, w)=\operatorname{det}\left(1_{r}-z w^{*}\right)^{r+s} .
$$

It follows that

$$
\Delta(z, w)=\operatorname{det}\left(1-z w^{*}\right) .
$$

The Kepler ball is the intersection

$$
\left\{z \in \dot{Z}_{\ell}:\|z\|_{\infty}<1\right\}=\dot{Z}_{\ell} \cap D
$$

of Z_{ℓ} with the bounded symmetric domain $D:=\left\{z \in Z:\|z\|_{\infty}<1\right\}$. Consider the pluri-subharmonic function

$$
\phi(z)=\log \Delta(z, z)^{-p}=\log \operatorname{det} B(z, z)^{-1}
$$

on the Kepler ball, given by the Bergman kernel. As before, the associated radial measure $e^{-\nu \phi}\left|\omega^{n}\right| / n$! has a nice polar decomposition, this time involving the unit interval $\Omega_{c} \cap\left(c-\Omega_{c}\right)$.
Theorem: For the Kepler ball, $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has the reproducing kernel

$$
\mathcal{K}_{\nu}(t, e)=\mathcal{D}_{\ell}{ }_{2} F_{1}\binom{d_{\ell} / \ell ; \nu}{n_{\ell} / \ell}(t)
$$

involving a Gauss hypergeometric function ${ }_{2} F_{1}$ on Ω_{c}.

Pattern

Fock space on $Z=\mathbf{C}^{d}, \mathcal{K}_{\nu}=e^{(z \mid w)}={ }_{0} F_{0}(z, w)$
Bergman space on $D, \mathcal{K}_{\nu}=\Delta(z, w)^{-\nu}={ }_{1} F_{0}(z, w) \quad$ Faraut-Koranyi formula
Kepler manifold $\stackrel{\circ}{Z}_{\ell}, \mathcal{K}_{\nu}=\mathcal{D}_{\ell}{ }_{1} F_{1}$
Kepler ball $D \cap \stackrel{\circ}{Z}_{\ell}, \mathcal{K}_{\nu}=\mathcal{D}_{\ell}{ }_{2} F_{1}$

Asymptotic expansion: $\alpha=1, \ell$ arbitrary
Theorem: Consider the Fock-type situation, $\alpha=1$, ℓ arbitrary. There exist polynomials $p_{j}(x)$, with $p_{0}=$ const, such that

$$
\frac{1}{\nu^{n}} \mathcal{K}_{\nu}(\sqrt{x}, \sqrt{x}) \approx \frac{e^{\nu \operatorname{tr}(x)}}{N_{c}(x)^{n / \ell}} \sum_{j=0}^{n} \frac{p_{j}(x)}{\nu^{j}}
$$

as $|x| \rightarrow+\infty$, uniformly for x in compact subsets of Ω_{c}.
Proof: For $\operatorname{Re}(\mu)>\frac{d}{r}-1$ and $\operatorname{Re}(\gamma)>\frac{d}{r}-1$, there is an asymptotic expansion

$$
{ }_{1} F_{1}\binom{\mu}{\gamma}(z) \approx \frac{\Gamma_{r}(\gamma)}{\Gamma_{r}(\mu)} \frac{e^{\operatorname{tr}(z)}}{N(z)^{\gamma-\mu}}{ }_{2} F_{0}\left(\frac{d}{r}-\mu ; \gamma-\mu\right)\left(z^{-1}\right)
$$

as $|z| \rightarrow+\infty$ while $\frac{z}{|z|}$ stays in a compact subset of Ω_{c}.
This expansion can be differentiated termwise any number of times.
Remark: Similar expansion for Kepler ball, based on asymptotics of ${ }_{2} F_{1}$.

Asymptotic expansion: $\ell=1, \alpha$ arbitrary
Theorem: Radial measure $d \rho(t)=\alpha e^{-\nu t^{\alpha}} t^{\alpha(p-1)-1} d t$ on half-line. Then, as $\nu \rightarrow+\infty$

$$
\frac{e^{-\nu(z \mid z)^{\alpha}}}{\nu^{p-1}} \mathcal{K}_{\nu}(z, z)=\sum_{j=0}^{p-2} \frac{b_{j}}{\nu^{j}(z \mid z)^{j \alpha}}+O\left(e^{-\eta \nu(z \mid z)^{\alpha}}\right), \eta>0
$$

Proof: The measure $d \rho$ has moments

$$
\alpha \int_{0}^{\infty} d t e^{-\nu t^{\alpha}} t^{\alpha(p-1)+m-1}=\frac{\Gamma\left(p-1+\frac{m}{\alpha}\right)}{\nu^{p-1+\frac{m}{\alpha}}}
$$

Therefore $\mathcal{K}_{\nu}=\mathcal{D}_{1} F_{\rho}$ with

$$
F_{\rho}(t)=\nu^{p-1} \sum_{m=0}^{\infty} \frac{\left(\nu^{1 / \alpha} t\right)^{m}}{\Gamma\left(p-1+\frac{m}{\alpha}\right)}=\nu^{p-1} E_{1 / \alpha, p-1}\left(\nu^{1 / \alpha} t\right)
$$

for the Mittag-Leffler function

$$
E_{A, B}(t)=\sum_{m=0}^{\infty} \frac{t^{m}}{\Gamma(A m+B)}
$$

As $t \rightarrow+\infty$, it is known that

$$
E_{A, B}(t)=\frac{1}{A} t^{(1-B) / A} e^{t^{1 / A}}+O\left(e^{(1-\eta) t^{1 / A}}\right)
$$

with some $\eta>0$. This remains valid for derivatives of any order. For any polynomial P in one variable

$$
\partial_{t}^{k} t^{\gamma \alpha+c} P\left(t^{\alpha}\right) e^{t^{\alpha}}=t^{\gamma \alpha+c-k} Q\left(t^{\alpha}\right) e^{\alpha^{\alpha}}
$$

with another polynomial Q, where $\operatorname{deg} Q=\operatorname{deg} P+k$. It follows that

$$
\left(t D_{j}+D_{j} t\right) t^{\gamma \alpha} P\left(t^{\alpha}\right) e^{t^{\alpha}}=t^{\gamma \alpha} Q\left(t^{\alpha}\right) e^{\alpha^{\alpha}}
$$

with $\operatorname{deg} Q=\operatorname{deg} P+a$. Hence for $\mathcal{D}=\grave{D} \prod_{j=2}^{r}\left(t D_{j}+D_{j} t\right)$

$$
\grave{D} \prod_{j=2}^{r}\left(t D_{j}+D_{j} t\right) t^{\gamma \alpha} e^{t^{\alpha}}=t^{\gamma \alpha} Q\left(t^{\alpha}\right) e^{t^{\alpha}}
$$

where Q has degree $(r-1) a+b=p-2$ and leading coefficient $2^{r-1} \alpha^{p-2}$.

Invariant volume forms and measures

\check{Z}_{ℓ} is homogeneous under K^{C} or a suitable transitive subgroup. When does an invariant holomorphic volume form or invariant measure exist?
Only for domains of tube type $b=0$.

- Theorem: Let Z be of tube type and $0<\ell<r$. Then there exists an invariant holomorphic n-form Ω on \grave{Z}_{ℓ} if and only if $p-a \ell=2+a(r-\ell-1)$ is even.
- Among all tube type domains, $p-a \ell$ is odd only for the symmetric matrices $Z=\mathbf{C}_{s y m}^{r \times r}$ with $r-\ell$ even.
- Theorem: An invariant measure μ on \dot{Z}_{ℓ} exists in all cases (for $b=0$), and has polar decomposition

$$
\int_{\dot{Z}_{\ell}} d \mu(z) f(z)=\mathrm{const} \int_{\Omega_{c}} \frac{d t}{N_{c}(t)^{d_{\ell} / \ell}} N_{c}(t)^{a r / 2} \int_{K} d k f(k \sqrt{t})
$$

Special case, $r=2, \ell=1$

Englis et al, Gramchev-Loi: Lie ball $r=2$

$$
\begin{gathered}
T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\{(x, \xi):\|x\|=1,(x \mid \xi)=0, \xi \neq 0\} \\
\mathbf{C}^{n+1} \text { hermitian Jordan triple, rank } 2 \\
\left\{u v^{*} w\right\}=(u \mid v) w+(w \mid v) u+(u \mid \bar{w}) \bar{v} \text { Jordan triple product } \\
N(z)=(z \mid \bar{z}) \text { Jordan algebra determinant } \\
T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\left\{z \in \mathbf{C}^{n+1}: N(z)=0\right\} \text { rank } 1 \text { elements } \\
\frac{T_{\nu}(z)}{\nu^{n}}=1+\frac{(n-1)(n-2)}{2|\nu z|}+\sum_{j=2}^{n-2} \frac{2 a_{j}}{|\nu z|^{j}}+R_{\nu}(|z|)
\end{gathered}
$$

exponentially small error term

