Holomorphic Curves in Compact Complex Parallelizable Manifold $\Gamma \backslash \mathrm{SL}(2,\mathbb{C})$

Ryoichi Kobayashi (Nagoya University)

Analytic and Algebraic Geometry, ICTS, 20 March, 2018

Compact ccomplex parallelizable manifolds.

• (Definition) A compact complex manifold X^n is said to be parallelizable iff $T^{(1,0)}X \cong \mathcal{O}_X^{\oplus n}$ holds.

Let X be a compact complex parallelizable manifold. If $\{e_1, \ldots, e_n\}$ is a basis of $\operatorname{Lie}(\operatorname{Aut}_{\mathcal{O}}(X))_0$ then $[e_i, e_j] = \sum_{k=1}^n c_{ij}^k e_k$ where c_{ij}^k are constant. Therefore \exists a discrete cocompact $\Gamma \subset \operatorname{Aut}_{\mathcal{O}}(X)_0$ such that $X = \Gamma \setminus \operatorname{Aut}_{\mathcal{O}}(X)_0$.

• (Classical results)

[Wang (1954)] A compact Kähler manifold X^n is parallelizable iff $X = T^n$.

[Grauert-Remmert (1962)] $\forall H$ a hypersurface, $\exists ! \widetilde{H} \subset Alb(X)$ a hypersurface s.th. $H = \alpha^{-1}(\widetilde{H})$ where $\alpha : X \to Alb(X)$ is the Albanese map.

Huckleberry-Winkelmann's results on subvarieties of compact complex parallelizable manifold.

[Huckleberry-Winkelmann (1993)]

(1) Let G be a simple complex Lie group and $X = \Gamma \setminus G$ a compact complex parallelizablen manifold. Then for any Kähler subvarieties Z of X we have $\operatorname{codim} Z \ge \sqrt{\dim G}$.

(2) Let G be a semi-simple complex Lie group and $X = \Gamma \setminus G$ a compact complex parallelizable manifold. Then for any Kähler subvarieties Z of X we have $\dim Z \leq \frac{1}{3} \dim X$.

(3) Let Z be an irreducible subvariety of $X = \Gamma \setminus G$. Suppose that $0 < \kappa(Z) < \dim Z$. Then the pluricanonical map of Z is described group theoretically as $Z \to H \setminus Z$ where H is roughly identified with $\operatorname{Aut}_{\mathcal{O}}(Z)_0$.

(4) (Bloch-Ochiai type theorem) Let $f : \mathbb{C} \to X = \Gamma \setminus G$ be an entire holomorphic curve. Then the Zariski closure $Z = \overline{f(\mathbb{C})}$ is an orbit of a subgroup of G.

Huckleberry-Winkelmann's question

- (Question) How to construct subvarieties of the compact complex parallelizable manifold $X := \Gamma \backslash SL(2, \mathbb{C})$ other than orbits ?
- Let A be a maximal torus of $SL(2, \mathbb{C})$ such that $\Gamma \cap A \cong \mathbb{Z}$ (i.e., $A\Gamma$ is closed in $SL(2, \mathbb{C})$). Then any translation of the image of A in $X = \Gamma \backslash SL(2, \mathbb{C})$ is a compact torus embedded in X.

Therefore it is natural to ask the following question :

• (Sub-Question) Are there proper subvarieties of $X = \Gamma \backslash SL(2, \mathbb{C})$ other than orbits of a maximal torus ?

Note :

1. $X = \Gamma \backslash SL(2, \mathbb{C})$ is non-Kähler.

2. The Albanese map of $X = \Gamma \backslash SL(2, \mathbb{C})$ is trivial.

Therefore only codimension two subvarieties of X (i.e., holomorphic curves) are of interest.

Main Theorem

We consider the case $G = SL(2, \mathbb{C})$, $\Gamma \subset SL(2, \mathbb{C})$ a cocompact lattice and

 $X = \Gamma \backslash \mathrm{SL}(2, \mathbb{C})$

an associated compact complex parallelizable manifold.

• (Theorem) Let M be a compact Riemann surface and

$$f: M \to X$$

a non-constant holomorphic map. Then f decomposes into the composition $t \circ h \circ \alpha$, where $\alpha : M \to \operatorname{Alb}(M)$ is the Albanese map, $h : \operatorname{Alb}(X) \to X$ has its image in a maximal torus $T \hookrightarrow X$ defining an algebraic group homomorphism $h : \operatorname{Alb}(M) \to T$ and $t : X \to X$ is a right translation by some element of $\operatorname{SL}(2, \mathbb{C})$.

Outline of Proof, I

- Set up : $G := \mathrm{SL}(2, \mathbb{C})$, $\Gamma \subset G$ a cocompact lattice.
- We consider a compact complex parallelizable manifold

$$X := \Gamma \backslash G .$$

 $\pi: G \to X$ the canonical projection. Aut_{\mathcal{O}} $(X)_0 = G = SL(2, \mathbb{C}).$ $\pi_1(X) = \Gamma.$

• CASE 1 : Suppose that

 $f: M \to X$

is a non-constant holomorphic map from a compact Riemann surface M s.th. f(M) has genus ≥ 2 . May assume that f is of degree 1 onto its image.

• (proof by contradiction) Want to show it is impossible.

・同下 ・ヨト ・ヨト 三日

Outline of Proof, II

- $f: M \to X = \Gamma \backslash G$ a non-constant holomorphic map as above.
- $m := f_* : \pi_1(M) \to \Gamma = \pi_1(X).$
- $\mathbb{D}_m := \operatorname{Ker} m \setminus \mathbb{D}.$

 $\exists f_m : \mathbb{D}_m \to G \text{ a lift of } f : M \to X.$ This is canonically defined as soon as we fix a lift of one point. $q : \mathbb{D}_m \to M$ the Galois covering with $\operatorname{Gal}(\mathbb{D}_m : M) = \operatorname{Ker} m \setminus \pi_1(M).$ $\widetilde{m} : \operatorname{Ker} m \setminus \pi_1(M) \to \Gamma$ is injective.

- (Lemma 1) (1) f : M → X lifts to f_m : D_m → G and π ∘ f_m = f ∘ q.
 (2) To any σ ∈ Gal (D_m : M) associates m(σ) ∈ Gal (G : X) and f_m ∘ σ = m(σ) ∘ f_m.
- (3) \mathbb{D}_m is non-compact and $|\operatorname{Gal}(\mathbb{D}_m:M)| = |\operatorname{Ker} m \setminus \pi_1(M)| = \infty$.

Outline of Proof, III

• We consider a compact hyperbolic 3-manifold

$$Z = \Gamma \backslash \mathbb{H}^3$$

• $\pi_1(Z) = \Gamma$. May assume : $\operatorname{Isom}_0(Z) = \{1\}$.

 $\bullet \ \exists$ a natural fibration

$$\operatorname{SU}(2) \to X \xrightarrow{p} Z$$
.

- $\varpi : \mathbb{H}^3 \to Z = \Gamma \backslash \mathbb{H}^3$: the canonical projection.
- \mathbb{D}_m decompose into fundamental domains wrt. the action of $\operatorname{Gal}(\mathbb{D}_m:M) = \operatorname{Ker} m \setminus \pi_1(M)$. May assume $o \in \mathbb{D}_m$ and $\varpi(f_m(o)) = o \in \mathbb{B}^3$ (\mathbb{B}^3 and \mathbb{H}^3 identified canonically).
- \mathbb{H}^3 decomposes into fundamental domains wrt. the action of $\Gamma.$
- We compare two metrics on G one induced from the hyperbolic metric on \mathbb{H}^3 and the other induced from the Fubini-Study metric of \mathbb{P}^4 .

Outline of Proof, IV

• We consider the composition

$$f_m: \mathbb{D}_m \to G = \mathrm{SL}(2, \mathbb{C}) \hookrightarrow \mathbb{Q}^3 \hookrightarrow \mathbb{P}^4$$
.

Let "length" mean the minimum length of strings of adjacent fundamental domains starting at reference fundamental domain. Set

$$\mathbb{D}_m(n)_{\operatorname{Ker} m \setminus \pi_1(M), \mathbb{D}_m} := \{ x \in \mathbb{D}_m | \operatorname{length}_{\operatorname{Ker} m \setminus \pi_1(M), \mathbb{D}_m}(x, o) = n \} ,$$

$$n' := \inf \{ \operatorname{length}_{\Gamma, \mathbb{H}^3}(\varpi f_m(x), o) \, | \, x \in \mathbb{D}_m(n)_{\operatorname{Ker} m \setminus \pi_1(M), \mathbb{D}_m} \} .$$

- (Condition C) $(\exists \alpha > \frac{1}{2}) \ (\exists C > 0) \ (\forall n \gg 1) \ (\alpha n C \le n')$
- (Lemma 2 [Basic Comparison]) Assume (Condition C). Then : $(\exists C' > 0)$ s.th.

$$(f_m^*g_{\mathbf{FS}}|_{R\ni x} \le \exp\{-(\operatorname{dist}_{g_{\mathbf{hyp}},\mathbb{D}_m}(x,o) - C')\} ds_{\mathbf{hyp}}^2)$$

holds on \mathbb{D}_m , where R is a fundamental domain in \mathbb{D}_m wrt. the action of $\operatorname{Gal}(\mathbb{D}_m:M)$.

Outline of Proof, V

• (Lemma 3) Assume (Condition C).

(1) f^{*}_mg_{FS} is uniformly equivalent to ds²_{euc} induced from D_m ⊂ D ⊂ R².
(2) ∃C > 0 s.th. Area_f(r) := ∫_{D_m(r)} f^{*}g_{FS} ≤ C.

• (Lemma 4) Assume (Condition C). We mean by [t] the circle |z| = t. For the length of $f_m(\partial \mathbb{D}_m[r])$ we have the following. Set

$$L(t) := \text{length}_{\text{FS}}(f_m(\partial \mathbb{D}_m[t])) \subset \mathbb{Q}^3$$

Then

$$\lim_{t \to 1} f_m(\partial \mathbb{D}_m[t])$$

is rectifiable and

 $\lim_{t \to 1} L(t) < \infty \; .$

Moreover

 $\lim_{t \to 1} f_m(\partial \mathbb{D}_m[t])$

lies in $\mathbb{Q}^2 = \mathbb{Q}^3 \setminus G$.

Ryoichi Kobayashi (Nagoya University) Holon

Outline of Proof, VI

• (Geometric Measure Theory [Bishop's Theorem]) Let $\{A_n\}$ be a sequence of pure (2k) dimensional \mathbb{C} -analytic sets in an open set U of \mathbb{C}^n converging to a set $A \subset U$. Let the real (2k) dimensional volumes of A_n be finite and bounded by some constant b. Then A is a \mathbb{C} -analytic set of U.

• (Lemma 5 [Application of Bishop's Theorem]) Assume (Condition C). We mean by (t) the intersection with the subdisk |z| < t. Set

$$Y := \lim_{t \to 1} f_m(\mathbb{D}_m(t)) = \overline{f_m(\mathbb{D}_m)} \subset \mathbb{Q}^3 \subset \mathbb{P}^4$$

Then

(1) $Y \cap \mathbb{Q}^2$ ($\mathbb{Q}^2 = \mathbb{Q}^3 \setminus G$) is a finite set.

(2) Y is an algebraic curve in $\mathbb{Q}^3 = \overline{G} \subset \mathbb{P}^4$.

(3) Y intersects \mathbb{Q}^2 transversally.

イロト 不得 トイヨト イヨト 二日

Outline of Proof, VII

This is a picture page. If my time is not enough I will skip this page. (Lemma 5)

 $\Rightarrow \partial \mathbb{D}_m \cap \mathbb{D}$ (\mathbb{D}_m being realized as a fundamental domain w.r.to the action of Ker m on \mathbb{D}) consists of finitely many arcs and each arc decomposes into infinitely many geodesic segments.

 \Rightarrow we can draw a picture of how $f(M) \subset X$ is developed in a fundamental domain F (contractible nodulo SU(2)) in G wrt. the action of Γ as a Riemann surface with boundary. The boundary consists of polygons traversing several faces of F and circles each of which appears as a boundary in a face of F of a Riemann surface attached to a polygon.

(人間) トイヨト イヨト ニヨ

Outline of Proof, VIII

If there exists a non-constant holomorphic map $f: M \to X$ which is degree 1 onto its image f(M) whose genus is ≥ 2 , then (Condition C) holds.

• (Lemma 6) (Condition C) holds, for $f: M \to X$ which is degree 1 onto its image f(M) (the genus of $M \ge 2$).

Strategy of proof of (Lemma 6).

By a measure theoretic argument, we prove :

The following situation never occurs :

 \exists a Borel set Θ in the angle space |z| = 1 with $\lambda(\Theta) > 0$ s.th. for $\alpha \leq \frac{1}{2}$ there is no C > 0 satisfying $\liminf_{n \to \infty} (n' - \alpha n) > -C$ for geodesic rays in \mathbb{D}_m emanating from $o \in \mathbb{D}_m$ corresponding to the angle parameter in Θ .

Outline of Proof, IX

Besides technicalities, the proof of (Lemma 6) is based on the following simple observation :

Observation. For c, k > 0 we define $\mathbb{D}_{k,c} = \{w = u + iv \mid u \in I, v > kc, \operatorname{diam}_{\operatorname{euc}}(I) = c\} \subset \mathbb{H}.$ Then $\operatorname{Area_{hyp}}(\mathbb{D}_{k,c}) = \int_{u \in I} du \int_{v > kc} \frac{dv}{v^2} = k^{-1}.$ $F \subset \mathbb{H}$ a fundamental domain corr. to a compact Riemann surface of genus $g \geq 2$. Assume that the Euclidean projection of F on the u-axis is the interval I of Euclidean diameter c > 0. Gauss-Bonnet $\Rightarrow \operatorname{Area_{hyp}}(F) = 2\pi(2g - 2) \geq 4\pi.$ γ : the hyperbolic geodesic in \mathbb{H} asymptotic to ∂I (2 points in \mathbb{R}).

• Claim. $F \cap \gamma \neq \emptyset$.

Proof : If $F \cap \gamma = \emptyset$ then $F \subset \mathbb{D}_{2^{-1},c}$. So $\operatorname{Area_{hyp}}(F) < 2 < 4\pi$. This is a contradiction.

Outline of Proof, X

We have seen :

If $f: M \to X$ is a non-constant holomorphic map s.th. the genus of f(M) is ≥ 2 and f is degree 1 onto its image f(M), then :

• $\overline{f_m(\mathbb{D}_m)} \subset \mathbb{Q}^3$ is an algebraic curve.

• $\overline{f_m(\mathbb{D}_m)}$ intersects $\mathbb{Q}^2 = \mathbb{Q}^3 \setminus G$ at finitely many points transversally with multiplicity 1.

However, in the present setting, the infinite group $\operatorname{Ker} m \setminus \pi_1(M)$ operates on $f_m(\mathbb{D}_m) = \overline{f_m(\mathbb{D}_m)} \setminus \{\text{finitely many points}\}$ and the quotient curve is the normalization of f(M).

This is impossible.

Therefore CASE 1 never occurs.

Outline of Proof, XI

• CASE 2. Enough to consider the case f(M) has genus 1.

2-1. Assume first that the genus of M is 1, i.e., g(M)=1 and $f:M\to f(M)$ is of degree 1.

We replace \mathbb{D}_m by \mathbb{C}_m in a similar way. Then \mathbb{C}_m is either \mathbb{C} or \mathbb{C}^* . 1) If $\mathbb{C}_m = \mathbb{C}$ we get a contradiction.

2) So $\mathbb{C}_m = \mathbb{C}^*$ and $\overline{f_m(\mathbb{C}_m)}$ is contained in a right translation of a maximal torus T in X.

2-2. Assume second that the genus of M is ≥ 2 . In this case $f: M \to X$ decomposes into $\alpha: M \to Alb(M)$, $h: Alb(M) \to T$ an algebraic group homomorphism and t a right translation by an element of G.