Holomorphic Curves in Compact Complex Parallelizable Manifold $\Gamma \backslash \mathrm{SL}(2, \mathbb{C})$

Ryoichi Kobayashi (Nagoya University)

Analytic and Algebraic Geometry, ICTS, 20 March, 2018

Compact ccomplex parallelizable manifolds.

- (Definition) A compact complex manifold X^{n} is said to be parallelizable iff $T^{(1,0)} X \cong \mathcal{O}_{X}^{\oplus n}$ holds.

Let X be a compact complex parallelizable manifold. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $\operatorname{Lie}\left(\operatorname{Aut}_{\mathcal{O}}(X)\right)_{0}$ then $\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} c_{i j}^{k} e_{k}$ where $c_{i j}^{k}$ are constant. Therefore \exists a discrete cocompact $\Gamma \subset \operatorname{Aut}_{\mathcal{O}}(X)_{0}$ such that $X=\Gamma \backslash \operatorname{Aut}_{\mathcal{O}}(X)_{0}$.

- (Classical results)
[Wang (1954)] A compact Kähler manifold X^{n} is parallelizable iff $X=T^{n}$.
[Grauert-Remmert (1962)] $\forall H \underset{\sim}{H}$ a hypersurface, $\exists!\widetilde{H} \subset \operatorname{Alb}(X)$ a hypersurface s.th. $H=\alpha^{-1}(H)$ where $\alpha: X \rightarrow \operatorname{Alb}(X)$ is the Albanese map.

Huckleberry-Winkelmann's results on subvarieties of compact complex parallelizable manifold.
[Huckleberry-Winkelmann (1993)]
(1) Let G be a simple complex Lie group and $X=\Gamma \backslash G$ a compact complex parallelizablen manifold. Then for any Kähler subvarieties Z of X we have $\operatorname{codim} Z \geq \sqrt{\operatorname{dim} G}$.
(2) Let G be a semi-simple complex Lie group and $X=\Gamma \backslash G$ a compact complex parallelizable manifold. Then for any Kähler subvarieties Z of X we have $\operatorname{dim} Z \leq \frac{1}{3} \operatorname{dim} X$.
(3) Let Z be an irreducible subvariety of $X=\Gamma \backslash G$. Suppose that $0<\kappa(Z)<\operatorname{dim} Z$. Then the pluricanonical map of Z is described group theoretically as $Z \rightarrow H \backslash Z$ where H is roughly identified with $\operatorname{Aut}_{\mathcal{O}}(Z)_{0}$.
(4) (Bloch-Ochiai type theorem) Let $f: \mathbb{C} \rightarrow X=\Gamma \backslash G$ be an entire holomorphic curve. Then the Zariski closure $Z=\overline{f(\mathbb{C})}$ is an orbit of a subgroup of G.

Huckleberry-Winkelmann's question

- (Question) How to construct subvarieties of the compact complex parallelizable manifold $X:=\Gamma \backslash \mathrm{SL}(2, \mathbb{C})$ other than orbits ?

Let A be a maximal torus of $\operatorname{SL}(2, \mathbb{C})$ such that $\Gamma \cap A \cong \mathbb{Z}$ (i.e., $A \Gamma$ is closed in $\operatorname{SL}(2, \mathbb{C})$). Then any translation of the image of A in $X=\Gamma \backslash \mathrm{SL}(2, \mathbb{C})$ is a compact torus embedded in X.

Therefore it is natural to ask the following question :

- (Sub-Question) Are there proper subvarieties of $X=\Gamma \backslash \mathrm{SL}(2, \mathbb{C})$ other than orbits of a maximal torus?

Note :

1. $X=\Gamma \backslash \operatorname{SL}(2, \mathbb{C})$ is non-Kähler.
2. The Albanese map of $X=\Gamma \backslash \mathrm{SL}(2, \mathbb{C})$ is trivial.

Therefore only codimension two subvarieties of X (i.e., holomorphic curves) are of interest.

Main Theorem

We consider the case $G=\mathrm{SL}(2, \mathbb{C}), \Gamma \subset \mathrm{SL}(2, \mathbb{C})$ a cocompact lattice and

$$
X=\Gamma \backslash \mathrm{SL}(2, \mathbb{C})
$$

an associated compact complex parallelizable manifold.

- (Theorem) Let M be a compact Riemann surface and

$$
f: M \rightarrow X
$$

a non-constant holomorphic map. Then f decomposes into the composition $t \circ h \circ \alpha$, where $\alpha: M \rightarrow \operatorname{Alb}(M)$ is the Albanese map, $h: \operatorname{Alb}(X) \rightarrow X$ has its image in a maximal torus $T \hookrightarrow X$ defining an algebraic group homomorphism $h: \operatorname{Alb}(M) \rightarrow T$ and $t: X \rightarrow X$ is a right translation by some element of $\operatorname{SL}(2, \mathbb{C})$.

Outline of Proof, I

- Set up : $G:=\mathrm{SL}(2, \mathbb{C}), \Gamma \subset G$ a cocompact lattice.
- We consider a compact complex parallelizable manifold

$$
X:=\Gamma \backslash G .
$$

$\pi: G \rightarrow X$ the canonical projection.
$\operatorname{Aut}_{\mathcal{O}}(X)_{0}=G=\operatorname{SL}(2, \mathbb{C}) . \pi_{1}(X)=\Gamma$.

- CASE 1 : Suppose that

$$
f: M \rightarrow X
$$

is a non-constant holomorphic map from a compact Riemann surface M s.th. $f(M)$ has genus ≥ 2.

May assume that f is of degree 1 onto its image.

- (proof by contradiction) Want to show it is impossible.

Outline of Proof, II

- $f: M \rightarrow X=\Gamma \backslash G$ a non-constant holomorphic map as above.
- $m:=f_{*}: \pi_{1}(M) \rightarrow \Gamma=\pi_{1}(X)$.
- $\mathbb{D}_{m}:=\operatorname{Ker} m \backslash \mathbb{D}$.
$\exists f_{m}: \mathbb{D}_{m} \rightarrow G$ a lift of $f: M \rightarrow X$.
This is canonically defined as soon as we fix a lift of one point.
$q: \mathbb{D}_{m} \rightarrow M$ the Galois covering with $\operatorname{Gal}\left(\mathbb{D}_{m}: M\right)=\operatorname{Ker} m \backslash \pi_{1}(M)$.
$\widetilde{m}: \operatorname{Ker} m \backslash \pi_{1}(M) \rightarrow \Gamma$ is injective.
- (Lemma 1) (1) $f: M \rightarrow X$ lifts to $f_{m}: \mathbb{D}_{m} \rightarrow G$ and $\pi \circ f_{m}=f \circ q$.
(2) To any $\sigma \in \operatorname{Gal}\left(\mathbb{D}_{m}: M\right)$ associates $m(\sigma) \in \operatorname{Gal}(G: X)$ and $f_{m} \circ \sigma=m(\sigma) \circ f_{m}$.
(3) \mathbb{D}_{m} is non-compact and $\left|\operatorname{Gal}\left(\mathbb{D}_{m}: M\right)\right|=\left|\operatorname{Ker} m \backslash \pi_{1}(M)\right|=\infty$.

Outline of Proof, III

- We consider a compact hyperbolic 3-manifold

$$
Z=\Gamma \backslash \mathbb{H}^{3}
$$

- $\pi_{1}(Z)=\Gamma$.

May assume : $\operatorname{Isom}_{0}(Z)=\{1\}$.

- \exists a natural fibration

$$
\mathrm{SU}(2) \rightarrow X \xrightarrow{p} Z .
$$

- $\varpi: \mathbb{H}^{3} \rightarrow Z=\Gamma \backslash \mathbb{H}^{3}$: the canonical projection.
- \mathbb{D}_{m} decompose into fundamental domains wrt. the action of $\operatorname{Gal}\left(\mathbb{D}_{m}: M\right)=\operatorname{Ker} m \backslash \pi_{1}(M)$. May assume $o \in \mathbb{D}_{m}$ and $\varpi\left(f_{m}(o)\right)=o \in \mathbb{B}^{3}\left(\mathbb{B}^{3}\right.$ and \mathbb{H}^{3} identified canonically).
- \mathbb{H}^{3} decomposes into fundamental domains wrt. the action of Γ.
- We compare two metrics on G one induced from the hyperbolic metric on \mathbb{H}^{3} and the other induced from the Fubini-Study metric of \mathbb{P}^{4}.

Outline of Proof, IV

- We consider the composition

$$
f_{m}: \mathbb{D}_{m} \rightarrow G=\operatorname{SL}(2, \mathbb{C}) \hookrightarrow \mathbb{Q}^{3} \hookrightarrow \mathbb{P}^{4} .
$$

Let "length" mean the minimum length of strings of adjacent fundamental domains starting at reference fundamental domain. Set
$\mathbb{D}_{m}(n)_{\operatorname{Ker} m \backslash \pi_{1}(M), \mathbb{D}_{m}}:=\left\{x \in \mathbb{D}_{m} \mid\right.$ length $\left._{\operatorname{Ker} m \backslash \pi_{1}(M), \mathbb{D}_{m}}(x, o)=n\right\}$,
$n^{\prime}:=\inf \left\{\operatorname{length}_{\Gamma, \mathbb{H}^{3}}\left(\varpi f_{m}(x), o\right) \mid x \in \mathbb{D}_{m}(n)_{\operatorname{Ker} m \backslash \pi_{1}(M), \mathbb{D}_{m}}\right\}$.

- (Condition C) $\left(\exists \alpha>\frac{1}{2}\right)(\exists C>0)(\forall n \gg 1)\left(\alpha n-C \leq n^{\prime}\right)$
- (Lemma 2 [Basic Comparison]) Assume (Condition C). Then : $\left(\exists C^{\prime}>0\right)$ s.th.

$$
\left(\left.f_{m}^{*} g_{\mathrm{FS}}\right|_{R \ni x} \leq \exp \left\{-\left(\operatorname{dist}_{g_{\mathrm{hyp}}, \mathbb{D}_{m}}(x, o)-C^{\prime}\right)\right\} d s_{\mathrm{hyp}}^{2}\right)
$$

holds on \mathbb{D}_{m}, where R is a fundamental domain in \mathbb{D}_{m} wrt. the action of $\operatorname{Gal}\left(\mathbb{D}_{m}: M\right)$.

Outline of Proof, V

- (Lemma 3) Assume (Condition C).
(1) $f_{m}^{*} g_{\mathrm{FS}}$ is uniformly equivalent to $d s_{\text {euc }}^{2}$ induced from $\mathbb{D}_{m} \subset \mathbb{D} \subset \mathbb{R}^{2}$.
(2) $\exists C>0$ s.th. $\operatorname{Area}_{f}(r):=\int_{\mathbb{D}_{m}(r)} f^{*} g_{\mathrm{FS}} \leq C$.
- (Lemma 4) Assume (Condition C). We mean by $[t]$ the circle $|z|=t$. For the length of $f_{m}\left(\partial \mathbb{D}_{m}[r]\right)$ we have the following. Set

$$
L(t):=\operatorname{length}_{\mathrm{FS}}\left(f_{m}\left(\partial \mathbb{D}_{m}[t]\right)\right) \subset \mathbb{Q}^{3}
$$

Then

$$
\lim _{t \rightarrow 1} f_{m}\left(\partial \mathbb{D}_{m}[t]\right)
$$

is rectifiable and

$$
\lim _{t \rightarrow 1} L(t)<\infty
$$

Moreover

$$
\lim _{t \rightarrow 1} f_{m}\left(\partial \mathbb{D}_{m}[t]\right)
$$

lies in $\mathbb{Q}^{2}=\mathbb{Q}^{3} \backslash G$.

Outline of Proof, VI

- (Geometric Measure Theory [Bishop's Theorem]) Let $\left\{A_{n}\right\}$ be a sequence of pure $(2 k)$ dimensional \mathbb{C}-analytic sets in an open set U of \mathbb{C}^{n} converging to a set $A \subset U$. Let the real ($2 k$) dimensional volumes of A_{n} be finite and bounded by some constant b. Then A is a \mathbb{C}-analytic set of U.
- (Lemma 5 [Application of Bishop's Theorem]) Assume (Condition C). We mean by (t) the intersection with the subdisk $|z|<t$. Set

$$
Y:=\lim _{t \rightarrow 1} f_{m}\left(\mathbb{D}_{m}(t)\right)=\overline{f_{m}\left(\mathbb{D}_{m}\right)} \subset \mathbb{Q}^{3} \subset \mathbb{P}^{4}
$$

Then
(1) $Y \cap \mathbb{Q}^{2}\left(\mathbb{Q}^{2}=\mathbb{Q}^{3} \backslash G\right)$ is a finite set.
(2) Y is an algebraic curve in $\mathbb{Q}^{3}=\bar{G} \subset \mathbb{P}^{4}$.
(3) Y intersects \mathbb{Q}^{2} transversally.

Outline of Proof, VII

This is a picture page. If my time is not enough I will skip this page. (Lemma 5)
$\Rightarrow \partial \mathbb{D}_{m} \cap \mathbb{D}\left(\mathbb{D}_{m}\right.$ being realized as a fundamental domain w.r.to the action of $\operatorname{Ker} m$ on \mathbb{D}) consists of finitely many arcs and each arc decomposes into infinitely many geodesic segments.
\Rightarrow we can draw a picture of how $f(M) \subset X$ is developed in a fundamental domain F (contractible nodulo $\mathrm{SU}(2)$) in G wrt. the action of Γ as a Riemann surface with boundary. The boundary consists of polygons traversing several faces of F and circles each of which appears as a boundary in a face of F of a Riemann surface attached to a polygon.

Outline of Proof, VIII

If there exists a non-constant holomorphic map $f: M \rightarrow X$ which is degree 1 onto its image $f(M)$ whose genus is ≥ 2, then (Condition C) holds.

- (Lemma 6) (Condition C) holds, for $f: M \rightarrow X$ which is degree 1 onto its image $f(M)$ (the genus of $M \geq 2$).

Strategy of proof of (Lemma 6).
By a measure theoretic argument, we prove :
The following situation never occurs :
\exists a Borel set Θ in the angle space $|z|=1$ with $\lambda(\Theta)>0$ s.th.
for $\alpha \leq \frac{1}{2}$ there is no $C>0$ satisfying $\liminf _{n \rightarrow \infty}\left(n^{\prime}-\alpha n\right)>-C$ for geodesic rays in \mathbb{D}_{m} emanating from $o \in \mathbb{D}_{m}$ corresponding to the angle parameter in Θ.

Outline of Proof, IX

Besides technicalities, the proof of (Lemma 6) is based on the following simple observation :

Observation. For $c, k>0$ we define
$\mathbb{D}_{k, c}=\left\{w=u+i v \mid u \in I, v>k c, \operatorname{diam}_{\text {euc }}(I)=c\right\} \subset \mathbb{H}$.
Then Area $\mathrm{hyp}\left(\mathbb{D}_{k, c}\right)=\int_{u \in I} d u \int_{v>k c} \frac{d v}{v^{2}}=k^{-1}$.
$F \subset \mathbb{H}$ a fundamental domain corr. to a compact Riemann surface of genus $g \geq 2$. Assume that the Euclidean projection of F on the u-axis is the interval I of Euclidean diameter $c>0$.
Gauss-Bonnet $\Rightarrow \operatorname{Area}_{\mathrm{hyp}}(F)=2 \pi(2 g-2) \geq 4 \pi$.
γ : the hyperbolic geodesic in \mathbb{H} asymptotic to ∂I (2 points in \mathbb{R}).

- Claim. $F \cap \gamma \neq \emptyset$.

Proof: If $F \cap \gamma=\emptyset$ then $F \subset \mathbb{D}_{2^{-1}, c}$. So $\operatorname{Area}_{\text {hyp }}(F)<2<4 \pi$.
This is a contradiction.

Outline of Proof, X

We have seen:
If $f: M \rightarrow X$ is a non-constant holomorphic map s.th. the genus of $f(M)$ is ≥ 2 and f is degree 1 onto its image $f(M)$, then :

- $\overline{f_{m}\left(\mathbb{D}_{m}\right)} \subset \mathbb{Q}^{3}$ is an algebraic curve.
- $\overline{f_{m}\left(\mathbb{D}_{m}\right)}$ intersects $\mathbb{Q}^{2}=\mathbb{Q}^{3} \backslash G$ at finitely many points transversally with multiplicity 1.

However, in the present setting, the infinite group $\operatorname{Ker} m \backslash \pi_{1}(M)$ operates on $f_{m}\left(\mathbb{D}_{m}\right)=\overline{f_{m}\left(\mathbb{D}_{m}\right)} \backslash\{$ finitely many points $\}$ and the quotient curve is the normalization of $f(M)$.
This is impossible.
Therefore CASE 1 never occurs.

Outline of Proof, XI

- CASE 2. Enough to consider the case $f(M)$ has genus 1 .

2-1. Assume first that the genus of M is 1, i.e., $g(M)=1$ and $f: M \rightarrow f(M)$ is of degree 1 .

We replace \mathbb{D}_{m} by \mathbb{C}_{m} in a similar way. Then \mathbb{C}_{m} is either \mathbb{C} or \mathbb{C}^{*}.

1) If $\mathbb{C}_{m}=\mathbb{C}$ we get a contradiction.
2) So $\mathbb{C}_{m}=\mathbb{C}^{*}$ and $\overline{f_{m}\left(\mathbb{C}_{m}\right)}$ is contained in a right translation of a maximal torus T in X.
$2-2$. Assume second that the genus of M is ≥ 2. In this case $f: M \rightarrow X$ decomposes into $\alpha: M \rightarrow \operatorname{Alb}(M)$, $h: \operatorname{Alb}(M) \rightarrow T$ an algebraic group homomorphism and t a right translation by an element of G.
