Techniques of constructions of variations of mixed Hodge structures (GAFA to appear)

Hisashi Kasuya

Osaka

Variation of \mathbb{R} -mixed Hodge structure

A real variation of mixed Hodge structure (\mathbb{R} -VMHS) over M is ($\mathbf{E}, \mathbf{F}^*, \mathbf{W}_*$) so that:

- **• E** is a local system of fin-dim. \mathbb{R} -vector spaces.
- **2** \mathbf{W}_* is an increasing filtration of the local system **E**.
- **§** \mathbf{F}^* is a decreasing filtration of the holomorphic vector bundle $\mathbf{E} \otimes_{\mathbb{R}} \mathcal{O}_M$.
- The Griffiths transversality DF^r ⊂ A¹(M, F^{r-1}) holds where D is the flat connection associated with the local system E_C.
- Sor any k ∈ Z, the local system Gr^W_k(E) with the filtration induced by F^{*} is an ℝ-VHS of weight k.

Simply, VMHS is a flat bundle over a complex manifold with certain complex geometric properties.

Understanding VMHS by Monodromy

VMHSs have been understood by the following type ""Theorem" "

"" Theorem""

Let M be a cpt Kähler (or sm. \mathbb{C} -alg var). Taking the monodromy representations of VMHSs $(\mathbf{E}, \mathbf{F}^*, \mathbf{W}_*) \mapsto \rho : \pi_1(M) \to GL(V)$, we obtain a correspondence $\{VMHSs\}$ $\to \{"Mixed Hodge representations" of <math>\pi_1(M)\}.$

E.g. Rigidity theorem(Steenbrink-Zucker 1985), Unipotent case:(Hain-Zucker 1987), Non-unipotent case: (Pridham 2016) Does the Algebraic understanding of Monodromy gives the Geometric understanding VMHS?

Theorem (K.)

Let (M, g) be a compact Kähler manifold. Starting from real variations of Hodge structures, we make \mathbb{R} -VMHSs $(\mathbf{E}, \mathbf{F}^*, \mathbf{W}_*)$ over M from "Mixed Hodge representations" of certain (infinite-dim.) Lie algebra so that geometric informations of $(\mathbf{E}, \mathbf{F}^*, \mathbf{W}_*)$ (connection form, filtration of holom. bdl,etc.,) are described explicitly by the Kähler Geometry.

\mathbb{R} -Hodge structure

An \mathbb{R} -Hodge structure of weight *n* on a \mathbb{R} -vector space *V* is a bigrading

$$V_{\mathbb{C}} = igoplus_{p+q=n} V^{p,q}$$

on the complexification $\mathit{V}_\mathbb{C} = \mathit{V} \otimes \mathbb{C}$ such that

$$\overline{V^{p,q}}=V^{q,p},$$

or equivalently, a finite decreasing filtration F^* on $V_{\mathbb{C}}$ such that

$$F^p(V_{\mathbb C})\oplus \overline{F^{n+1-p}(V_{\mathbb C})}=V_{\mathbb C}$$

for each p.

\mathbb{R} -Hodge structure on Kähler manifolds

Let (M, g) be a Kähler manifold, $\mathcal{H}^n(M)$ the vec. sp. of real harmonic forms. Then :

• $\mathcal{H}^n(M)\otimes \mathbb{C}=\bigoplus_{p+q=n}\mathcal{H}^{p,q}(M)$

• $\overline{\mathcal{H}^{p,q}(M)} = \mathcal{H}^{q,p}(M)$

where $\mathcal{H}^{p,q}(M)$ is the vec. sp. of complex harmonic forms of type (p, q). Remark: By $\mathcal{H}^n(M) \cong H^n_{dR}(M, \mathbb{R})$, $\mathcal{H}^{p,q}(M) \cong H^{p,q}_{Dol}(M)$, The above \mathbb{R} -Hodge structure does not depend on Kähler metric g.

 $(A^*(M), d)$: de Rham cplx. of a Kähler mfd. $(A^n(M)\otimes \mathbb{C}=\bigoplus_{p+q=n}A^{p,q}(M), d=\partial+\bar{\partial})$: the Dolbeault (double) cplx. The filtration: $F^{r}(A^{*}(M) \otimes \mathbb{C}) = \bigoplus_{p>r} A^{p,q}(M)$. Then the spectral sequence $E_r^{*,*}$ degenerates at E_1 . $(E_1^{p,q} \cong H_{Dq}^{p,q}(M))$ The filtration F^* on $H^n_{dR}(M,\mathbb{C})$ induced by the above filtration is the \mathbb{R} -Hodge structure as the previous description.

A polarization of an ℝ-Hodge structure of weight n is a (-1)ⁿ-symmetric bilinear form S : V × V → ℝ so that:
The decomposition V_C = ⊕_{p+q=n} V^{p,q} is orthogonal for the sesquilinear form S : V_C × V_C → C.
h : V_C × V_C → C defined as h(u, v) = S(Cu, v̄) is a positive-definite hermitian form where C is the Weil operator C_{|V^{p,q}} = (√-1)^{p-q}.

On a Kähler manifold M, for the \mathbb{R} -Hodge structure on $\mathcal{H}^1(M)$, the canonical polarization (Hodge-Riemann bilinear form) is given by

$$\mathcal{H}^{1}(M) \times \mathcal{H}^{1}(M) \ni (\alpha, \beta) \mapsto \int \alpha \wedge \beta \wedge \omega^{\dim_{\mathbb{C}} M - 1} \in \mathbb{R}$$

This depends on the Kähler metric g (ω is the Kähler form associated with g).

Importance of polarization

For a \mathbb{R} -Hodge structure F^* on a real vec. sp. V with a polarization S, consider the group $T = \operatorname{Aut}(V, S)$. $(T = Sp_{2k}(\mathbb{R}) \text{ or } T = O(k, I))$ For any $t \in T$, change the \mathbb{R} -Hodge structure tF^* . This gives the transitive action of T on the classifying space $\mathcal{D}(V)$ of polarized \mathbb{R} -Hodge structures on V with the fixed Hodge numbers. So $\mathcal{D}(V)$ is a homogeneous space of a (semi-simple) Lie

So D(V) is a homogeneous space of a (semi-simple) Lie group. (But not symmetric space).

Moreover $\mathcal{D}(V)$ is a complex manifold.

(Precisely, $\mathcal{D}(V)$ is an open submfd. in a flag mfd. of $\mathcal{T}_{\mathbb{C}}$)

伺下 イヨト イヨト

For studying Hodge structures as Complex Geometry \Rightarrow "Variation of Hodge structure"

Real variation of Hodge structure

Let M be a complex manifold.

- A real variation of Hodge structure (\mathbb{R} -VHS) of weight $n \in \mathbb{Z}$ over M is a pair (\mathbf{E}, \mathbf{F}^*) so that:
 - E is a local system of finite-dimensional ℝ-vector spaces.
 - **•** \mathbf{F}^* is a decreasing filtration of the holomorphic vector bundle $\mathbf{E} \otimes_{\mathbb{R}} \mathcal{O}_M$.
 - Solution The Griffiths transversality DF^r ⊂ A¹(M, F^{r-1}) holds where D is the flat connection associated with the local system E_C.
 - Sor any x ∈ M, (E_x, F^{*}_x) is a ℝ-Hodge structure of weight n.

A polarization of an \mathbb{R} -VHS is a non-degenerate pairing $\mathbf{S} : \mathbf{E} \times \mathbf{E} \to \mathbb{R}$ so that for any $x \in M \mathbf{S}_x$ is a polarization of the \mathbb{R} -hodge structure $(\mathbf{E}_x, \mathbf{F}_x^*)$.

 $\{X_b\}_{b\in B}$: holomorphic family (deformation) of compact Kähler manifolds over a complex manifold B. The vector bundle $\mathbf{H}^n = \bigcup_{b\in B} H^n_{dB}(X_b, \mathbb{R})$ with the canonical flat (Gauss-Manin) connection. The filtration $\mathbf{F}^p_b = F^p(H^n_{dR}(X_b, \mathbb{C}))$. $(\mathbf{H}^n, \mathbf{F}^*)$ is a \mathbb{R} -VHS. (Griffiths)

Useful property of \mathbb{R} -VHS

For an \mathbb{R} -VHS (**E**, **F**^{*}) of weight *n*, we have the decomposition $\mathbf{E}_{\mathbb{C}} = \bigoplus_{p+q=n} \mathbf{E}^{p,q}$ of \mathcal{C}^{∞} vector bundles so that $\mathbf{F}^{r} = \bigoplus_{p \geq r} \mathbf{E}^{p,q}$. By the Griffiths transversality, for the de Rham cpx. $(A^*(M, \mathbf{E}_{\mathbb{C}}), D)$ with values in flat bdl $\mathbf{E}_{\mathbb{C}}$, $D: A^{a,b}(\mathsf{E}^{c,d}) \to A^{a+1,b}(\mathsf{E}^{c,d}) \oplus A^{a,b+1}(\mathsf{E}^{c,d}) \oplus A^{a,b+1}(\mathsf{E}^{c,d}) \oplus A^{a,b+1}(\mathsf{E}^{c,d})$ $A^{a+1,b}(\mathsf{E}^{c-1,d+1})\oplus A^{a,b+1}(\mathsf{E}^{c+1,d-1})$ Define $A^*(M, \mathbf{E}_{\mathbb{C}})^{P,Q} = \bigoplus_{a+c=P,b+d=Q} A^{a,b}(\mathbf{E}^{c,d}).$ Like the Dolbeault complex. we have the double complex

$$(\bigoplus A^*(M, \mathbf{E}_{\mathbb{C}})^{P,Q}, D', D'')$$

If $(\mathbf{E}, \mathbf{F}^*)$ admits a polarization \mathbf{S} , then as $H^*(M, \mathbb{R})$ (resp. $\mathcal{H}^*(M)$), the cohomology $H^m(M, \mathbf{E})$ (harmonic forms $\mathcal{H}^m(M, \mathbf{E})$) with values in the flat bdl. \mathbf{E} admits a canonical \mathbb{R} -Hodge structure of weight m + n induced by the double complex. For a \mathbb{R} -VHS (**E**, **F**^{*}) with a polarization **S**, the monodoromy rep. $\rho : \pi_1(M) \to GL(V)$ of the flat bdl. **E** = $\pi_1(M, x) \setminus (\tilde{M} \times V)$ satisfies $\rho(\pi_1(M, x)) \subset T = \operatorname{Aut}(V, \mathbf{S}_x)$. Moreover ρ is semi-simple.

We have the equivriant holomorphic "horizontal" map $\tilde{M} \ni x \mapsto (\mathbf{E}_x, \mathbf{F}_x) \in \mathcal{D}(V)$

- An \mathbb{R} -mixed Hodge structure on an \mathbb{R} -vector space V is a pair (W_*, F^*) such that:
 - W_{*} is an increasing filtration on V.
 - Solution F^* is a decreasing filtration on $V_{\mathbb{C}}$ such that the filtration on $Gr_n^W V_{\mathbb{C}}$ induced by F^* is an \mathbb{R} -Hodge structure of weight *n*.

We call W_* the weight filtration and F^* the Hodge filtration.

For a \mathbb{R} -mixed Hdg. str. on V, there exists a canonical decomposition (Deligne splitting) $V_{\mathbb{C}} = \bigoplus V^{p,q}$ so that

$$\overline{V^{p,q}} = V^{q,p} \mod \bigoplus_{r+s < p+q} V^{r,s},$$

$$W_i(V_{\mathbb{C}}) = \bigoplus_{p+q \leq i} V^{p,q} \quad \text{and} \quad F^i(V_{\mathbb{C}}) = \bigoplus_{p \geq i} V^{p,q}.$$

Conversely this type dec. implies \mathbb{R} -mxd. Hdg str. If $\overline{V^{p,q}} = V^{q,p}$, then we say that (W_*, F^*) is \mathbb{R} -split (that is the direct sum of (pure) \mathbb{R} -Hdg str).

Mixed Hodge structures appear on

- The cohomology of (noncompact) C-algebraic varieties. (Deligne)
- Limits of polarized variations of Hodge structures. (Schmid, Steenbrink,etc.)
- Malcev completion π₁(M) ⊗ ℝ of the fund. grp. of C-alg varieties M. (Morgan, Hain) or Real homotopy π_{*}(M) ⊗ ℝ of simply conn. C-alg varieties M.

Variation of mxd Hdg str

A real variation of mixed Hodge structure (\mathbb{R} -VMHS) over M is ($\mathbf{E}, \mathbf{F}^*, \mathbf{W}_*$) so that:

- **0 E** is a local system of fin-dim. \mathbb{R} -vector spaces.
- **2** W_* is an increasing filtration of the local system **E**.
- **§** \mathbf{F}^* is a decreasing filtration of the holomorphic vector bundle $\mathbf{E} \otimes_{\mathbb{R}} \mathcal{O}_M$.
- The Griffiths transversality $D\mathbf{F}^r \subset A^1(M, \mathbf{F}^{r-1})$ holds where D is the flat connection associated with the local system $\mathbf{E}_{\mathbb{C}}$.
- So For any $k \in \mathbb{Z}$, the local system $Gr_k^{\mathbf{W}}(\mathbf{E})$ with the filtration induced by \mathbf{F}^* is an \mathbb{R} -VHS of weight k.

Usui proved that:

- A VMHS is given by the relative logarithmic de Rham complex of logarithmic deformations. (generalization of family of projective manifolds)
- Classifying spaces $\mathcal{D}(V)$ of graded polarized mxd Hodge strs are complex homo sp and VMHSs give equivriant holomorphic "horizontal" maps $\tilde{M} \to \mathcal{D}(V)$

A \mathbb{R} -VMHS (**E**, **W**_{*}, **F**^{*}) called is unipotent if the \mathbb{R} -VHS on each $Gr_k^{\mathbf{W}}(\mathbf{E})$ is constant.

This condition is equivalent to "the monodoromy rep. $\rho : \pi_1(M) \to GL(V)$ of $\mathbf{E} = \pi_1(M) \setminus (\tilde{M} \times V)$ is unipotent" (i.e. ρ can be represented by upper triangular unipotent matrices).

Notice that $\rho : \pi_1(M) \to GL(V)$ is unipotent $\Leftrightarrow \rho$ is lift to a rep. of the Malcev completion $\pi_1(M) \otimes \mathbb{R}$.

Theorem (Hain, Hain-Zucker)

Let M be a cpt Kähler (or sm. \mathbb{C} -alg var). Then:

- **1** Generating \mathbb{R} -mxd Hdg str. on $\pi_1(M) \otimes \mathbb{R}$. (Hain)
- **2** Taking the monodromy rep.
 (E, W_{*}, F^{*}) → ρ : $\pi_1(M) \rightarrow GL(V)$ induces a 1-1 correspondence
 {ℝ-VMHSs}
 → {"ℝ-mxd Hdg representations of $\pi_1(M) \otimes \mathbb{R}$ "}.

Rem: The \mathbb{R} -mxd Hdg str. on $\pi_1(M) \otimes \mathbb{R}$ depends on base point and so the correspondence also depends on base point.

Quick review Sullivan 1-minimal model

For any DGA A^* with dim $H^0(A^*) = 1$ (e.g. de Rham of conn mfd), there exists a unique "1-minimal" DGA \mathcal{M}^* s.t. we have a DGA map $\phi : \mathcal{M}^* \to A^*$ which induces isomorphisms on 0th and first cohom. and an injection on second cohom.

Note :

- ϕ is not unique but all of such maps are homotopy equiv.
- \mathcal{M}^* is the dual complex of a pro-nilpotent Lie algebra \mathfrak{u} .

Let (M, g) be a cpt Kähler manifold. Take the <u>canonical</u> Sullivan 1-minimal model $\phi : \mathcal{M}^* \to A^*_{dR}(M)$. (Explicitly described by the \mathbb{C} -str using dd^c -Lemma) We can construct a <u>canonical</u> \mathbb{R} -mixed Hodge structure on \mathcal{M}^* . (Explicitly described by the \mathbb{C} str and the Kähler metric)

(Explicitly described by the \mathbb{C} -str and the <u>Kähler metric</u>) Rem: Mixed Hodge structures on \mathcal{M}^* are found by Morgan(1978). But they are not unique. Consider the dual Lie algebra $\mathfrak u$ of $\mathcal M^*$ equipped with the dual $\mathbb R\text{-mixed}$ Hodge str..

We say that a rep. of \mathfrak{u} is mixed Hodge if it is a morphism of \mathbb{R} -mxd Hdg str.

Theorem (K.)

We can construct an explicit \mathbb{R} -VMHS from a mixed Hodge representation of \mathfrak{u} .

- The greater part of the constructions are based on "Formality" arguments of Deligne–Griffiths–Morgan–Sullivan
- By the de Rham homotopy theory(Sullivan), u can be identified with π₁(M) ⊗ ℝ. But our ℝ-mxd Hdg str and VMHS construction does not depend on the base point and so this is different from Theorem (Hain-Zucker).
- Our construction is functorial for holomorphic submersions.

Detail of mixed Hodge str. on \mathcal{M}^*

- We construct a "real" 1-minimal model $\phi: \mathcal{M}^* \to \ker d^c \subset A^*_{dR}(M)$ with a grading $\mathcal{M}^* = \bigoplus \mathcal{M}^*_k$. (dd^c -Lemma)
- We construct a "complex" 1-minimal model $\varphi: \mathcal{N}^* \to \ker \partial \subset A^*_{dR}(M) \otimes \mathbb{C} \text{ with a bigrading}$ $\mathcal{N}^* = \bigoplus (\mathcal{N}^*)^{P,Q}. \quad (\partial \overline{\partial}\text{-Lemma})$
- We take an isomorphism *I* : *M*^{*}_C → *N* which is compatible with filtrations *W_k*(*M*^{*}) = ⊕_{i≤k} *M*^{*}_i and *W_k*(*N*^{*}) = ⊕_{P+Q≤k}(*N*^{*})^{P,Q} and a homotopy *H* : *M*^{*}_C → *A*^{*}(*M*) ⊗ C ⊗ [*t*, *dt*] from φ ∘ *I* to φ.
 By *F^r*(*M*^{*}_C) = *I*⁻¹(⊕_{P≥r}(*N*^{*})^{P,Q}), we define an ℝ-mixed Hodge structure on *M*^{*}.

Detail of \mathbb{R} -VMHS

For a mxd Hdg \mathfrak{u} -rep. $\Omega : \mathfrak{u} \to \operatorname{End}(V, W, F)$, we can construct the \mathbb{R} -VMHS ($\mathbf{E}, \mathbf{W}_*, \mathbf{F}^*$) so that:

- **E** is the trivial C^{∞} -vector bundle $M \times V$ with the flat connection $d + \phi(\Omega)$.
- **W** is the filtration of the vector bundle $M \times V$ induced by the weight filtration W_* on V.
- We can take a gauge transformation A of the vector bundle $M \times V_{\mathbb{C}}$ such that $\varphi \circ \mathcal{I}(\Omega) = A^{-1}dA + A^{-1}\phi(\Omega)A$.

• $\mathbf{F}^* = A\mathbf{F}_0^*$ such that \mathbf{F}_0^* is the filtration of the vector bundle $M \times V_{\mathbb{C}}$ induced by the Hodge filtration F^* on $V_{\mathbb{C}}$.

Main construction(Non-unipoten case)

Let (M, g) be a cpt Kähler manifold and $(\mathbf{E}_0, \mathbf{F}_0^*)$ a \mathbb{R} -VHS with a polarization **S**.

Assume the monodromy rep. of

- $\mathbf{E}_0 = \pi_1(M, x) \setminus (\tilde{M} \times V_0) \text{ is Zariski-dense in } T = \operatorname{Aut}(V, S).$
- We consider the T-equivariant de Rham DGA
- $A^*(M, \mathcal{O}(T))$. (Deligne, Hain)

Take the <u>canonical</u> "*T*-equiv." Sullivan 1-minimal model $\phi : \mathcal{M}^* \to \mathcal{A}^*(\mathcal{M}, \mathcal{O}(\mathcal{T})).$

We can construct a canonical \mathbb{R} -mixed Hodge structure on \mathcal{M}^* which is compatible with the *T*-action.

Consider the dual Lie algebra $\mathfrak u$ of $\mathcal M^*$ equipped with the dual $\mathbb R\text{-mixed}$ Hodge str..

We say that a T-equiv. rep. of \mathfrak{u} is mixed Hodge if it is a morphism of \mathbb{R} -mxd Hdg str.

Theorem (K.)

We can construct an explicit \mathbb{R} -VMHS ($\mathbf{E}, \mathbf{W}_*, \mathbf{F}^*$) from a mixed Hodge T-equivariant representation of \mathfrak{u} .

Note: \mathbb{R} -VHS on each $Gr_{\mathbf{W}}^{k}(\mathbf{E})$ given by "Schur functors" of starting \mathbb{R} -VHS \mathbf{E}_{0} . (Recall Rep. Theory of SO(N))

Examples (Kuranishi theory)

Let U be a simple T-module (considered as the trivial u-rep.)

Via the DGLA technique, we obtain a "versal deformation" (Schlessinger's hull) of *T*-equiv u-reps $\Omega : \mathfrak{u} \to \operatorname{End}(U) \otimes R$.

R is the ring of "analytic functions on Kuranishi space"

Proposition (K.)

We can obtain a \mathbb{R} -mixed Hodge structure (maybe not unique) on $U \otimes R$ such that $\Omega : \mathfrak{u} \to \operatorname{End}(U) \otimes R \to \operatorname{End}(U \otimes R)$ is mixed Hodge. Thus we construct \mathbb{R} -VMHS from Ω .

Inspired by the work of Eyssidieux-Simpson (2011)