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Compact ccomplex parallelizable manifolds.

• (Definition) A compact complex manifold Xn is said to be parallelizable
iff T (1,0)X ∼= O⊕n

X holds.

Let X be a compact complex parallelizable manifold. If {e1, . . . , en} is a
basis of Lie(AutO(X))0 then [ei, ej ] =

∑n
k=1 ck

ijek where ck
ij are constant.

Therefore ∃ a discrete cocompact Γ ⊂ AutO(X)0 such that
X = Γ\AutO(X)0.

• (Classical results)

[Wang (1954)] A compact Kähler manifold Xn is parallelizable iff
X = Tn.

[Grauert-Remmert (1962)] ∀H a hypersurface, ∃!H̃ ⊂ Alb(X) a
hypersurface s.th. H = α−1(H̃) where α : X → Alb(X) is the Albanese
map.
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Huckleberry-Winkelmann’s results on subvarieties of compact
complex parallelizable manifold.

[Huckleberry-Winkelmann (1993)]

(1) Let G be a simple complex Lie group and X = Γ\G a compact
complex parallelizablen manifold. Then for any Kähler subvarieties Z of X
we have codimZ ≥

√
dim G.

(2) Let G be a semi-simple complex Lie group and X = Γ\G a compact
complex parallelizable manifold. Then for any Kähler subvarieties Z of X
we have dim Z ≤ 1

3 dim X.

(3) Let Z be an irreducible subvariety of X = Γ\G. Suppose that
0 < κ(Z) < dim Z. Then the pluricanonical map of Z is described group
theoretically as Z → H\Z where H is roughly identified with AutO(Z)0.

(4) (Bloch-Ochiai type theorem) Let f : C → X = Γ\G be an entire
holomorphic curve. Then the Zariski closure Z = f(C) is an orbit of a
subgroup of G.
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Huckleberry-Winkelmann’s question

• (Question) How to construct subvarieties of the compact complex
parallelizable manifold X := Γ\SL(2, C) other than orbits ?

Let A be a maximal torus of SL(2, C) such that Γ ∩ A ∼= Z (i.e., AΓ is
closed in SL(2, C)). Then any translation of the image of A in
X = Γ\SL(2, C) is a compact torus embedded in X.

Therefore it is natural to ask the following question :

• (Sub-Question) Are there proper subvarieties of X = Γ\SL(2, C) other
than orbits of a maximal torus ?

Note :
1. X = Γ\SL(2, C) is non-Kähler.
2. The Albanese map of X = Γ\SL(2, C) is trivial.
Therefore only codimension two subvarieties of X (i.e., holomorphic
curves) are of interest.
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Main Theorem

We consider the case G = SL(2, C), Γ ⊂ SL(2, C) a cocompact lattice and

X = Γ\SL(2, C)

an associated compact complex parallelizable manifold.

• (Theorem) Let M be a compact Riemann surface and

f : M → X

a non-constant holomorphic map. Then f decomposes into the
composition t ◦ h ◦ α, where
α : M → Alb(M) is the Albanese map,
h : Alb(X) → X has its image in a maximal torus T ↪→ X defining an
algebraic group homomorphism h : Alb(M) → T and
t : X → X is a right translation by some element of SL(2, C).
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Outline of Proof, I

• Set up : G := SL(2, C), Γ ⊂ G a cocompact lattice.

• We consider a compact complex parallelizable manifold

X := Γ\G .

π : G → X the canonical projection.
AutO(X)0 = G = SL(2, C). π1(X) = Γ.

• CASE 1 : Suppose that
f : M → X

is a non-constant holomorphic map from a compact Riemann surface M
s.th. f(M) has genus ≥ 2.
May assume that f is of degree 1 onto its image.

• (proof by contradiction) Want to show it is impossible.
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Outline of Proof, II

• f : M → X = Γ\G a non-constant holomorphic map as above.

• m := f∗ : π1(M) → Γ = π1(X).

• Dm := Ker m\D.

∃fm : Dm → G a lift of f : M → X.
This is canonically defined as soon as we fix a lift of one point.

q : Dm → M the Galois covering with Gal (Dm : M) = Ker m\π1(M).

m̃ : Ker m\π1(M) → Γ is injective.

• (Lemma 1) (1) f : M → X lifts to fm : Dm → G and π ◦ fm = f ◦ q.

(2) To any σ ∈ Gal (Dm : M) associates m(σ) ∈ Gal (G : X) and
fm ◦ σ = m(σ) ◦ fm.

(3) Dm is non-compact and |Gal (Dm : M)| = |Kerm\π1(M)| = ∞.
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Outline of Proof, III

• We consider a compact hyperbolic 3-manifold

Z = Γ\H3 .

• π1(Z) = Γ.
May assume : Isom0(Z) = {1}.

• ∃ a natural fibration
SU(2) → X

p→ Z .

• $ : H3 → Z = Γ\H3 : the canonical projection.

• Dm decompose into fundamental domains wrt. the action of
Gal (Dm : M) = Ker m\ π1(M). May assume o ∈ Dm and
$(fm(o)) = o ∈ B3 (B3 and H3 identified canonically).

• H3 decomposes into fundamental domains wrt. the action of Γ.

• We compare two metrics on G one induced from the hyperbolic metric
on H3 and the other induced from the Fubini-Study metric of P4.
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Outline of Proof, IV

• We consider the composition

fm : Dm → G = SL(2, C) ↪→ Q3 ↪→ P4 .

Let “length” mean the minimum length of strings of adjacent fundamental
domains starting at reference fundamental domain. Set

Dm(n)Ker m\π1(M),Dm
:= {x ∈ Dm | lengthKer m\π1(M),Dm

(x, o) = n} ,

n′ := inf{lengthΓ,H3($fm(x), o) |x ∈ Dm(n)Ker m\π1(M),Dm
} .

• (Condition C) (∃α > 1
2) (∃C > 0) (∀n � 1) (αn − C ≤ n′)

• (Lemma 2 [Basic Comparison] ) Assume (Condition C).
Then : (∃C ′ > 0) s.th.

( f∗
mgFS|R3x ≤ exp{−(distghyp,Dm(x, o) − C ′)} ds2

hyp )

holds on Dm, where R is a fundamental domain in Dm wrt. the action of
Gal (Dm : M).
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Outline of Proof, V
• (Lemma 3) Assume (Condition C).

(1) f∗
mgFS is uniformly equivalent to ds2

euc induced from Dm ⊂ D ⊂ R2.

(2) ∃C > 0 s.th. Areaf (r) :=
∫

Dm(r) f∗gFS ≤ C.

• (Lemma 4) Assume (Condition C). We mean by [t] the circle |z| = t.
For the length of fm(∂Dm[r]) we have the following. Set

L(t) := lengthFS(fm(∂Dm[t])) ⊂ Q3 .

Then
lim
t→1

fm(∂Dm[t])

is rectifiable and
lim
t→1

L(t) < ∞ .

Moreover
lim
t→1

fm(∂Dm[t])

lies in Q2 = Q3 \ G .
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Outline of Proof, VI

• (Geometric Measure Theory [Bishop’s Theorem] ) Let {An} be a
sequence of pure (2k) dimensional C-analytic sets in an open set U of Cn

converging to a set A ⊂ U . Let the real (2k) dimensional volumes of An

be finite and bounded by some constant b. Then A is a C-analytic set of
U .

• (Lemma 5 [Application of Bishop’s Theorem] ) Assume (Condition C).
We mean by (t) the intersection with the subdisk |z| < t. Set

Y := lim
t→1

fm(Dm(t)) = fm(Dm) ⊂ Q3 ⊂ P4 .

Then

(1) Y ∩ Q2 (Q2 = Q3 \ G) is a finite set.

(2) Y is an algebraic curve in Q3 = G ⊂ P4.

(3) Y intersects Q2 transversally.
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Outline of Proof, VII

This is a picture page. If my time is not enough I will skip this page.

(Lemma 5)

⇒ ∂Dm ∩ D (Dm being realized as a fundamental domain w.r.to the
action of Kerm on D) consists of finitely many arcs and each arc
decomposes into infinitely many geodesic segments.

⇒ we can draw a picture of how f(M) ⊂ X is developed in a
fundamental domain F (contractible nodulo SU(2)) in G wrt. the action
of Γ as a Riemann surface with boundary. The boundary consists of
polygons traversing several faces of F and circles each of which appears as
a boundary in a face of F of a Riemann surface attached to a polygon.
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Outline of Proof, VIII

If there exists a non-constant holomorphic map f : M → X which is
degree 1 onto its image f(M) whose genus is ≥ 2, then (Condition C)
holds.

• (Lemma 6) (Condition C) holds, for f : M → X which is degree 1 onto
its image f(M) (the genus of M ≥ 2).

Strategy of proof of (Lemma 6).

By a measure theoretic argument, we prove :

The following situation never occurs :

∃ a Borel set Θ in the angle space |z| = 1 with λ(Θ) > 0 s.th.
for α ≤ 1

2 there is no C > 0 satisfying lim infn→∞(n′ − αn) > −C
for geodesic rays in Dm emanating from o ∈ Dm corresponding to the
angle parameter in Θ.
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Outline of Proof, IX

Besides technicalities, the proof of (Lemma 6) is based on the following
simple observation :

Observation. For c, k > 0 we define
Dk,c = {w = u + iv |u ∈ I, v > kc, diameuc(I) = c} ⊂ H.
Then Areahyp(Dk,c) =

∫
u∈I du

∫
v>kc

dv
v2 = k−1.

F ⊂ H a fundamental domain corr. to a compact Riemann surface of
genus g ≥ 2. Assume that the Euclidean projection of F on the u-axis is
the interval I of Euclidean diameter c > 0.
Gauss-Bonnet ⇒ Areahyp(F ) = 2π(2g − 2) ≥ 4π.
γ : the hyperbolic geodesic in H asymptotic to ∂I (2 points in R).

• Claim. F ∩ γ 6= ∅.

Proof : If F ∩ γ = ∅ then F ⊂ D2−1,c. So Areahyp(F ) < 2 < 4π.
This is a contradiction.
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Outline of Proof, X

We have seen :

If f : M → X is a non-constant holomorphic map s.th. the genus of
f(M) is ≥ 2 and f is degree 1 onto its image f(M), then :

• fm(Dm) ⊂ Q3 is an algebraic curve.

• fm(Dm) intersects Q2 = Q3 \ G at finitely many points transversally
with multiplicity 1.

However, in the present setting, the infinite group Kerm\π1(M) operates
on fm(Dm) = fm(Dm)\{finitely many points} and the quotient curve is
the normalization of f(M).
This is impossible.
Therefore CASE 1 never occurs.
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Outline of Proof, XI

• CASE 2. Enough to consider the case f(M) has genus 1.

2-1. Assume first that the genus of M is 1, i.e., g(M) = 1 and
f : M → f(M) is of degree 1.

We replace Dm by Cm in a similar way. Then Cm is either C or C∗.

1) If Cm = C we get a contradiction.

2) So Cm = C∗ and fm(Cm) is contained in a right translation of a
maximal torus T in X.

2-2. Assume second that the genus of M is ≥ 2.
In this case f : M → X decomposes into α : M → Alb(M),
h : Alb(M) → T an algebraic group homomorphism and t a right
translation by an element of G.
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