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Classical Kepler varieties

hermitian vector space Z =Cn+1, rank = 2

Z1 ∶= {z = (z0, . . . , zn) ∈ Z ∶ z2
0 + . . . + z2

n = 0} complex light cone

Symplectic interpretation (cotangent bundle)

Z1 ≈ T ∗(Sn) ∖ {0} = {(x, ξ) ∶ ∥x∥ = 1, ξ ≠ 0, (x∣ξ) = 0}, z = x + iξ
2

contact manifold (cosphere bundle)

S1 ≈ S∗(Sn) = {(x, ξ) ∶ ∥x∥ = 1, ∥ξ∥ = 1, (x∣ξ) = 0}

polar decomposition
Z1 =R+ ⋅ S1
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Determinantal varieties

Z =Cr×s, rank = r ≤ s, 1 ≤ ` ≤ r

Z` ∶= {z ∈ Z ∶ rank(z) ≤ `} vanishing of all (` + 1) × (` + 1) −minors

Z̊` = {z ∈ Z ∶ rank(z) = `} = Z` ∖Z`−1 regular part

Z1 ∶= {z ∈ Z ∶ rank(z) ≤ 1} vanishing of all 2 × 2 −minors

Z̊1 ∶= {z ∈ Z ∶ rank(z) = 1} = Z1 ∖ {0}
S1 = {ξ ⊗ η∗ ∶ ξ ∈Cr, η ∈Cs ∥ξ∥ = 1 = ∥η∥}

Z̊1 =R+ ⋅ S1
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Let Z complex vector space and D ⊂ Z be a bounded domain. The group

G = Aut(D) = {g ∶D →D biholomorphic}

is a real Lie group by a deep theorem of H. Cartan. D is called
symmetric iff G acts transitively on D, and around each point o ∈D
there exists an involutive symmetry so ∈ G fixing o. By Harish-Chandra,
D can be realized as a convex circular domain, i.e. as the unit ball

D = {z ∈ Z ∶ ∥z∥ < 1}

for an (essentially unique) norm called the spectral norm. Then the
isotropy subgroup

K = {g ∈ G ∶ g(0) = 0}
is a compact group consisting of linear transformations. For domains
D = G/K of rank r > 1 the boundary ∂D will not be smooth and D is
only (weakly) pseudoconvex but not strongly pseudoconvex.
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Let Z =Cr×s, endowed with the operator norm ∥z∥ = sup spec(zz∗)1/2.
Then the matrix unit ball

D = {z ∈Cr×s ∶ ∥z∥ < 1} = {z ∈Cr×s ∶ I − zz∗ > 0}

is a symmetric domain, under the pseudo-unitary group

G = U(r, s) = {(a b
c d

) ∈ GL(r + s) ∶ (a b
c d

)(1 0
0 −1

)(a
∗ c∗

b∗ d∗
) = (1 0

0 −1
)} ,

which acts on D via Moebius transformations

(a b
c d

)(z) = (az + b)(cz + d)−1.

Its maximal compact subgroup is

K = {(a 0
0 d

) ∶ a ∈ U(r), d ∈ U(s)} .

with the linear action z ↦ azd∗.
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A basic theorem of M. Koecher characterizes hermitian symmetric
domains in Jordan algebraic terms. Let Z be a complex vector space,
endowed with a ternary composition Z ×Z ×Z → Z, denoted by

(x, y, z)↦ {x; y; z},

which is bilinear symmetric in (x, z) and anti-linear in the inner variable.
Putting D(x, y)z ∶= {x; y; z}, Z is called a hermitian Jordan triple if
the Jordan triple identity (a kind of Jacobi identity)

[D(x, y),D(u, v)] =D({x; y;u}, v) −D(u,{v;x; y})

holds, and the hermitian form

(x, y)↦ traceD(x, y)

is a positive definite. Every symmetric domain can be realized as the
unit ball of a unique hermitian Jordan triple (and conversely).
Moreover, K consists of all linear transformations preserving the Jordan
triple product.
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Classification of hermitian Jordan triples

▸ matrix triple Z =Cr×s, {x; y; z} = xy∗z + zy∗x,

K = U(r) ×U(s) ∶ z ↦ uzv, u ∈ U(r), v ∈ U(s)

rank = r ≤ s, a = 2 complex case, b = s − r
▸ r = 1, Z =C1×d, {x; y; z} = (x∣y)z + (z∣y)x, K = U(d)
▸ symmetric matrices a = 1 (real case)

▸ anti-symmetric matrices a = 4 (quaternion case)

▸ spin factor Z =Cn+1, {xy∗z} = (x ⋅ y) z + (z ⋅ y) x + (x ⋅ z)y
r = 2, a = n − 1, b = 0

K = T ⋅ SO(n + 1)

▸ exceptional Jordan triples of dimension 16 (r = 2) and 27 (r = 3),
a = 8 (octonion case), K = T ⋅E6.
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A real vector space X is a Jordan algebra iff X has a non-associative
product x, y ↦ x ○ y = y ○ x, satisfying the Jordan algebra identity

x2 ○ (x ○ y) = x ○ (x2 ○ y).

The anti-commutator product

x ○ y = (xy + yx)/2

of self-adjoint matrices satisfies the Jordan identity. By a fundamental
result of Jordan/von Neumann/Wigner (1934), every (euclidean) Jordan
algebra has a realization as self-adjoint matrices X ≈Hr(K) over
K =R,C,H (quaternions), or K =O (octonions) if r ≤ 3. For r = 2 we
obtain formal 2 × 2-matrices

H2(K) = {(α b
b∗ δ

) ∶ α, δ ∈R, b ∈K ∶=R2+a}.

Thus X is characterized by the rank r and the multiplicity a = dimR K.
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For a euclidean Jordan algebra X, the complexification Z ∶=XC becomes
a (complex) Jordan triple via

{u; v;w} = (u ○ v∗) ○w + (w ○ v∗) ○ u − v∗ ○ (u ○w).

For the spin factor we obtain

{u; v;w} = (u∣v)w + (w∣v)u − v(u∣w).

The Jordan triples arising this way are called of tube type. For example,
the matrix triple Cr×s is of tube type if and only if r = s.
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Let Z be an irreducible hermitian Jordan triple of rank r, and ` ≤ r.
Define the Kepler variety

Z` = {z ∈ Z ∶ rank(z) ≤ `}.

Its regular part (Kepler manifold)

Z̊` = {z ∈ Z` ∶ rank(z) = `}

is a KC-homogeneous manifold, not compact or symmetric. (Matsuki
dual of open G-orbits in flag manifolds).
For the spin factors (r=2) we recover classical Kepler variety. For matrix
spaces, we obtain the determinantal varieties.
Theorem: The Kepler variety Z` is a normal variety having only
rational singularities.
Remark: Result classical for spin factor (r = 2) and proved by
Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on
Kempf’s collapsing vector bundle theorem.
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An element u ∈ Z is called a tripotent if {u;u;u} = 2u. For Z =Cr×s

the tripotents satisfy uu∗u = u and are called partial isometries. The set
S` of all tripotents of fixed rank ` ≤ r is a compact K-homogeneous
manifold. In particular, S1 consists of all minimal (rank 1) tripotents. For
the spin factor, S1 is the cosphere bundle. For Z =C1×d

S1 = {u ∈ Z ∶ (u∣u) = 1} = S2d−1

is the full boundary.
Every tripotent u induces a Peirce decomposition

Z = Z(2)u ⊕Z(1)u ⊕Z(0)u , where

Z(j)u = {z ∈ Z ∶ {u;u; z} = 2jz}

is an eigenspace of D(u,u). Moreover, the Peirce 2-space Z
(2)
u becomes

a Jordan algebra with unit element u and multiplication {x;u; y}.
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The Jordan Grassmann manifold

M` = S`/ ∼= set of all Peirce 2-spaces U = Zu of rank `

is a compact hermitian symmetric space, both a K-orbit and a KC-orbit.
(Center of open G-orbit). Define the tautological vector bundle

T` ∶= ⋃
U∈M`

U →M`.

Fix a base point c ∈ S`, put V ∶= Z(2)c and let L ∶= {k ∈KC ∶ kV = V }.
Then

T` =KC ×L V
becomes a homogeneous vector bundle, and

T` → Z` ∶ U ∋ z ↦ z ∈ Z`
is a collapsing map. By Kempf’s Theorem, the range of a collapsing
map of homogeneous vector bundles is a normal variety. Let Ů denote

the invertible elements of the Jordan algebra U = Z(2)u . Then

⋃
U∈M`

Ů → Z`

is a birational isomorphism. This proves the normality theorem.
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Let (M,ω) be a compact Kähler n-manifold, with a quantizing line
bundle L→M. Consider holomorphic sections Γ(M,Lν) of a (high)
tensor power Lν . Kodaira (coherent state) embedding

κν ∶M → P(Γ(M,Lν)), z ↦ [s0
ν(z), .., sdνν (z)]

Ων =
i

2
∂∂ log

dν

∑
i=0

∣Zi∣2 Fubini-Study metric on Pdν

κ∗ν(Ων) = νω +
i

2
∂∂ logTν

Tν(z) =
dν

∑
i=0

hz(siν(z), siν(z)) Kempf distortion function

TYZ (Tian-Yau-Zelditch) expansion

∣Tν(z)
νn

−
N−1

∑
j=0

aj(z)
νj

∣ ≤ cN
νN

as ν →∞

For non-compact Kähler manifolds (such as Z`) we need
infinite-dimensional Hilbert spaces of holomorphic functions.
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Every (euclidean) Jordan algebra X has a symmetric cone

Ω = {x2 ∶ x ∈X invertible}.

In fact, another theorem of Koecher-Vinberg characterizes euclidean
Jordan algebras in terms of symmetric (i.e. self-adjoint homogeneous)
cones. For matrices X =Hr(K), Ω consists of all positive definite
matrices. For the real spin factor, we obtain the forward light cone.

For a tripotent u ∈ S` the Peirce 2-space Z
(2)
u is the complexification of a

euclidean Jordan algebra with symmetric cone

Ωu ∶= {x = {u;x;u} ∈ Z(2)u ∶ x = {y;u; y}, y invertible}.

Proposition: The Kepler manifold has a polar decomposition

Z̊` = ⋃
u∈S`

Ωu.

For ` = 1 this reduces to Z̊1 =R+ ⋅ S1, since Z
(2)
u =C ⋅ u and Ωu =R+ ⋅ u

is an open half-line.
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Choose a base point c = e1 + . . . + e` ∈ S`. Every positive density function
ρ(t) on symmetric cone Ωc induces a K-invariant radial measure

∫
Z̊`

dρ̃(z) f(z) = ∫
Ωc

dt ρ(t)∫
K

dk f(k
√
t).

For ` = 1 this simplifies to

∫
Z̊`

dρ̃(z) f(z) =
∞

∫
0

dt ρ(t)∫
S1

du f(u
√
t).

Define a Hilbert space of holomorphic functions

Hρ ∶= {f ∶ Z̊` →C holomorphic ∶ ∫
Z̊`

dρ̃(z) ∣f(z)∣2 < +∞}.
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In the trivial case, where ` = r is maximal and Z is a Jordan algebra,
negative powers of the (Jordan) determinant have no holomorphic
extension beyond Z̊. Apart from this we have
Extension Theorem: Every holomorphic function on Z̊` has a
unique extension to the closure Z`
Proof: Singular set

Z` ∖ Z̊` = ⋃
j<`

Zj

has codimension ≥ 2. By the Normality Theorem (and using Lojasiewicz),
the second Riemann extension theorem holds for holomorphic
functions on Z̊`.
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Under the natural action of K the holomorphic polynomials P(Z) on a
hermitian Jordan triple Z have a Hua-Schmid-Kostant decomposition

P(Z) = ∑
m∈Nr+

Pm(Z)

where m =m1 ≥m2 ≥ . . . ≥mr ≥ 0 ranges over all integer partitions
(Young diagrams) and each Pm(Z) is an irreducible K-module, whose
highest weight vector Nm can be uniformly described in terms of Jordan
theoretic minors. The dimension dm ∶= dimPm(Z) is explicitly known.
Let

(φ∣ψ) ∶= 1

πd
∫
Z

dz e−(z∣z) φ(z) ψ(z)

denote the Fischer-Fock inner product. Then there is an expansion

e(z∣w) =∑
m

Em(z,w)

into finite-dimensional kernel functions Em(z,w) of Pm(Z). For

r = 1, Em(z,w) = (z∣w)
m

m!
.
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Using the characteristic multiplicity a of Z, we define the Pochhammer
symbol

(ν)m ∶=
r

∏
j=1

(ν − a
2
(j − 1))mj .

Since the underlying measure ρ̃ is K-invariant, the extension theorem
implies that

Hρ =∑Pm1...,m`,0...,0(Z)
is a Hilbert sum involving only (non-negative) partitions of length ≤ `,
since the other components vanish on Z`.
Theorem: The Hilbert space Hρ has the reproducing kernel

Kρ(z,w) ∶= ∑
m∈N`+

dm

∫
Ωc

dρ(t)Em(t, e) E
m(z,w)

= ∑
m∈N`+

(d`/`)m
∫

Ωc

dρ(t)Nm(t)
dm
dcm

Em(z,w).

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



Every euclidean Jordan algebra X has a Jordan algebra determinant
N(x) which is a r-homogeneous polynomial defined via Cramer’s rule

x−1 = ∇xN
N(x) .

For real or complex matrices, this is the usual determinant. For even
anti-symmetric matrices, it is the Pfaffian. In the rank 2 case,
N(x0, x) = x2

0 − (x∣x) is the Lorentz metric.
Let ∂N = N( ∂

∂x
) be the associated constant coefficient differential

operator on X. Then N(x)∂N is a kind of Euler operator, of order r.

Applying these concepts to the Jordan algebra Z
(2)
c of rank `, we define a

universal differential operator

D` ∶= N
a
2 (`−r)∂bN N

a
2 (r−`−1)+b+1 (∂N N

a
2 ∂a−1

N )r−` N a
2 (r−`+1)−1

of order `((r − `)a + b) on the symmetric cone Ωc. For ` = 1, N(t) = t
and D1 becomes a polynomial differential operator of order (r − 1)a + b
on the half-line.
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Our main result is that the reproducing kernel Kρ(z,w) can be expressed
in closed form, by

Kρ(
√
t,
√
t) = (D`Fρ)(t)

for all t ∈ Ωc, where Fρ is a special function of hypergeometric type.
Since hypergeometric functions have good asymptotic expansions (quite
difficult for ` > 1), this will lead to the desired TYZ-expansions.
Generalizing the 1-dimensional case, we define the hypergeometric
series of type (p, q)

pFq(
α1, . . . , αp
β1, . . . , βq

)(z,w) ∶=∑
m

(α1)m . . . (αp)m
(β1)m . . . (βq)m

Em(z,w),

using the Fischer-Fock reproducing kernels Em(z,w). For z,w ∈ Z`, only
partitions of length ≤ ` occur.
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Consider first a Fock space situation. For α > 0 consider the
pluri-subharmonic function φ = (z∣z)α on Z`. Let ω ∶= ∂∂φ denote the
associated Kähler form. Then we have the polar decomposition

∫
Z̊`

∣ωn∣
n!

(z) e−νφ(z)f(z) = ∫
Ωc

dt Nc(t)a(r−`)+b (t∣c)n(α−1) e−ν(t∣c)
α

,

where Nc(t) is the rank ` determinant function on Ωc. Let α = 1.
Theorem: The Hilbert space Hν =H2(e−νφ∣ωn∣/n!) has the
reproducing kernel

Kν(t, e) = D` 1F1(
d`/`
n/`)(νt)

for the confluent hypergeometric function

1F1(
σ

τ
)(z,w) =∑

m

(σ)m
(τ)m

Em(z,w).
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In order to look at a Bergman type Hilbert space, let

(u∣v) = 1

p
trZ D(u, v)

be the normalized K-invariant inner product, where p is the so-called
genus of D. Define Bergman operators

B(u, v)z = z − 2{u; v; z} + {u;{v; z; v};u}

for u, v, z ∈ Z. Then the G-invariant Bergman metric is given by

(u∣v)z = (B(z, z)−1u∣v).

For the matrix case Z =Cr×s, we have

B(u, v)z = z − uv∗z − zv∗u + u(vz∗v)∗u = (1 − uv∗)z(1 − v∗u).

and p = r + s. Therefore

(u∣v) = 1

r + strZ D(u, v) = trace uv∗

and the Bergman metric at z ∈D is

(u, v)z = trace(1 − zz∗)−1 u(1 − z∗z)−1 v∗.
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In terms of the Bergman operator, the Bergman kernel function
K ∶D ×D →C of D can be expressed as

K(z,w) = det B(z,w)−1.

It is a fundamental fact that there exists a sesqui-polynomial called the
Jordan triple determinant ∆ ∶ Z ×Z →C such that the Bergman
kernel function has the form

K(z,w) = det B(z,w)−1 = ∆(z,w)−p

for all z,w ∈D. In the matrix case Z =Cr×s we have

det B(z,w) = det(1r − zw∗)r+s.

It follows that
∆(z,w) = det(1 − zw∗).
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The Kepler ball is the intersection

{z ∈ Z̊` ∶ ∥z∥∞ < 1} = Z̊` ∩D

of Z̊` with the bounded symmetric domain D ∶= {z ∈ Z ∶ ∥z∥∞ < 1}.
Consider the pluri-subharmonic function

φ(z) = log ∆(z, z)−p = log detB(z, z)−1

on the Kepler ball, given by the Bergman kernel. As before, the
associated radial measure e−νφ∣ωn∣/n! has a nice polar decomposition,
this time involving the unit interval Ωc ∩ (c −Ωc).
Theorem: For the Kepler ball, Hν =H2(e−νφ∣ωn∣/n!) has the
reproducing kernel

Kν(t, e) = D` 2F1(
d`/`;ν
n`/`

)(t)

involving a Gauss hypergeometric function 2F1 on Ωc.
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Pattern

Fock space on Z =Cd, Kν = e(z∣w) = 0F0(z,w)
Bergman space on D, Kν = ∆(z,w)−ν = 1F0(z,w) Faraut-Koranyi formula

Kepler manifold Z̊`, Kν = D` 1F1

Kepler ball D ∩ Z̊`, Kν = D` 2F1
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Asymptotic expansion: α = 1, ` arbitrary
Theorem: Consider the Fock-type situation, α = 1, ` arbitrary. There
exist polynomials pj(x), with p0 = const, such that

1

νn
Kν(

√
x,

√
x) ≈ eν tr(x)

Nc(x)n/`
n

∑
j=0

pj(x)
νj

,

as ∣x∣→ +∞, uniformly for x in compact subsets of Ωc.
Proof: For Re(µ) > d

r
− 1 and Re(γ) > d

r
− 1, there is an asymptotic

expansion

1F1(
µ

γ
)(z) ≈ Γr(γ)

Γr(µ)
etr(z)

N(z)γ−µ 2F0(
d
r
− µ;γ − µ)(z−1)

as ∣z∣→ +∞ while z
∣z∣

stays in a compact subset of Ωc.

This expansion can be differentiated termwise any number of times.
Remark: Similar expansion for Kepler ball, based on asymptotics of

2F1.
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Asymptotic expansion: ` = 1, α arbitrary
Theorem: Radial measure dρ(t) = αe−νtαtα(p−1)−1 dt on half-line. Then,
as ν → +∞

e−ν(z∣z)
α

νp−1
Kν(z, z) =

p−2

∑
j=0

bj

νj(z∣z)jα +O(e−ην(z∣z)
α

), η > 0

Proof: The measure dρ has moments

α

∞

∫
0

dt e−νt
α

tα(p−1)+m−1 =
Γ(p − 1 + m

α
)

νp−1+mα
.

Therefore Kν = D1Fρ with

Fρ(t) = νp−1
∞

∑
m=0

(ν1/αt)m
Γ(p − 1 + m

α
) = νp−1E1/α,p−1(ν1/αt),

for the Mittag-Leffler function

EA,B(t) =
∞

∑
m=0

tm

Γ(Am +B) .
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As t→ +∞, it is known that

EA,B(t) = 1

A
t(1−B)/Aet

1/A
+O(e(1−η)t

1/A
)

with some η > 0. This remains valid for derivatives of any order. For any
polynomial P in one variable

∂kt t
γα+cP (tα)et

α

= tγα+c−kQ(tα)et
α

with another polynomial Q, where degQ = degP + k. It follows that

(tDj +Djt)tγαP (tα)et
α

= tγαQ(tα)et
α

,

with degQ = degP + a. Hence for D = D̀
r

∏
j=2

(tDj +Djt)

D̀
r

∏
j=2

(tDj +Djt)tγαet
α

= tγαQ(tα)et
α

,

where Q has degree (r − 1)a + b = p − 2 and leading coefficient 2r−1αp−2.
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Invariant volume forms and measures

Z̊` is homogeneous under KC or a suitable transitive subgroup. When
does an invariant holomorphic volume form or invariant measure exist?
Only for domains of tube type b = 0.

▸ Theorem: Let Z be of tube type and 0 < ` < r. Then there exists an
invariant holomorphic n-form Ω on Z̊` if and only if
p − a` = 2 + a(r − ` − 1) is even.

▸ Among all tube type domains, p − a` is odd only for the symmetric
matrices Z =Cr×r

sym with r − ` even.

▸ Theorem: An invariant measure µ on Z̊` exists in all cases (for
b = 0), and has polar decomposition

∫
Z̊`

dµ(z) f(z) = const ∫
Ωc

dt

Nc(t)d`/`
Nc(t)ar/2 ∫

K

dk f(k
√
t).

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



Special case, r = 2, ` = 1

Englis et al, Gramchev-Loi: Lie ball r = 2

T ∗(Sn) ∖ {0} = {(x, ξ) ∶ ∥x∥ = 1, (x∣ξ) = 0, ξ ≠ 0}

Cn+1 hermitian Jordan triple, rank 2

{uv∗w} = (u∣v)w + (w∣v)u + (u∣w)v Jordan triple product

N(z) = (z∣z) Jordan algebra determinant

T ∗(Sn) ∖ {0} = {z ∈Cn+1 ∶ N(z) = 0} rank 1 elements

Tν(z)
νn

= 1 + (n − 1)(n − 2)
2∣νz∣ +

n−2

∑
j=2

2aj

∣νz∣j +Rν(∣z∣)

exponentially small error term
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Theorem:
For t ∈ Ωc define the function

Fρ(t) = ∑
m∈N`+

(d`/`)m
∫

Ωc

dρ Nm
Em(t, c).

Every euclidean Jordan algebra X has a positive cone

Ω = {x2 ∶ x ∈X ∖ {0}},
corresponding to the positive definite matrices H+

r (K). The Jordan
algebra determinant N ∶X →R is a r-homogeneous polynomial
defined via Cramer’s rule

x−1 = ∇xN
N(x) .

For the rank 2 case,

N (α b
b∗ δ

) = αδ − (b∣b)

is the Lorentz metric on ρ1,1+a. The complexification Z ∶=XC becomes
a (complex) Jordan triple (of tube type)

{uv∗w} = (u ○ v∗) ○w + (w ○ v∗) ○ u − v∗ ○ (u ○w).
For the spin factor we obtain

{uv∗w} = (u∣v)w + (w∣v)u − v(u∣w).
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φ = (z∣z)α, α > 0 pluri-subharmonic function on Z`

ω ∶= ∂∂φ Kähler form

∫
Z̊`

∣ωn∣
n!

(z) e−νφ(z)f(z) = ∫
Ωc

dt Nc(t)a(r−`)+b (t∣c)n(α−1) e−ν(t∣c)
α

.

Theorem: Hν =H2(e−νφ∣ωn∣/n!) has kernel Kν(
√
t,
√
t) = D`Fν(t)

Fν(t) = const ∑
m∈N`+

(d`/`)m
ΓΩc(m + n

`
)

Γ(n + ∣m∣)
Γ(n + ∣m∣

α
)
Em(ν1/αt, c)

confluent hypergeometric function

1F1(z,w) =∑
m

(σ)m
(τ)m

Em(z,w)

For α = 1

Fν(t) = 1F1(
d`/`
n/`)(νt)

Theorem: Hν =H2(e−νφ∣ωn∣/n!) has kernel Kν(
√
t,
√
t) = D`Fν(t)

Fν(t) = const ∑
m∈N`+

(d`/`)m
ΓΩc(m + n

`
)

Γ(n + ∣m∣)
Γ(n + ∣m∣

α
)
Em(ν1/αt, c)
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coherent state embedding

σν ∶ U → Lν ∖ 0 local trivializing section

νω(z) = − i
2
∂∂ loghν(σν(z), σν(z)) Ricci form

P(O(M,Lν)), (s0
ν , .., s

dν
ν ) ONB of sections

Pdν ∶ [Z0, .., Zdν ] homogeneous coordinates
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junk

be the corresponding with closure

D = {z ∈Cr×s ∶ I − zz∗ ≥ 0}.

In this case we take

K = U(r) ×U(s) ∋ (u, v)

and
S = {z ∈Cr×s ∶ zz∗ = I}

consists of all (injective) isometries. In the special case r = s we obtain
S = U(r). In this case the domain D is said to be of ’tube type’.
compact linear Lie group

d ∶= dimZ = r (1 + a
2
(r − 1) + b) , r = rank(Z)

characteristic multiplicities: a, b
tube type: b = 0
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Hankel operators

dρ(t) = Nc(t)a(r−`)+b dt, dρ̃ Lebesgue surface measure on Z̊`

Kepler ball
D` ∶= {z ∈ Z` ∶ ∥z∥ < 1}

bounded symmetric domain, spectral norm

Hgf ∶= (I − P )(gf) Hankel operator, antiholomorphic symbol function

Theorem: For p ≥ 1 the following are equivalent

▸ There exists nonconstant g ∈H2
ρ with Hg ∈ Sp (Schatten class)

▸ There exists a nonzero partition m ∈Nr
+ such that Hg ∈ Sp for all

g ∈ Pm

▸ ` = 1 and p > 2 dimZ1

▸ Hg ∈ Sp for any polynomial g

Analogous to BBCZ-Theorem.
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Z1 = {z ∈ Z ∶ N(z) = 0} algebraic variety

ρ(z) = (z∣z)α − 1

S1 = {z ∈ Z ∶ N(z) = 0, ρ(z) = 0} strongly pseudoconvex boundary

dimS1 = 1 + a(r − 1) + b

ϑ = ∂ρ − ∂ρ
2i

= α(z∣z)α−1 (dz∣z) − (z∣dz)
2i

contact 1-form

du = ϑ ∧ (dϑ)n−1 K-invariant measure (2n − 1-form) on S1

π ∶R × S1 → S1 symplectic cone, s = et

ω = d(et ⋅ π∗ϑ) = et(dt ∧ π∗ϑ + π∗dϑ) symplectic form

ωn = entdt ∧ π∗ϑ ∧ (π∗dϑ)n−1 = entdt ∧ du = sn−1ds ∧ du

∫
Z1

ωn(ζ)f(ζ) =
∞

∫
0

ds sn−1 ∫
S1

duf(u
√
s)
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z = su, u = x + iξ
2

∈ S1 rank1 tripotents

(u∣u) = 1⇒ (z∣z) = s2

ω(z) = i

2
∂∂

√
(z∣z) = i

4
(z∣z)−3/2((z∣z)(dz∣dz) − (dz∣z) ∧ (z∣dz)

2
)

(dz∣dz) = dzi ∧ dzi, (dz∣z) = zi dzi, (z∣dz) = zj dzj

(dz∣dz) ∧ α = 0

ωn = ((dz∣z) ∧ (z∣dz))n
(z∣z)3n/2

K1(z,w) =
∞

∑
m=0

Γ(m + a)
Γ(2m + a)Em(z,w)

Kν(z, z)
νd−1

=
∞

∑
m=0

Γ(m + a)
Γ(2m + a)Ej(νz, νw)
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Jordan Kepler manifolds

Z irreducible hermitian Jordan triple, rank r

{uv∗w} Jordan triple product

Nk(z) Jordan minors

SC
1 = {z ∈ Z ∶ Nk(z) = 0∀k > 1} rank 1 elements

S1 rank 1 tripotents
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z = su, s > 0, u ∈ S1 polar decomposition

(u∣u) = 1⇒ (z∣z) = s2

∫
SC
1

dΩ(ζ) e−ν
√
(ζ∣ζ)f(ζ) =

∞

∫
0

ds e−νssn−1 ∫
K

dk f(ks)

(ψ∣ψ) = ∫
SC
1

dΩ(ζ) e−ν
√
(ζ∣ζ)∣ψ(ζ)∣2 =

∞

∫
0

ds e−νssn−1 ∫
S1

du∣ψ(su)∣2
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ψ ∈ Pm(Z)⇒ (ψ∣ψ) =
∞

∫
0

ds e−νssn−1s2m ∫
S1

du ∣ψ(u)∣2

∫
K

dkEm(z, ks)En(ks,w) = δm,n

(d/r)m
(a/2)m
(ra/2)m

φm1 (s2)Em(z,w)

= δm,n

(d/r)m
(a/2)m
(ra/2)m

s2mEm(z,w)

∫
SC
1

dΩ(ζ) e−ν
√
(ζ∣ζ)Em(z, ζ)En(ζ,w) =

∞

∫
0

ds e−νssn−1 ∫
K

dkEm(z, ks)En(ks,w)

= δm,n

(d/r)m
(a/2)m
(ra/2)m

Em(z,w)
∞

∫
0

ds e−νss2m+n−1

= 2
δm,n

(d/r)m
(a/2)m
(ra/2)m

Γ(2m + n)
ν2m+n

Em(z,w)
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Kν(z,w) =
∞

∑
m=0

ν2m+n(d/r)m(ra/2)m
Γ(2m + n)(a/2)m

Em(z,w)

= νn
∞

∑
m=0

(d/r)m(ra/2)m
Γ(2m + n)(a/2)m

Em(νz, νw)

= νn
∞

∑
m=0

Γ(m + 1 + a
2
(r − 1))Γ(m + a

2
r)

Γ(2m + 1 + a(r − 1))Γ(m + a
2
)Em(νz, νw)

= νn
∞

∑
m=0

Γ(m + a
2
r)

Γ(m + 1
2
+ a

2
(r − 1))Γ(m + a

2
)
Em(2νz,2νw)

r = 2, d = n + 1, a = n − 1

Kν(z,w) = νn
∞

∑
m=0

Γ(m + a)
Γ(m + a+1

2
)Γ(m + a

2
)
Em(2νz,2νw)

= νn
∞

∑
m=0

Γ(m + a)
Γ(2m + a)Em(2νz,2νw)
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Complex Geometry of Bounded Symmetric Domains In the following
consider a complex vector space Z =Cd, endowed with a norm ∥ ⋅ ∥, and
let

D = {z ∈ Z ∶ ∥z∥ < 1}
be its unit ball. In general, the boundary

∂D = {z ∈ Z ∶ ∥z∥ = 1}

will not be smooth. Consider the set

S = ∂exD ⊂ ∂D

of all extreme points and let

U(Z) = {g ∈ GL(Z) ∶ ∥gz∥ = ∥z∥}

be the linear isometry group. Then U(Z) ⊂ GL(Z) is a closed subgroup,
therefore U(Z) is a compact Lie group. Clearly, the natural U(Z)-action
satisfies

U(Z) ⋅D =D, U(Z) ⋅ ∂D = ∂D, U(Z) ⋅ S = S.
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Example: For Z =Cd, define the scalar product

(z∣w) = zw∗ =∑
i

ziwi

and let ∥z∥ = (z∣z)1/2 be the Hilbert norm. Then

D = {z ∈Cd ∶ (z∣z) < 1}

is the Hilbert unit ball. In this case K = U(d) is the unitary group and

S = ∂D = S2d−1

is the odd sphere. For d = 1 we have the unit disk D = {z ∈C; ∣z∣ < 1}
and the unit circle S = {z ∈C ∶ ∣z∣ = 1} = T.
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We now introduce holomorphic functions. By definition, a (possibly
vector-valued) function f ∶D →Cm is holomorphic if it has a power
series expansion

f(z) = ∑
α∈Nd

cα z
α1

1 ⋯zαdd

(compact convergence) with coefficients cα ∈Cm. By collecting
monomials of equal (total) degree, we obtain the expansion

f(z) = ∑
k≥0

∑
∣α∣=k

cα z
α1

1 ⋯zαdd = ∑
k≥0

pk(z)

into a series of k-homogeneous polynomials. Let Pk(Z,Cm) be the space
of all k-homogeneous polynomials pk ∶ Z →Cm satisfying
pk(λz) = λk pk(z) ∀ λ ∈C. Since D is bounded and circular around
0 ∈D, the space

P(Z,Cm) = ∑
k≥0

Pk(Z,Cm)

of all polynomials is dense in the space of all holomorphic functions
O(D,Cm) under compact convergence.

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



In the rank 1 case of row vectors Z =Cd =C1×d D is the Hilbert unit
ball, and we obtain as a special case

G = SU(1, d) ⊃K = U(d).

For dimension d = 1, we have Z =C and D is the unit disk. In this case,
we may identify

G = SU(1,1) ⊃K = U(1).
Via a Cayley transformation

z ↦ w = z + i
1 − iz

onto the upper half-plane {w ∈C ∶ Im(w) > 0} we obtain another
realization

G ≈ SL(2,R) ⊃K = SO(2).
This is fundamental to applications in number theory since the ’Shilov’
boundary R ∪∞ of the upper half-plane is a completion of Q.
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It is a fundamental fact that hermitian symmetric domains have an
algebraic description in terms of the so-called Jordan algebras and
Jordan triples. In order to explain this connection, consider the Lie
algebra g of the real Lie group G = Aut(D), which can be realized as
follows: Consider a 1-parameter group t↦ gt ∈ G, and define, for
f ∈ O(D,Cm), the infinitesimal generator

∂f(gt(z))
∂t

= (Xf)(z) = h(z) f ′(z) = (h(z) ∂

∂z
)f(z),

with the derivative operator acting from the right. Here h ∶D → Z =Cd

is a holomorphic vector field, with commutator bracket

[h ∂

∂z
, k

∂

∂z
] = (h ∂k

∂z
− k ∂h

∂z
) ∂

∂z
.

The adjoint action of G on g is defined by

Ad(g)(h ∂

∂z
) = h(g(z)) g′(z) ∂

∂z
,
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Let s0(z) = −z be the symmetry at the origin 0 ∈D. We obtain the
Cartan decomposition g = k⊕ p into the ±-eigenspaces

k = {X ∈ g ∶ Ad(s0)X =X}, p = {X ∈ g ∶ Ad(s0)X = −X}

Since [p,p] ⊂ k, we obtain a Lie triple system

[k, k] ⊂ k ⊃ [p,p], [k,p] ⊂ p ⊃ [p, k].

The Jordan triple product Z ×Z ×Z → Z, denoted by
u, v,w ↦ {uv∗w} = {wv∗u}, satisfies

p = {(v − {zv∗z}) ∂

∂z
∶ v ∈ Z},

k = {h(z) ∂

∂z
linear ∶ h{zv∗z} = 2{hz , v∗, z} + {z(hv)∗z}}.

Define (u ◻ v∗)z = {uv∗z}. Since [[p,p],p] ⊂ [k,p] ⊂ p, we obtain the
Jordan triple identity

[u ◻ v∗, x ◻ y∗] = {uv∗x} ◻ y∗ − x ◻ {yu∗v}∗.
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In the matrix case Z =Cr×s, consider a 1-parameter group

(at bt
ct dt

)(z) = (atz + bt)(ctz + dt)−1 ∈ U(r, s)

of Moebius transformations. Its differential is computed as

d

dt
∣
t=0

(atz + bt)(ctz + dt)−1 = ȧz + ḃ − zċz − zḋ

with (ȧ ḃ

ċ ḋ
) ∈ u(r, s). The eigenspace decomposition is given by

k = {(ȧz − zḋ) ∂
∂z

∶ ȧ ∈ u(r), ḋ ∈ u(s)} , p = {(ḃ − zḃ∗z) ∂
∂z

∶ ḃ ∈Cr×s} .

Therefore we obtain

{zv∗z} = zv∗z, {uv∗w} = 1

2
(uv∗w+wv∗u), u◻ v∗ = 1

2
(Luv∗+Rv∗u).
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Let Z be an irreducible Jordan triple of rank r, with multiplicities a, b.
Then d/r = 1 + a

2
(r − 1) + b and p = 2 + a(r − 1) + b. The tube type case

corresponds to b = 0 or, equivalently, to p
2
= d
r

. Fix a parameter
ν > p − 1 = 1 + a(r − 1) + b. Let ΓΩ denote the Koecher-Gindikin
Gamma-function of the symmetric cone Ω. Then

dMν(z) =
ΓΩ(ν)

ΓΩ(ν − d/r) ∆(z, z)ν−p dz
πd

is a probability measure on D. The weighted Bergman space of
holomorphic functions on D is defined as

H2
ν(D) = {ψ ∈ O(D,C) ∶ ∫

D

dMν(z) ∣ψ(z)∣2 <∞}.

Define an irreducible projective unitary representation of G on H2
ν(D)

(g−νψ)(z) = det g′(z)ν/p ψ(g(z)).

These representations give the scalar holomorphic discrete series of G.
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H2
ν(D) has the reproducing kernel

Kν(z,w) = ∆(z,w)−ν = det B(z,w)−ν/p.

Thus the orthogonal projection Pν ∶ L2(D,dMν)→H2
ν(D) is

(Pνψ)(z) = ∫
D

dMν(w) ∆(z,w)−ν ψ(w).

The inner product is

(ψ1∣ψ2)ν =
ΓΩ(ν)

ΓΩ(ν − d/r) ∫
D

dz

πd
∆(z, z)ν−p ψ1(z) ψ2(z).

For ν = p, dMp(z) is a multiple of the Lebesgue measure dz and

H2
p(D) = {ψ ∈ O(D,C) ∶ ∫

D

dz ∣ψ(z)∣2 <∞}

is the standard (unweighted) Bergman space.
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Consider the algebra P(Z) of all polynomials p ∶ Z →C and the natural
action (k−1 p)(z) ∶= p(kz) of K. The Hua-Schmid-Kostant
decomposition asserts that

P(Z) =∑
m

Pm(Z)

is a direct sum of inequivalent irreducible K-modules, labelled by all
integer partitions

m = (m1, . . . ,mr) ∈Nr

with m1 ≥ . . . ≥mr ≥ 0. Moreover, the highest weight vector in Pm(Z)
has the form

Nm(z) = N1(z)m1−m2 N2(z)m2−m3⋯Nr(z)mr ,

where Nk is the Jordan theoretic minor of rank k. For the simplest
partition m = (1,0, . . . ,0), Pm(Z) is the dual space of linear forms on
Z. In this case Nm(z) = (e1∣z).
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The Wallach set

W (D) = {ν ∈C ∶ (∆(zi, zj)−ν)1≤i,j≤n ≫ 0 ∀ z1, . . . , zn ∈D}

consists of all parameters ν, beyond ν > p − 1, such that the kernel
Kν(z,w) is still positive. The Hilbert space completion of P(Z) is the
Segal-Bargmann-Fock space

H2(Z) = {ψ ∈ O(Z) ∶ ∫
Z

dz

πd
e−(z∣z) ∣ψ(z)∣2 <∞}

of entire functions, with reproducing kernel expanded in a series

e(z∣w) =∑
m

Km(z,w),

where Km(z,w) denotes the reproducing kernel of the finite-dimensional
space Pm(Z) ⊂H2(Z).
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The Faraut-Koranyi binomial formula is

∆(z,w)−ν =∑
m

(ν)mKm(z,w),

where

(ν)m = ΓΩ(ν +m)
ΓΩ(ν) =

r

∏
j=1

(ν − a
2
(j − 1))mj

denotes the Pochhammer symbol. Here we use Gindikin’s formula

ΓΩ(s) = (2π)(r−d)/2
r

∏
j=1

Γ(sj −
a

2
(j − 1)).

By checking positivity of the coefficients (ν)m for all partitions m it
follows that

W (D) = {a
2
` ∶ 0 ≤ ` < r} ∪ {ν > a

2
(r − 1)}

consists of r discrete equidistant points and a continuous part.

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



The Shilov boundary S =K/L, endowed with the K-invariant
probability measure, corresponds to the Wallach parameter
ν = d

r
= 1 + a

2
(r − 1) + b, giving rise to the Hardy space

H2(S) = {ψ ∈ L2(S) ∶ ψ holomorphic on D}.

In the matrix case Z =Cr×s we have a = 2, and hence d/r = s, p = r + s.
The associated Szegö projection P ∶ L2(S)→H2(S) has the form

(Pψ)(z) = ∫
S

du ∆(z, u)−d/r ψ(u).

Now let f ∈ C(S) be a continuous ’symbol’ function. The
Hardy-Toeplitz operator Tf is the bounded operator

Tfψ = P (fψ)

acting on H2(S). Here f ∈ L∞(S) would be possible, but the fine
structure of Toeplitz operators is known only for continuous symbols.
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Define the Toeplitz C∗-algebra

T (S) = C∗(Tf ∶ f ∈ C(S))

on the Hardy space. A similar concept applies to the weighted Bergman
spaces and even to the discrete Wallach points (G. Zhang).
Theorem The Toeplitz C∗-algebra contains all compact operators
K(H2(S)) and is therefore irreducible.

Proof Consider the group C∗-algebra C∗(K) = L̂1(K) and the
commutative C∗-algebra C(K). Then we may form the
cocrossed-product C∗(K)⊗δ C(K) for a suitable coaction δ. By
Katayama duality there is a natural C∗-isomorphism

C∗(K)⊗δ C(K) ≈ K(L2(K)).

Now embed H2(S) ⊂ L2(S) ⊂ L2(K) by averaging over the subgroup
L ⊂K. In this way T (S) contains a full corner π(C∗(K)⊗δ C(K))π.
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For the unit disk D ⊂C and its Hardy space

H2(T) = {
∞

∑
n=0

anz
n ∶

∞

∑
n=0

∣an∣2 <∞}

the Toeplitz C∗-algebra T (T) has the irreducible representation on
H2(T) as in the general case, but also the characters

σc ∶ T (T)→C, σc(Tf) = f(c)

for any c ∈ T. One shows that these are all irreducible representations so
that there is a C∗-algebra extension

K(H2(T)) ⊂ T (T) σÐ→ C(T)

given by the symbol map σ(A)(c) ∶= σc(A) for all A ∈ T (T).
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For a Jordan triple Z an element c ∈ Z is called a tripotent if {cc∗c} = c.
For matrices these are the partial isometries. Every tripotent c induces a
Peirce decomposition

Z = Z2
c ⊕Z1

c ⊕Z0
c .

into eigenspaces of c ◻ c∗. Each Peirce subspace is again a Jordan triple,
the Peirce 2-space is even a Jordan algebra with unit element c. One can
show that

∥u +w∥ = max(∥u∥, ∥w∥)
whenever u ∈ Z2

c , w ∈ Z0
c . Therefore, if c ≠ 0, the set

c +D0
c ∶= {c +w ∶ w ∈D ∩Z0

c }

belongs to the boundary ∂D. These are the so-called boundary
components of D. One can show that they are pairwise disjoint and
cover the whole boundary. Thus we have a disjoint union

∂D = ⋃̇(c +D0
c).

oveer all non-zero tripotent c. The tripotent c = 0 gives the interior D.
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The rank of a tripotent c is the rank of Z2
c . For 0 ≤ j ≤ r the set

Sj ∶= {c ∈ Z tripotent ∶ rank c = j}

is a connected compact K-homogeneous manifold. Equivalently, these
are the connected components of the set of all tripotents. Moreover

∂jD = ⋃̇c∈Sj
(c +D0

c)

is a G-orbit contained in the boundary. Thus

∂D = ⋃̇1≤j≤r∂jD

is a disjoint union of G-orbits, called the boundary strata. If j = r then

∂rD = Sr = S

is the Shilov boundary (realized as a G-orbit S = G/P ) and the
corresponding boundary components are the extreme points, since
Z0
c = (0). For rank r = 1 (unit ball) the boundary is smooth.
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For each tripotent c consider the Peirce 0-space Z0
c . Then

S0
c ∶= Sj ∩Z0

c = S(D0
c)

is the Shilov boundary of the symmetric domain D0
c of rank r − j. Note

that c + S0
c ⊂ Sr = S.

Theorem There exists an irreducible representation σc of T (S) on the
’little’ Hardy space H2(S0

c ) satisfying

σc(TS(f)) = TS0
c
(fc)

for all f ∈ C(S) where
fc(s) ∶= f(c + s)

is the boundary evaluation of f. Moreover, these representations are
pairwise inequivalent.
Proof Either using the representations of co-crossed products, or by a
limit procedure (peaking functions).
For maximal tripotents c ∈ Sr we obtain the characters above, since
H2(pt) =C.
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The main theorem asserts that the irreducible representations σc, for any
tripotent c, exhaust the full spectrum of T (S). The main work is to show
that

⋂
c≠0

Ker(σc) = K(H2(S))

consists of all compact operators. The original proof was based on the
Choi-Effros theorem on completely positive cross-sections. A proof using
Katayama duality is also possible. As a consequence there is a
composition series

K(H2(S)) = I0 ⊂ I1 ⊂ . . . ⊂ Ir−1 ⊂ Ir = T (S)

of C∗-ideals Ij such that the subquotients

Ij/Ij−1 = C(Sj)⊗Kj

are essentially commutative. Here I−1 ∶= (0). In general, Ir−1 is the
commutator ideal, so Kr =C. The first non-trivial ideal I1 satisfies

I1/K ≈ C(S1)⊗K1.
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For the unit ball D ⊂Cd we have S = ∂D = S2d−1 and

T (S2d−1)/K ≈ C(S2d−1)

is Coburn’s Theorem. For the Lie ball in Cd, of rank r = 2

S2 = T Sd−1

is the so-called Lie sphere, and

S1 = S∗(Sd−1) = {x + iξ
2

∶ ∥x∥ = ∥ξ∥ = 1, (x∣ξ) = 0}

is the cosphere bundle. For the Lie ball K1 = K(H2(T)) and

H2(S) =H2(T)⊗L2(Sd−1)

via the identification (φ⊗ψ)(ϑx) = φ(ϑ) ψ(x) for ϑ ∈ T, x ∈ Sd−1. Then

I1 = T (T)⊗CZ(Sd−1)

for the Calderon-Zygmund operators on the sphere Sd−1. In general,
I1 consists of (certain) generalized Toeplitz operators on S1 in the sense
of Boutet-de-Monvel/Guillemin.

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



T ∈ K(H) compact operator, positive part ∣T ∣ = (T ∗T )1/2

sj(T ) = λj(∣T ∣), s1 ≥ s2 ≥ s3 ≥ . . .

singular values, counted with multiplicity. Put Sk(T ) =
k

∑
j=1

sj(T ).

∞

∑
j

sj(T ) = lim
k
Sk(T ) <∞ ∶ T ∈ L1(H) trace class

T ≥ 0 ∶ tr T =∑
j

sj(T ) = lim
k
Sk(T ) trace

sj(T ) = O(1

j
), sup

k

Sk(T )
log(1 + k) < +∞ ∶ T ∈ L1,∞ Dixmier class

T ≥ 0 measurable ∶ trωT = lim
k

Sk(T )
log(1 + k) Dixmier trace

independent of ultrafilter ω. Extend by linearity trω ∶ L1,∞ →C.
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M compact Riemannian manifold, dimension n, cosphere bundle

S∗(M) = {(x, ξ) ∈ T ∗(M) ∶ ∣ξ∣ = 1}

Q ∈ Ψ−n(M)
pseudo-differential operator of order −n, symbol σ−n(Q). Then Connes
has shown

trω(Q) = 1

n!(2π)n ∫
S∗(M)

dV ol σ−n(Q)

independent of choice of Riemannian metric, since σ−n(Q) is
homogeneous
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Ω ⊂Cn strongly pseudoconvex domain, ∂Ω smooth boundary, L2(Ω) for
Lebesgue measure

H2(Ω) = {φ ∈ L2(Ω) ∶ φ holomorphic} Bergman space

P ∶ L2(Ω)→H2(Ω) orthogonal projection

Tf φ = P (fφ) Bergman-Toeplitz operator, f ∈ C∞(Ω)
n = 1, Ω =D unit disk, f, g ∈ O(D) holomorphic

tr[T ∗f , Tg] = ∫
D

dzf ′(z)g′(z)

For n > 1, f1, g1, . . . , fn, gn holomorphic

[T ∗f1 , Tg1]⋯[T ∗fn , Tgn] ∉ L
1(Ω)
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Let Ω = Bn ⊂Cn unit ball
Helton-Howe f1, . . . , f2n ∈ C∞(Bn), complete anti-symmetrization

[Tf1 , . . . , Tf2n] ∈ L1(H2(Bn))

tr [Tf1 , . . . , Tf2n] = ∫
Bn

df1 ∧ . . . ∧ df2n

Englis-Guo-Zhang f1, g1, . . . , fn, gn ∈ C∞(Bn)

[Tf1 , Tg1]⋯[Tfn , Tgn] ∈ L1,∞(Ω)

trω[Tf1 , Tg1]⋯[Tfn , Tgn] =
1

n!
∫
∂Bn

dσ ∏
j

{fj , gj}b

boundary Poisson bracket, surface measure dσ
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For symmetric domains, we have an orthogonal decomposition

H2(S) =∑
m

H2
m(S)

over all partitions λ, and the irreducible K-type

H2
m(S) = {p∣S ∶ p ∈ Pm(Z)}

has the inner product

(p∣q)S = 1

(d/r)m
(p∣q)Z

for all p, q ∈ Pm(Z). Here the Pochhammer symbol (ν)m is defined by

(ν)m =
r

∏
j=1

(ν − a
2
(j − 1))mj
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Let e1, . . . , er be a frame of minimal tripotents of Z, with joint Peirce
decomposition

Z =
⊕

∑
0≤i≤j≤r

Zij .

Then Pm(Z) has the highest weight vector

Nm(z) ∶= N1(z)m1−m2N2(z)m2−m3⋯Nr(z)mr

where N1, . . . ,Nr are the Jordan theoretic minors. For 1 ≤ i < j ≤ r put

a ∶= dimZij , b ∶= dimZ0j

Then
d

r
= 1 + a

2
(r − 1) + b.

The numerical invariant

p ∶= 2 + a(r − 1) + b

is called the genus of Z.
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The following is joint work with Kai Wang. For partition (m,0 . . . ,0) of
length ≤ 1 we have

Nm,0,...,0 = Nm
1 (z) = (z∣e1)m.

Let Z1 be the complex variety of all elements in Z of rank ≤ 1. Then

n ∶= dimCZ1 = 1 + a(r − 1) + b = p − 1.

The subspace

P⊥1 (Z) = {p ∈ P(Z) ∶ p∣Z1 = 0} = ∑
m2>0

Pm(Z).

is an ideal in P(Z), with quotient module

P1(Z) =
∞

∑
m=0

Pm,0,...,0(Z) ≈ P(Z)/P⊥1 (Z)
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Asymptotically, we have

dimPm,0(Z) ∼ c ⋅mn

for some constant c > 0 independent of m. In fact, for any partition m
we have

dimPm(Z) =
r

∏
j=1

(1 + b + a
2
(r − j))mj

(1 + a
2
(r − j))mj

⋅

⋅ ∏
1≤i<j≤r

mi −mj + a
2
(j − i)

a
2
(j − i)

(a
2
(j + 1 − i))mi−mj

(1 + a
2
(j − i − 1))mi−mj

.

For m = (m,0, . . . ,0) and m large enough we obtain

dimPm,0(Z) ∼ c ⋅mb+a(r−1) = c ⋅mn

for some constant c > 0 independent of m.
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Consider the Hilbert sum

H2
1(S)⊥ ∶= ∑

m2>0

H2
m(S) = P⊥1 (Z),

H2
1(S) = P1(Z) =∑

m

H2
m,0,...,0(S) =H2(S)/H2

1(S)⊥

regarded as a quotient module. One can show that the orthogonal
projection P1 ∶H2(S)→H2

1(S) belongs to T (S). Define

Sf ∶= P1 f P1 = P1 Tf P1

Theorem For real-analytic polynomials f, g in z, z we have

[Sf , Sg] ∈ Ln,∞

It follows that n-fold products satisfy

[Sf1 , Sg1]⋯[Sfn , Sgn] ∈ L1,∞.
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The compact manifold S1 all tripotents of rank 1 is the boundary of the
strongly pseudoconvex variety

Ω =D ∩Z1 = {z ∈ Z ∶ rank(z) ≤ 1, ∥z∥ < 1}

which has its only singularity at 0. Let

H2(S1) ∶= {φ ∈ L2(S1) ∶ φ holomorphic on Ω}

be the associated ’rank 1’ Hardy space. Let π ∶ L2(S1)→H2(S1) denote
the Cauchy-Szego projection. For f ∈ L∞(S1) we have the
Hardy-Toeplitz operator

τfφ = π(fφ)
acting on φ ∈H2(S1). Let

T (S1) = C∗(τf ∶ f ∈ C(S1))

denote the Toeplitz C∗-algebra generated by continuous symbol
functions.

Harald Upmeier (joint work with Miroslav Englis) Analysis and TYZ expansions for Kepler manifolds



For m ≥ 0 put

Λ2
m ∶= (a/2)m

(ra/2)m
.

Then the mapping U ∶H2
1(S)→H2(S1), defined by

Up ∶= Λm ⋅ p∣S1

for p ∈H2
m,0,...,0, is a unitary isomorphism. For f(z) = (z∣u), with

restriction f ∣S1 , we have for p ∈ Pm(Z)

USfU
∗p∣S1 =

1

Λm
U(P1((z∣u)p)) =

Λm+1

Λm
P1(z∣u)p)∣S1

= Λm+1

Λm
(ζ ∣u)p∣S1 =

Λm+1

Λm
τf ∣S1p∣S1 .

It follows that
USfU

∗ − τf ∣S1 = τf ∣S1 ○∆,

where the diagonal operator ∆ on H2(S1) defined by

∆qm = (Λm+1

Λm
− 1)qm.
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There is a harmonic extension operator

P ∶ C∞(S)→ C∞(D)

given by a Poisson integral

f(z) = ∫
S

dsP(z, s)f(s) = ∫
S

ds( ∆(z, z)d/r
∆(z, s)d/r∆(s, z)d/r ) f(s).

Theorem For real-analytic polynomials f1, g1, . . . , fn, gn consider the
harmonic extension f̂j , ĝj restricted to S1. Then the Dixmier trace is
given by

trω[Sf1 , Sg1]⋯[Sfn , Sgn] = const. ⋅ ∫
S1

{f̂1, ĝ1}b⋯{f̂n, ĝn}b

in terms of the boundary Poisson bracket of S1.
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