Analysis and TYZ expansions for Kepler manifolds

Harald Upmeier (joint work with Miroslav Englis)
University of Marburg, Germany
Bengaluru, March 2018

Classical Kepler varieties

hermitian vector space $Z=\mathbf{C}^{n+1}$, rank $=2$

$$
Z_{1}:=\left\{z=\left(z_{0}, \ldots, z_{n}\right) \in Z: z_{0}^{2}+\ldots+z_{n}^{2}=0\right\} \text { complex light cone }
$$

Symplectic interpretation (cotangent bundle)

$$
Z_{1} \approx T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\{(x, \xi):\|x\|=1, \xi \neq 0,(x \mid \xi)=0\}, z=\frac{x+i \xi}{2}
$$

contact manifold (cosphere bundle)

$$
S_{1} \approx S^{*}\left(\mathbf{S}^{n}\right)=\{(x, \xi):\|x\|=1,\|\xi\|=1,(x \mid \xi)=0\}
$$

polar decomposition

$$
Z_{1}=\mathbf{R}^{+} \cdot S_{1}
$$

Determinantal varieties

$$
\begin{gathered}
Z=\mathbf{C}^{r \times s}, \operatorname{rank}=r \leq s, 1 \leq \ell \leq r \\
Z_{\ell}:=\{z \in Z: \operatorname{rank}(z) \leq \ell\} \quad \text { vanishing of all }(\ell+1) \times(\ell+1) \text { - minors } \\
\dot{Z}_{\ell}=\{z \in Z: \operatorname{rank}(z)=\ell\}=Z_{\ell} \backslash Z_{\ell-1} \quad \text { regular part } \\
Z_{1}:=\{z \in Z: \operatorname{rank}(z) \leq 1\} \text { vanishing of all } 2 \times 2-\text { minors } \\
\dot{Z}_{1}:=\{z \in Z: \operatorname{rank}(z)=1\}=Z_{1} \backslash\{0\} \\
S_{1}=\left\{\xi \otimes \eta^{*}: \xi \in \mathbf{C}^{r}, \eta \in \mathbf{C}^{s}\|\xi\|=1=\|\eta\|\right\} \\
\dot{Z}_{1}=\mathbf{R}^{+} \cdot S_{1}
\end{gathered}
$$

Let Z complex vector space and $D \subset Z$ be a bounded domain. The group

$$
G=A u t(D)=\{g: D \rightarrow D \text { biholomorphic }\}
$$

is a real Lie group by a deep theorem of H . Cartan. D is called symmetric iff G acts transitively on D, and around each point $o \in D$ there exists an involutive symmetry $s_{o} \in G$ fixing o. By Harish-Chandra, D can be realized as a convex circular domain, i.e. as the unit ball

$$
D=\{z \in Z:\|z\|<1\}
$$

for an (essentially unique) norm called the spectral norm. Then the isotropy subgroup

$$
K=\{g \in G: g(0)=0\}
$$

is a compact group consisting of linear transformations. For domains $D=G / K$ of rank $r>1$ the boundary ∂D will not be smooth and D is only (weakly) pseudoconvex but not strongly pseudoconvex.

Let $Z=\mathbf{C}^{r \times s}$, endowed with the operator norm $\|z\|=\sup \operatorname{spec}\left(z z^{*}\right)^{1 / 2}$. Then the matrix unit ball

$$
D=\left\{z \in \mathbf{C}^{r \times s}:\|z\|<1\right\}=\left\{z \in \mathbf{C}^{r \times s}: I-z z^{*}>0\right\}
$$

is a symmetric domain, under the pseudo-unitary group
$G=U(r, s)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(r+s):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{ll}a^{*} & c^{*} \\ b^{*} & d^{*}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$,
which acts on D via Moebius transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)=(a z+b)(c z+d)^{-1} .
$$

Its maximal compact subgroup is

$$
K=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right): a \in U(r), d \in U(s)\right\} .
$$

with the linear action $z \mapsto a z d^{*}$.

A basic theorem of M. Koecher characterizes hermitian symmetric domains in Jordan algebraic terms. Let Z be a complex vector space, endowed with a ternary composition $Z \times Z \times Z \rightarrow Z$, denoted by

$$
(x, y, z) \mapsto\{x ; y ; z\},
$$

which is bilinear symmetric in (x, z) and anti-linear in the inner variable. Putting $D(x, y) z:=\{x ; y ; z\}, Z$ is called a hermitian Jordan triple if the Jordan triple identity (a kind of Jacobi identity)

$$
[D(x, y), D(u, v)]=D(\{x ; y ; u\}, v)-D(u,\{v ; x ; y\})
$$

holds, and the hermitian form

$$
(x, y) \mapsto \operatorname{trace} D(x, y)
$$

is a positive definite. Every symmetric domain can be realized as the unit ball of a unique hermitian Jordan triple (and conversely). Moreover, K consists of all linear transformations preserving the Jordan triple product.

Classification of hermitian Jordan triples

- matrix triple $Z=\mathbf{C}^{r \times s}, \quad\{x ; y ; z\}=x y^{*} z+z y^{*} x$,

$$
K=U(r) \times U(s): z \mapsto u z v, u \in U(r), v \in U(s)
$$

rank $=r \leq s, a=2$ complex case, $b=s-r$

- $r=1, Z=\mathbf{C}^{1 \times d},\{x ; y ; z\}=(x \mid y) z+(z \mid y) x, \quad K=U(d)$
- symmetric matrices $a=1$ (real case)
- anti-symmetric matrices $a=4$ (quaternion case)
- spin factor $Z=\mathbf{C}^{n+1},\left\{x y^{*} z\right\}=(x \cdot \bar{y}) z+(z \cdot \bar{y}) x+(x \cdot z) \bar{y}$ $r=2, a=n-1, b=0$

$$
K=\mathbf{T} \cdot S O(n+1)
$$

- exceptional Jordan triples of dimension $16(r=2)$ and $27(r=3)$, $a=8$ (octonion case), $K=\mathbf{T} \cdot E_{6}$.

A real vector space X is a Jordan algebra iff X has a non-associative product $x, y \mapsto x \circ y=y \circ x$, satisfying the Jordan algebra identity

$$
x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right) .
$$

The anti-commutator product

$$
x \circ y=(x y+y x) / 2
$$

of self-adjoint matrices satisfies the Jordan identity. By a fundamental result of Jordan/von Neumann/Wigner (1934), every (euclidean) Jordan algebra has a realization as self-adjoint matrices $X \approx \mathcal{H}_{r}(\mathbf{K})$ over $\mathbf{K}=\mathbf{R}, \mathbf{C}, \mathbf{H}$ (quaternions), or $\mathbf{K}=\mathbf{O}$ (octonions) if $r \leq 3$. For $r=2$ we obtain formal 2×2-matrices

$$
\mathcal{H}_{2}(\mathbf{K})=\left\{\left(\begin{array}{ll}
\alpha & b \\
b^{*} & \delta
\end{array}\right): \alpha, \delta \in \mathbf{R}, b \in \mathbf{K}:=\mathbf{R}^{2+a}\right\} .
$$

Thus X is characterized by the rank r and the multiplicity $a=\operatorname{dim}_{\mathbf{R}} \mathbf{K}$.

For a euclidean Jordan algebra X, the complexification $Z:=X^{\mathbf{C}}$ becomes a (complex) Jordan triple via

$$
\{u ; v ; w\}=\left(u \circ v^{*}\right) \circ w+\left(w \circ v^{*}\right) \circ u-v^{*} \circ(u \circ w) .
$$

For the spin factor we obtain

$$
\{u ; v ; w\}=(u \mid v) w+(w \mid v) u-\bar{v}(u \mid \bar{w}) .
$$

The Jordan triples arising this way are called of tube type. For example, the matrix triple $\mathbf{C}^{r \times s}$ is of tube type if and only if $r=s$.

Let Z be an irreducible hermitian Jordan triple of rank r, and $\ell \leq r$. Define the Kepler variety

$$
Z_{\ell}=\{z \in Z: \operatorname{rank}(z) \leq \ell\} .
$$

Its regular part (Kepler manifold)

$$
\dot{Z}_{\ell}=\left\{z \in Z_{\ell}: \operatorname{rank}(z)=\ell\right\}
$$

is a K^{C}-homogeneous manifold, not compact or symmetric. (Matsuki dual of open G-orbits in flag manifolds).
For the spin factors ($r=2$) we recover classical Kepler variety. For matrix spaces, we obtain the determinantal varieties.
Theorem: The Kepler variety Z_{ℓ} is a normal variety having only rational singularities.
Remark: Result classical for spin factor ($r=2$) and proved by Kaup-Zaitsev for non-exceptional types. Our proof is uniform, based on Kempf's collapsing vector bundle theorem.

An element $u \in Z$ is called a tripotent if $\{u ; u ; u\}=2 u$. For $Z=\mathbf{C}^{r \times s}$ the tripotents satisfy $u u^{*} u=u$ and are called partial isometries. The set S_{ℓ} of all tripotents of fixed rank $\ell \leq r$ is a compact K-homogeneous manifold. In particular, S_{1} consists of all minimal (rank 1) tripotents. For the spin factor, S_{1} is the cosphere bundle. For $Z=\mathbf{C}^{1 \times d}$

$$
S_{1}=\{u \in Z: \quad(u \mid u)=1\}=\mathbf{S}^{2 d-1}
$$

is the full boundary.
Every tripotent u induces a Peirce decomposition
$Z=Z_{u}^{(2)} \oplus Z_{u}^{(1)} \oplus Z_{u}^{(0)}$, where

$$
Z_{u}^{(j)}=\{z \in Z:\{u ; u ; z\}=2 j z\}
$$

is an eigenspace of $D(u, u)$. Moreover, the Peirce 2-space $Z_{u}^{(2)}$ becomes a Jordan algebra with unit element u and multiplication $\{x ; u ; y\}$.

The Jordan Grassmann manifold

$$
M_{\ell}=S_{\ell} / \sim=\text { set of all Peirce 2-spaces } U=Z_{u} \text { of rank } \ell
$$

is a compact hermitian symmetric space, both a K-orbit and a K^{C}-orbit. (Center of open G-orbit). Define the tautological vector bundle

$$
\mathcal{T}_{\ell}:=\bigcup_{U \in M_{\ell}} U \rightarrow M_{\ell} .
$$

Fix a base point $c \in S_{\ell}$, put $V:=Z_{c}^{(2)}$ and let $L:=\left\{k \in K^{\mathbf{C}}: k V=V\right\}$. Then

$$
\mathcal{T}_{\ell}=K^{\mathbf{C}}{ }_{\times_{L} V}
$$

becomes a homogeneous vector bundle, and

$$
\mathcal{T}_{\ell} \rightarrow Z_{\ell}: U \ni z \mapsto z \in Z_{\ell}
$$

is a collapsing map. By Kempf's Theorem, the range of a collapsing map of homogeneous vector bundles is a normal variety. Let \dot{U} denote the invertible elements of the Jordan algebra $U=Z_{u}^{(2)}$. Then

$$
\bigcup_{U \in M_{\ell}} \stackrel{\circ}{U} \rightarrow Z_{\ell}
$$

is a birational isomorphism. This proves the normality theorem.

Let (M, ω) be a compact Kähler n-manifold, with a quantizing line bundle $\mathcal{L} \rightarrow M$. Consider holomorphic sections $\Gamma\left(M, \mathcal{L}^{\nu}\right)$ of a (high) tensor power \mathcal{L}^{ν}. Kodaira (coherent state) embedding

$$
\begin{gathered}
\kappa_{\nu}: M \rightarrow \mathbf{P}\left(\Gamma\left(M, \mathcal{L}^{\nu}\right)\right), z \mapsto\left[s_{\nu}^{0}(z), . ., s_{\nu}^{d_{\nu}}(z)\right] \\
\Omega_{\nu}=\frac{i}{2} \partial \bar{\partial} \log \sum_{i=0}^{d_{\nu}}\left|Z^{i}\right|^{2} \text { Fubini-Study metric on } \mathbf{P}^{d_{\nu}} \\
\kappa_{\nu}^{*}\left(\Omega_{\nu}\right)=\nu \omega+\frac{i}{2} \partial \bar{\partial} \log T_{\nu} \\
T_{\nu}(z)=\sum_{i=0}^{d_{\nu}} h_{z}\left(s_{\nu}^{i}(z), s_{\nu}^{i}(z)\right) \text { Kempf distortion function }
\end{gathered}
$$

TYZ (Tian-Yau-Zelditch) expansion

$$
\left|\frac{T_{\nu}(z)}{\nu^{n}}-\sum_{j=0}^{N-1} \frac{a_{j}(z)}{\nu^{j}}\right| \leq \frac{c_{N}}{\nu^{N}} \text { as } \nu \rightarrow \infty
$$

For non-compact Kähler manifolds (such as Z_{ℓ}) we need infinite-dimensional Hilbert spaces of holomorphic functions.

Every (euclidean) Jordan algebra X has a symmetric cone

$$
\Omega=\left\{x^{2}: x \in X \text { invertible }\right\} .
$$

In fact, another theorem of Koecher-Vinberg characterizes euclidean Jordan algebras in terms of symmetric (i.e. self-adjoint homogeneous) cones. For matrices $X=\mathcal{H}_{r}(\mathbf{K}), \Omega$ consists of all positive definite matrices. For the real spin factor, we obtain the forward light cone. For a tripotent $u \in S_{\ell}$ the Peirce 2-space $Z_{u}^{(2)}$ is the complexification of a euclidean Jordan algebra with symmetric cone

$$
\Omega_{u}:=\left\{x=\{u ; x ; u\} \in Z_{u}^{(2)}: x=\{y ; u ; y\}, y \text { invertible }\right\} .
$$

Proposition: The Kepler manifold has a polar decomposition

$$
\dot{Z}_{\ell}=\bigcup_{u \in S_{\ell}} \Omega_{u} .
$$

For $\ell=1$ this reduces to $\check{Z}_{1}=\mathbf{R}_{+} \cdot S_{1}$, since $Z_{u}^{(2)}=\mathbf{C} \cdot u$ and $\Omega_{u}=\mathbf{R}_{+} \cdot u$ is an open half-line.

Choose a base point $c=e_{1}+\ldots+e_{\ell} \in S_{\ell}$. Every positive density function $\rho(t)$ on symmetric cone Ω_{c} induces a K-invariant radial measure

$$
\int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z) f(z)=\int_{\Omega_{c}} d t \rho(t) \int_{K} d k f(k \sqrt{t}) .
$$

For $\ell=1$ this simplifies to

$$
\int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z) f(z)=\int_{0}^{\infty} d t \rho(t) \int_{S_{1}} d u f(u \sqrt{t}) .
$$

Define a Hilbert space of holomorphic functions

$$
\mathcal{H}_{\rho}:=\left\{f: \AA_{\ell} \rightarrow \mathbf{C} \text { holomorphic : } \int_{\tilde{Z}_{\ell}} d \tilde{\rho}(z)|f(z)|^{2}<+\infty\right\} .
$$

In the trivial case, where $\ell=r$ is maximal and Z is a Jordan algebra, negative powers of the (Jordan) determinant have no holomorphic extension beyond \dot{Z}. Apart from this we have Extension Theorem: Every holomorphic function on \dot{Z}_{ℓ} has a unique extension to the closure Z_{ℓ}
Proof: Singular set

$$
Z_{\ell} \backslash \dot{Z}_{\ell}=\bigcup_{j<\ell} Z_{j}
$$

has codimension ≥ 2. By the Normality Theorem (and using Lojasiewicz), the second Riemann extension theorem holds for holomorphic functions on $\stackrel{\Sigma}{\ell}_{\ell}$.

Under the natural action of K the holomorphic polynomials $\mathcal{P}(Z)$ on a hermitian Jordan triple Z have a Hua-Schmid-Kostant decomposition

$$
\mathcal{P}(Z)=\sum_{m \in \mathbf{N}_{+}^{r}} \mathcal{P}_{\boldsymbol{m}}(Z)
$$

where $\boldsymbol{m}=m_{1} \geq m_{2} \geq \ldots \geq m_{r} \geq 0$ ranges over all integer partitions (Young diagrams) and each $\mathcal{P}_{m}(Z)$ is an irreducible K-module, whose highest weight vector N_{m} can be uniformly described in terms of Jordan theoretic minors. The dimension $d_{\boldsymbol{m}}:=\operatorname{dim} \mathcal{P}_{\boldsymbol{m}}(Z)$ is explicitly known. Let

$$
(\phi \mid \psi):=\frac{1}{\pi^{d}} \int_{Z} d z e^{-(z \mid z)} \overline{\phi(z)} \psi(z)
$$

denote the Fischer-Fock inner product. Then there is an expansion

$$
e^{(z \mid w)}=\sum_{m} E^{m}(z, w)
$$

into finite-dimensional kernel functions $E^{\boldsymbol{m}}(z, w)$ of $\mathcal{P}_{\boldsymbol{m}}(Z)$. For $r=1, E^{m}(z, w)=\frac{(z \mid w)^{m}}{m!}$.

Using the characteristic multiplicity a of Z, we define the Pochhammer symbol

$$
(\nu)_{m}:=\prod_{j=1}^{r}\left(\nu-\frac{a}{2}(j-1)\right)_{m_{j}} .
$$

Since the underlying measure $\tilde{\rho}$ is K-invariant, the extension theorem implies that

$$
\mathcal{H}_{\rho}=\sum \mathcal{P}_{m_{1} \ldots, m_{\ell}, 0 \ldots, 0}(Z)
$$

is a Hilbert sum involving only (non-negative) partitions of length $\leq \ell$, since the other components vanish on Z_{ℓ}.
Theorem: The Hilbert space \mathcal{H}_{ρ} has the reproducing kernel

$$
\begin{gathered}
\mathcal{K}^{\rho}(z, w):=\sum_{m \in \mathbf{N}_{+}^{e}} \frac{d_{\boldsymbol{m}}}{\int_{\Omega_{c}} d \rho(t) E^{m}(t, e)} E^{m}(z, w) \\
=\sum_{m \in \mathbf{N}_{+}^{\ell}} \frac{\left(d_{\ell} / \ell\right)_{\boldsymbol{m}}}{\int_{\Omega_{c}} d \rho(t) N_{m}(t)} \frac{d_{\boldsymbol{m}}}{d_{\boldsymbol{m}}^{c}} E^{m}(z, w)
\end{gathered}
$$

Every euclidean Jordan algebra X has a Jordan algebra determinant $N(x)$ which is a r-homogeneous polynomial defined via Cramer's rule

$$
x^{-1}=\frac{\nabla_{x} N}{N(x)}
$$

For real or complex matrices, this is the usual determinant. For even anti-symmetric matrices, it is the Pfaffian. In the rank 2 case, $N\left(x_{0}, x\right)=x_{0}^{2}-(x \mid x)$ is the Lorentz metric.
Let $\partial_{N}=N\left(\frac{\partial}{\partial x}\right)$ be the associated constant coefficient differential operator on X. Then $N(x) \partial_{N}$ is a kind of Euler operator, of order r. Applying these concepts to the Jordan algebra $Z_{c}^{(2)}$ of rank ℓ, we define a universal differential operator

$$
\mathcal{D}_{\ell}:=N^{\frac{a}{2}(\ell-r)} \partial_{N}^{b} N^{\frac{a}{2}(r-\ell-1)+b+1}\left(\partial_{N} N^{\frac{a}{2}} \partial_{N}^{a-1}\right)^{r-\ell} N^{\frac{a}{2}(r-\ell+1)-1}
$$

of order $\ell((r-\ell) a+b)$ on the symmetric cone Ω_{c}. For $\ell=1, N(t)=t$ and \mathcal{D}_{1} becomes a polynomial differential operator of order $(r-1) a+b$ on the half-line.

Our main result is that the reproducing kernel $\mathcal{K}_{\rho}(z, w)$ can be expressed in closed form, by

$$
\mathcal{K}_{\rho}(\sqrt{t}, \sqrt{t})=\left(\mathcal{D}_{\ell} F_{\rho}\right)(t)
$$

for all $t \in \Omega_{c}$, where F_{ρ} is a special function of hypergeometric type. Since hypergeometric functions have good asymptotic expansions (quite difficult for $\ell>1$), this will lead to the desired TYZ-expansions. Generalizing the 1 -dimensional case, we define the hypergeometric series of type (p, q)

$$
{ }_{p} F_{q}\binom{\alpha_{1}, \ldots, \alpha_{p}}{\beta_{1}, \ldots, \beta_{q}}(z, w):=\sum_{m} \frac{\left(\alpha_{1}\right)_{m} \ldots\left(\alpha_{p}\right)_{m}}{\left(\beta_{1}\right)_{m} \ldots\left(\beta_{q}\right)_{m}} E^{m}(z, w),
$$

using the Fischer-Fock reproducing kernels $E^{m}(z, w)$. For $z, w \in Z_{\ell}$, only partitions of length $\leq \ell$ occur.

Consider first a Fock space situation. For $\alpha>0$ consider the pluri-subharmonic function $\phi=(z \mid z)^{\alpha}$ on Z_{ℓ}. Let $\omega:=\partial \bar{\partial} \phi$ denote the associated Kähler form. Then we have the polar decomposition

$$
\int_{\dot{Z}_{\ell}} \frac{\left|\omega^{n}\right|}{n!}(z) e^{-\nu \phi(z)} f(z)=\int_{\Omega_{c}} d t N_{c}(t)^{a(r-\ell)+b}(t \mid c)^{n(\alpha-1)} e^{-\nu(t \mid c)^{\alpha}}
$$

where $N_{c}(t)$ is the rank ℓ determinant function on Ω_{c}. Let $\alpha=1$. Theorem: The Hilbert space $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has the reproducing kernel

$$
\mathcal{K}_{\nu}(t, e)=\mathcal{D}_{\ell}{ }_{1} F_{1}\binom{d_{\ell} / \ell}{n / \ell}(\nu t)
$$

for the confluent hypergeometric function

$$
{ }_{1} F_{1}\binom{\sigma}{\tau}(z, w)=\sum_{m} \frac{(\sigma)_{m}}{(\tau)_{m}} E^{m}(z, w)
$$

In order to look at a Bergman type Hilbert space, let

$$
(u \mid v)=\frac{1}{p} t r_{Z} D(u, v)
$$

be the normalized K-invariant inner product, where p is the so-called genus of D. Define Bergman operators

$$
B(u, v) z=z-2\{u ; v ; z\}+\{u ;\{v ; z ; v\} ; u\}
$$

for $u, v, z \in Z$. Then the G-invariant Bergman metric is given by

$$
(u \mid v)_{z}=\left(B(z, z)^{-1} u \mid v\right) .
$$

For the matrix case $Z=\mathbf{C}^{r \times s}$, we have

$$
B(u, v) z=z-u v^{*} z-z v^{*} u+u\left(v z^{*} v\right)^{*} u=\left(1-u v^{*}\right) z\left(1-v^{*} u\right)
$$

and $p=r+s$. Therefore

$$
(u \mid v)=\frac{1}{r+s} \operatorname{tr}_{Z} D(u, v)=\text { trace } u v^{*}
$$

and the Bergman metric at $z \in D$ is

$$
(u, v)_{z}=\operatorname{trace}\left(1-z z^{*}\right)^{-1} u\left(1-z^{*} z\right)^{-1} v^{*}
$$

In terms of the Bergman operator, the Bergman kernel function $K: D \times \bar{D} \rightarrow \mathbf{C}$ of D can be expressed as

$$
K(z, w)=\operatorname{det} B(z, w)^{-1}
$$

It is a fundamental fact that there exists a sesqui-polynomial called the Jordan triple determinant $\Delta: Z \times \bar{Z} \rightarrow \mathbf{C}$ such that the Bergman kernel function has the form

$$
K(z, w)=\operatorname{det} B(z, w)^{-1}=\Delta(z, w)^{-p}
$$

for all $z, w \in D$. In the matrix case $Z=\mathbf{C}^{r \times s}$ we have

$$
\operatorname{det} B(z, w)=\operatorname{det}\left(1_{r}-z w^{*}\right)^{r+s} .
$$

It follows that

$$
\Delta(z, w)=\operatorname{det}\left(1-z w^{*}\right) .
$$

The Kepler ball is the intersection

$$
\left\{z \in \dot{Z}_{\ell}:\|z\|_{\infty}<1\right\}=\dot{Z}_{\ell} \cap D
$$

of Z_{ℓ} with the bounded symmetric domain $D:=\left\{z \in Z:\|z\|_{\infty}<1\right\}$. Consider the pluri-subharmonic function

$$
\phi(z)=\log \Delta(z, z)^{-p}=\log \operatorname{det} B(z, z)^{-1}
$$

on the Kepler ball, given by the Bergman kernel. As before, the associated radial measure $e^{-\nu \phi}\left|\omega^{n}\right| / n$! has a nice polar decomposition, this time involving the unit interval $\Omega_{c} \cap\left(c-\Omega_{c}\right)$.
Theorem: For the Kepler ball, $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has the reproducing kernel

$$
\mathcal{K}_{\nu}(t, e)=\mathcal{D}_{\ell}{ }_{2} F_{1}\binom{d_{\ell} / \ell ; \nu}{n_{\ell} / \ell}(t)
$$

involving a Gauss hypergeometric function ${ }_{2} F_{1}$ on Ω_{c}.

Pattern

Fock space on $Z=\mathbf{C}^{d}, \mathcal{K}_{\nu}=e^{(z \mid w)}={ }_{0} F_{0}(z, w)$
Bergman space on $D, \mathcal{K}_{\nu}=\Delta(z, w)^{-\nu}={ }_{1} F_{0}(z, w) \quad$ Faraut-Koranyi formula
Kepler manifold $\stackrel{\circ}{Z}_{\ell}, \mathcal{K}_{\nu}=\mathcal{D}_{\ell}{ }_{1} F_{1}$
Kepler ball $D \cap \stackrel{\circ}{Z}_{\ell}, \mathcal{K}_{\nu}=\mathcal{D}_{\ell}{ }_{2} F_{1}$

Asymptotic expansion: $\alpha=1, \ell$ arbitrary
Theorem: Consider the Fock-type situation, $\alpha=1$, ℓ arbitrary. There exist polynomials $p_{j}(x)$, with $p_{0}=$ const, such that

$$
\frac{1}{\nu^{n}} \mathcal{K}_{\nu}(\sqrt{x}, \sqrt{x}) \approx \frac{e^{\nu \operatorname{tr}(x)}}{N_{c}(x)^{n / \ell}} \sum_{j=0}^{n} \frac{p_{j}(x)}{\nu^{j}}
$$

as $|x| \rightarrow+\infty$, uniformly for x in compact subsets of Ω_{c}.
Proof: For $\operatorname{Re}(\mu)>\frac{d}{r}-1$ and $\operatorname{Re}(\gamma)>\frac{d}{r}-1$, there is an asymptotic expansion

$$
{ }_{1} F_{1}\binom{\mu}{\gamma}(z) \approx \frac{\Gamma_{r}(\gamma)}{\Gamma_{r}(\mu)} \frac{e^{\operatorname{tr}(z)}}{N(z)^{\gamma-\mu}}{ }_{2} F_{0}\left(\frac{d}{r}-\mu ; \gamma-\mu\right)\left(z^{-1}\right)
$$

as $|z| \rightarrow+\infty$ while $\frac{z}{|z|}$ stays in a compact subset of Ω_{c}.
This expansion can be differentiated termwise any number of times.
Remark: Similar expansion for Kepler ball, based on asymptotics of ${ }_{2} F_{1}$.

Asymptotic expansion: $\ell=1, \alpha$ arbitrary
Theorem: Radial measure $d \rho(t)=\alpha e^{-\nu t^{\alpha}} t^{\alpha(p-1)-1} d t$ on half-line. Then, as $\nu \rightarrow+\infty$

$$
\frac{e^{-\nu(z \mid z)^{\alpha}}}{\nu^{p-1}} \mathcal{K}_{\nu}(z, z)=\sum_{j=0}^{p-2} \frac{b_{j}}{\nu^{j}(z \mid z)^{j \alpha}}+O\left(e^{-\eta \nu(z \mid z)^{\alpha}}\right), \eta>0
$$

Proof: The measure $d \rho$ has moments

$$
\alpha \int_{0}^{\infty} d t e^{-\nu t^{\alpha}} t^{\alpha(p-1)+m-1}=\frac{\Gamma\left(p-1+\frac{m}{\alpha}\right)}{\nu^{p-1+\frac{m}{\alpha}}}
$$

Therefore $\mathcal{K}_{\nu}=\mathcal{D}_{1} F_{\rho}$ with

$$
F_{\rho}(t)=\nu^{p-1} \sum_{m=0}^{\infty} \frac{\left(\nu^{1 / \alpha} t\right)^{m}}{\Gamma\left(p-1+\frac{m}{\alpha}\right)}=\nu^{p-1} E_{1 / \alpha, p-1}\left(\nu^{1 / \alpha} t\right)
$$

for the Mittag-Leffler function

$$
E_{A, B}(t)=\sum_{m=0}^{\infty} \frac{t^{m}}{\Gamma(A m+B)}
$$

As $t \rightarrow+\infty$, it is known that

$$
E_{A, B}(t)=\frac{1}{A} t^{(1-B) / A} e^{t^{1 / A}}+O\left(e^{(1-\eta) t^{1 / A}}\right)
$$

with some $\eta>0$. This remains valid for derivatives of any order. For any polynomial P in one variable

$$
\partial_{t}^{k} t^{\gamma \alpha+c} P\left(t^{\alpha}\right) e^{t^{\alpha}}=t^{\gamma \alpha+c-k} Q\left(t^{\alpha}\right) e^{\alpha^{\alpha}}
$$

with another polynomial Q, where $\operatorname{deg} Q=\operatorname{deg} P+k$. It follows that

$$
\left(t D_{j}+D_{j} t\right) t^{\gamma \alpha} P\left(t^{\alpha}\right) e^{t^{\alpha}}=t^{\gamma \alpha} Q\left(t^{\alpha}\right) e^{\alpha^{\alpha}}
$$

with $\operatorname{deg} Q=\operatorname{deg} P+a$. Hence for $\mathcal{D}=\grave{D} \prod_{j=2}^{r}\left(t D_{j}+D_{j} t\right)$

$$
\grave{D} \prod_{j=2}^{r}\left(t D_{j}+D_{j} t\right) t^{\gamma \alpha} e^{t^{\alpha}}=t^{\gamma \alpha} Q\left(t^{\alpha}\right) e^{t^{\alpha}}
$$

where Q has degree $(r-1) a+b=p-2$ and leading coefficient $2^{r-1} \alpha^{p-2}$.

Invariant volume forms and measures

\check{Z}_{ℓ} is homogeneous under K^{C} or a suitable transitive subgroup. When does an invariant holomorphic volume form or invariant measure exist?
Only for domains of tube type $b=0$.

- Theorem: Let Z be of tube type and $0<\ell<r$. Then there exists an invariant holomorphic n-form Ω on \grave{Z}_{ℓ} if and only if $p-a \ell=2+a(r-\ell-1)$ is even.
- Among all tube type domains, $p-a \ell$ is odd only for the symmetric matrices $Z=\mathbf{C}_{s y m}^{r \times r}$ with $r-\ell$ even.
- Theorem: An invariant measure μ on \dot{Z}_{ℓ} exists in all cases (for $b=0$), and has polar decomposition

$$
\int_{\dot{Z}_{\ell}} d \mu(z) f(z)=\mathrm{const} \int_{\Omega_{c}} \frac{d t}{N_{c}(t)^{d_{\ell} / \ell}} N_{c}(t)^{a r / 2} \int_{K} d k f(k \sqrt{t})
$$

Special case, $r=2, \ell=1$

Englis et al, Gramchev-Loi: Lie ball $r=2$

$$
\begin{gathered}
T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\{(x, \xi):\|x\|=1,(x \mid \xi)=0, \xi \neq 0\} \\
\mathbf{C}^{n+1} \text { hermitian Jordan triple, rank } 2 \\
\left\{u v^{*} w\right\}=(u \mid v) w+(w \mid v) u+(u \mid \bar{w}) \bar{v} \text { Jordan triple product } \\
N(z)=(z \mid \bar{z}) \text { Jordan algebra determinant } \\
T^{*}\left(\mathbf{S}^{n}\right) \backslash\{0\}=\left\{z \in \mathbf{C}^{n+1}: N(z)=0\right\} \text { rank } 1 \text { elements } \\
\frac{T_{\nu}(z)}{\nu^{n}}=1+\frac{(n-1)(n-2)}{2|\nu z|}+\sum_{j=2}^{n-2} \frac{2 a_{j}}{|\nu z|^{j}}+R_{\nu}(|z|)
\end{gathered}
$$

exponentially small error term

Theorem:

For $t \in \Omega_{c}$ define the function

$$
F_{\rho}(t)=\sum_{\boldsymbol{m} \in \mathbf{N}_{+}^{\ell}} \frac{\left(d_{\ell} / \ell\right)_{\boldsymbol{m}}}{\int_{\Omega_{c}} d \rho N_{\boldsymbol{m}}} E^{\boldsymbol{m}}(t, c)
$$

Every euclidean Jordan algebra X has a positive cone

$$
\Omega=\left\{x^{2}: x \in X \backslash\{0\}\right\}
$$

corresponding to the positive definite matrices $\mathcal{H}_{r}^{+}(\mathbf{K})$. The Jordan algebra determinant $N: X \rightarrow \mathbf{R}$ is a r-homogeneous polynomial defined via Cramer's rule

$$
x^{-1}=\frac{\nabla_{x} N}{N(x)} .
$$

For the rank 2 case,

$$
N\left(\begin{array}{cc}
\alpha & b \\
b^{*} & \delta
\end{array}\right)=\alpha \delta-(b \mid b)
$$

is the Lorentz metric on $\rho^{1,1+a}$. The complexification $Z:=X^{\mathbf{C}}$ becomes a (complex) Jordan triple (of tube type)

$$
\left\{u v^{*} w\right\}=\left(u \circ v^{*}\right) \circ w+\left(w \circ v^{*}\right) \circ u-v^{*} \circ(u \circ w) .
$$

$$
\begin{aligned}
\phi=(z \mid z)^{\alpha}, \alpha> & 0 \text { pluri-subharmonic function on } Z_{\ell} \\
\omega & :=\partial \bar{\partial} \phi \text { Kähler form } \\
\int_{\dot{Z}_{\ell}} \frac{\left|\omega^{n}\right|}{n!}(z) e^{-\nu \phi(z)} f(z) & =\int_{\Omega_{c}} d t N_{c}(t)^{a(r-\ell)+b}(t \mid c)^{n(\alpha-1)} e^{-\nu(t \mid c)^{\alpha}}
\end{aligned}
$$

Theorem: $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has kernel $\mathcal{K}_{\nu}(\sqrt{t}, \sqrt{t})=\mathcal{D}_{\ell} F_{\nu}(t)$

$$
F_{\nu}(t)=\text { const } \sum_{\boldsymbol{m} \in \mathbf{N}_{+}^{\ell}} \frac{\left(d_{\ell} / \ell\right)_{\boldsymbol{m}}}{\Gamma_{\Omega_{c}}\left(\boldsymbol{m}+\frac{n}{\ell}\right)} \frac{\Gamma(n+|\boldsymbol{m}|)}{\Gamma\left(n+\frac{|\boldsymbol{m}|}{\alpha}\right)} E^{\boldsymbol{m}}\left(\nu^{1 / \alpha} t, c\right)
$$

confluent hypergeometric function

$$
{ }_{1} F_{1}(z, w)=\sum_{m} \frac{(\sigma)_{m}}{(\tau)_{m}} E^{m}(z, w)
$$

For $\alpha=1$

$$
F_{\nu}(t)={ }_{1} F_{1}\binom{d_{\ell} / \ell}{n / \ell}(\nu t)
$$

Theorem: $\mathcal{H}_{\nu}=H^{2}\left(e^{-\nu \phi}\left|\omega^{n}\right| / n!\right)$ has kernel $\mathcal{K}_{\nu}(\sqrt{t}, \sqrt{t})=\mathcal{D}_{\ell} F_{\nu}(t)$

$$
F_{\nu}(t)=\mathrm{const} \sum_{\boldsymbol{m} \in \mathbf{N}_{+}^{\ell}} \frac{\left(d_{\ell} / \ell\right)_{\boldsymbol{m}}}{\Gamma_{\Omega_{c}}\left(\boldsymbol{m}+\frac{n}{\ell}\right)} \frac{\Gamma(n+|\boldsymbol{m}|)}{\Gamma\left(n+\frac{|\boldsymbol{m}|}{\alpha}\right)} E^{\boldsymbol{m}}\left(\nu^{1 / \alpha} t, c\right)
$$

coherent state embedding

$$
\begin{gathered}
\sigma_{\nu}: U \rightarrow \mathcal{L}^{\nu} \backslash 0 \text { local trivializing section } \\
\nu \omega(z)=-\frac{i}{2} \partial \bar{\partial} \log h_{\nu}\left(\sigma_{\nu}(z), \sigma_{\nu}(z)\right) \text { Ricci form } \\
\mathbf{P}\left(\mathcal{O}\left(M, \mathcal{L}^{\nu}\right)\right),\left(s_{\nu}^{0}, . ., s_{\nu}^{d_{\nu}}\right) \text { ONB of sections } \\
\mathbf{P}^{d_{\nu}}:\left[Z^{0}, . ., Z^{d_{\nu}}\right] \text { homogeneous coordinates }
\end{gathered}
$$

junk

be the corresponding with closure

$$
\bar{D}=\left\{z \in \mathbf{C}^{r \times s}: I-z z^{*} \geq 0\right\}
$$

In this case we take

$$
K=U(r) \times U(s) \ni(u, v)
$$

and

$$
S=\left\{z \in \mathbf{C}^{r \times s}: z z^{*}=I\right\}
$$

consists of all (injective) isometries. In the special case $r=s$ we obtain $S=U(r)$. In this case the domain D is said to be of 'tube type'. compact linear Lie group

$$
d:=\operatorname{dim} Z=r\left(1+\frac{a}{2}(r-1)+b\right), r=\operatorname{rank}(Z)
$$

characteristic multiplicities: a, b
tube type: $b=0$

Hankel operators

$$
d \rho(t)=N_{c}(t)^{a(r-\ell)+b} d t, d \tilde{\rho} \text { Lebesgue surface measure on } \stackrel{\circ}{Z}_{\ell}
$$

Kepler ball

$$
D_{\ell}:=\left\{z \in Z_{\ell}:\|z\|<1\right\}
$$

bounded symmetric domain, spectral norm
$H_{\bar{g}} f:=(I-P)(\bar{g} f)$ Hankel operator, antiholomorphic symbol function
Theorem: For $p \geq 1$ the following are equivalent

- There exists nonconstant $g \in H_{\rho}^{2}$ with $H_{\bar{g}} \in \mathcal{S}^{p}$ (Schatten class)
- There exists a nonzero partition $\boldsymbol{m} \in \mathbf{N}_{+}^{r}$ such that $H_{\bar{g}} \in \mathcal{S}^{p}$ for all $g \in \mathcal{P}_{\boldsymbol{m}}$
- $\ell=1$ and $p>2 \operatorname{dim} Z_{1}$
- $H_{\bar{g}} \in \mathcal{S}^{p}$ for any polynomial g

Analogous to BBCZ-Theorem.

$$
\begin{gathered}
Z_{1}=\{z \in Z: N(z)=0\} \text { algebraic variety } \\
\rho(z)=(z \mid z)^{\alpha}-1 \\
S_{1}=\{z \in Z: N(z)=0, \rho(z)=0\} \text { strongly pseudoconvex boundary } \\
\operatorname{dim} S_{1}=1+a(r-1)+b \\
\vartheta=\frac{\partial \rho-\bar{\partial} \rho}{2 i}=\alpha(z \mid z)^{\alpha-1} \frac{(d z \mid z)-(z \mid d z)}{2 i} \text { contact 1-form } \\
d u=\vartheta \wedge(d \vartheta)^{n-1} K \text {-invariant measure (2n-1-form) on } S_{1} \\
\pi: \mathbf{R} \times S_{1} \rightarrow S_{1} \text { symplectic cone, } s=e^{t} \\
\omega=d\left(e^{t} \cdot \pi^{*} \vartheta\right)=e^{t}\left(d t \wedge \pi^{*} \vartheta+\pi^{*} d \vartheta\right) \text { symplectic form } \\
\omega^{n}=e^{n t} d t \wedge \pi^{*} \vartheta \wedge\left(\pi^{*} d \vartheta\right)^{n-1}=e^{n t} d t \wedge d u=s^{n-1} d s \wedge d u \\
\int_{Z_{1}} \omega^{n}(\zeta) f(\zeta)=\int_{0}^{\infty} d s s^{n-1} \int_{S_{1}} d u f(u \sqrt{s})
\end{gathered}
$$

$$
\begin{aligned}
& z=s u, u=\frac{x+i \xi}{2} \in S_{1} \text { rank1 tripotents } \\
& (u \mid u)=1 \Rightarrow(z \mid z)=s^{2} \\
& \omega(z)=\frac{i}{2} \partial \bar{\partial} \sqrt{(z \mid z)}=\frac{i}{4}(z \mid z)^{-3 / 2}\left((z \mid z)(d z \mid d z)-\frac{(d z \mid z) \wedge(z \mid d z)}{2}\right) \\
& (d z \mid d z)=d z^{i} \wedge d \bar{z}^{i},(d z \mid z)=\bar{z}^{i} d z^{i},(z \mid d z)=z^{j} d \bar{z}^{j} \\
& (d z \mid d z) \wedge \alpha=0 \\
& \omega^{n}=\frac{((d z \mid z) \wedge(z \mid d z))^{n}}{(z \mid z)^{3 n / 2}} \\
& K^{1}(z, w)=\sum_{m=0}^{\infty} \frac{\Gamma(m+a)}{\Gamma(2 m+a)} E_{m}(z, w) \\
& \frac{K^{\nu}(z, z)}{\nu^{d-1}}=\sum_{m=0}^{\infty} \frac{\Gamma(m+a)}{\Gamma(2 m+a)} E_{j}(\nu z, \nu w)
\end{aligned}
$$

Jordan Kepler manifolds

Z irreducible hermitian Jordan triple, rank r
$\left\{u v^{*} w\right\}$ Jordan triple product
$N_{k}(z)$ Jordan minors
$S_{1}^{\mathrm{C}}=\left\{z \in Z: N_{k}(z)=0 \forall k>1\right\}$ rank 1 elements
S_{1} rank 1 tripotents

$$
\begin{gathered}
z=s u, s>0, u \in S_{1} \text { polar decomposition } \\
(u \mid u)=1 \Rightarrow(z \mid z)=s^{2} \\
\int_{S_{1}^{\mathbf{C}}} d \Omega(\zeta) e^{-\nu \sqrt{(\zeta \mid \zeta)}} f(\zeta)=\int_{0}^{\infty} d s e^{-\nu s} s^{n-1} \int_{K} d k f(k s) \\
(\psi \mid \psi)=\int_{S_{1}^{\mathbf{C}}} d \Omega(\zeta) e^{-\nu \sqrt{(\zeta \mid \zeta)}}|\psi(\zeta)|^{2}=\int_{0}^{\infty} d s e^{-\nu s} s^{n-1} \int_{S_{1}} d u|\psi(s u)|^{2}
\end{gathered}
$$

$$
\begin{gathered}
\psi \in \mathcal{P}_{m}(Z) \Rightarrow(\psi \mid \psi)=\int_{0}^{\infty} d s e^{-\nu s} s^{n-1} s^{2 m} \int_{S_{1}} d u|\psi(u)|^{2} \\
\int_{K} d k E_{m}(z, k s) E_{n}(k s, w)=\frac{\delta_{m, n}}{(d / r)_{m}} \frac{(a / 2)_{m}}{(r a / 2)_{m}} \phi_{1}^{m}\left(s^{2}\right) E_{m}(z, w) \\
=\frac{\delta_{m, n}}{(d / r)_{m}} \frac{(a / 2)_{m}}{(r a / 2)_{m}} s^{2 m} E_{m}(z, w) \\
\int_{S_{1}^{\mathrm{C}}} d \Omega(\zeta) e^{-\nu \sqrt{(\zeta \mid \zeta)}} E_{m}(z, \zeta) E_{n}(\zeta, w)=\int_{0}^{\infty} d s e^{-\nu s} s^{n-1} \int_{K} d k E_{m}(z, k s) E_{n}(k s, r \\
=\frac{\delta_{m, n}}{(d / r)_{m}} \frac{(a / 2)_{m}}{(r a / 2)_{m}} E_{m}(z, w) \int_{0}^{\infty} d s e^{-\nu s} s^{2 m+n-1} \\
=2 \frac{\delta_{m, n}}{(d / r)_{m}} \frac{(a / 2)_{m}}{(r a / 2)_{m}} \frac{\Gamma(2 m+n)}{\nu^{2 m+n}} E_{m}(z, w)
\end{gathered}
$$

$$
\begin{array}{r}
K^{\nu}(z, w)=\sum_{m=0}^{\infty} \frac{\nu^{2 m+n}(d / r)_{m}(r a / 2)_{m}}{\Gamma(2 m+n)(a / 2)_{m}} E_{m}(z, w) \\
=\nu^{n} \sum_{m=0}^{\infty} \frac{(d / r)_{m}(r a / 2)_{m}}{\Gamma(2 m+n)(a / 2)_{m}} E_{m}(\nu z, \nu w) \\
=\nu^{n} \sum_{m=0}^{\infty} \frac{\Gamma\left(m+1+\frac{a}{2}(r-1)\right) \Gamma\left(m+\frac{a}{2} r\right)}{\Gamma(2 m+1+a(r-1)) \Gamma\left(m+\frac{a}{2}\right)} E_{m}(\nu z, \nu w) \\
=\nu^{n} \sum_{m=0}^{\infty} \frac{\Gamma\left(m+\frac{a}{2} r\right)}{\Gamma\left(m+\frac{1}{2}+\frac{a}{2}(r-1)\right) \Gamma\left(m+\frac{a}{2}\right)} E_{m}(2 \nu z, 2 \nu w) \\
r=2, d=n+1, a=n-1
\end{array}
$$

$$
\begin{aligned}
K^{\nu}(z, w) & =\nu^{n} \sum_{m=0}^{\infty} \frac{\Gamma(m+a)}{\Gamma\left(m+\frac{a+1}{2}\right) \Gamma\left(m+\frac{a}{2}\right)} E_{m}(2 \nu z, 2 \nu w) \\
& =\nu^{n} \sum_{m=0}^{\infty} \frac{\Gamma(m+a)}{\Gamma(2 m+a)} E_{m}(2 \nu z, 2 \nu w)
\end{aligned}
$$

Complex Geometry of Bounded Symmetric Domains In the following consider a complex vector space $Z=\mathbf{C}^{d}$, endowed with a norm $\|\cdot\|$, and let

$$
D=\{z \in Z:\|z\|<1\}
$$

be its unit ball. In general, the boundary

$$
\partial D=\{z \in Z:\|z\|=1\}
$$

will not be smooth. Consider the set

$$
S=\partial_{\mathrm{ex}} D \subset \partial D
$$

of all extreme points and let

$$
U(Z)=\{g \in G L(Z):\|g z\|=\|z\|\}
$$

be the linear isometry group. Then $U(Z) \subset G L(Z)$ is a closed subgroup, therefore $U(Z)$ is a compact Lie group. Clearly, the natural $U(Z)$-action satisfies

$$
U(Z) \cdot D=D, \quad U(Z) \cdot \partial D=\partial D, \quad U(Z) \cdot S=S
$$

Example: For $Z=\mathbf{C}^{d}$, define the scalar product

$$
(z \mid w)=z w^{*}=\sum_{i} z_{i} \bar{w}_{i}
$$

and let $\|z\|=(z \mid z)^{1 / 2}$ be the Hilbert norm. Then

$$
D=\left\{z \in \mathbf{C}^{d}:(z \mid z)<1\right\}
$$

is the Hilbert unit ball. In this case $K=U(d)$ is the unitary group and

$$
S=\partial D=\mathbf{S}^{2 d-1}
$$

is the odd sphere. For $d=1$ we have the unit disk $D=\{z \in \mathbf{C} ;|z|<1\}$ and the unit circle $S=\{z \in \mathbf{C}:|z|=1\}=\mathbf{T}$.

We now introduce holomorphic functions. By definition, a (possibly vector-valued) function $f: D \rightarrow \mathbf{C}^{m}$ is holomorphic if it has a power series expansion

$$
f(z)=\sum_{\alpha \in \mathbf{N}^{d}} c_{\alpha} z_{1}^{\alpha_{1}} \cdots z_{d}^{\alpha_{d}}
$$

(compact convergence) with coefficients $c_{\alpha} \in \mathbf{C}^{m}$. By collecting monomials of equal (total) degree, we obtain the expansion

$$
f(z)=\sum_{k \geq 0} \sum_{|\alpha|=k} c_{\alpha} z_{1}^{\alpha_{1}} \ldots z_{d}^{\alpha_{d}}=\sum_{k \geq 0} p_{k}(z)
$$

into a series of k-homogeneous polynomials. Let $\mathcal{P}_{k}\left(Z, \mathbf{C}^{m}\right)$ be the space of all k-homogeneous polynomials $p_{k}: Z \rightarrow \mathbf{C}^{m}$ satisfying $p_{k}(\lambda z)=\lambda^{k} p_{k}(z) \quad \forall \lambda \in \mathbf{C}$. Since D is bounded and circular around $0 \in D$, the space

$$
\mathcal{P}\left(Z, \mathbf{C}^{m}\right)=\sum_{k \geq 0} \mathcal{P}_{k}\left(Z, \mathbf{C}^{m}\right)
$$

of all polynomials is dense in the space of all holomorphic functions $\mathcal{O}\left(D, \mathbf{C}^{m}\right)$ under compact convergence.

In the rank 1 case of row vectors $Z=\mathbf{C}^{d}=\mathbf{C}^{1 \times d} D$ is the Hilbert unit ball, and we obtain as a special case

$$
G=S U(1, d) \supset K=U(d) .
$$

For dimension $d=1$, we have $Z=\mathbf{C}$ and D is the unit disk. In this case, we may identify

$$
G=S U(1,1) \supset K=U(1) .
$$

Via a Cayley transformation

$$
z \mapsto w=\frac{z+i}{1-i z}
$$

onto the upper half-plane $\{w \in \mathbf{C}: \operatorname{Im}(w)>0\}$ we obtain another realization

$$
G \approx S L(2, \mathbf{R}) \supset K=S O(2) .
$$

This is fundamental to applications in number theory since the 'Shilov' boundary $\mathbf{R} \cup \infty$ of the upper half-plane is a completion of \mathbf{Q}.

It is a fundamental fact that hermitian symmetric domains have an algebraic description in terms of the so-called Jordan algebras and Jordan triples. In order to explain this connection, consider the Lie algebra \mathfrak{g} of the real Lie group $G=\operatorname{Aut}(D)$, which can be realized as follows: Consider a 1-parameter group $t \mapsto g_{t} \in G$, and define, for $f \in \mathcal{O}\left(D, \mathbf{C}^{m}\right)$, the infinitesimal generator

$$
\frac{\partial f\left(g_{t}(z)\right)}{\partial t}=(X f)(z)=h(z) f^{\prime}(z)=\left(h(z) \frac{\partial}{\partial z}\right) f(z)
$$

with the derivative operator acting from the right. Here $h: D \rightarrow Z=\mathbf{C}^{d}$ is a holomorphic vector field, with commutator bracket

$$
\left[h \frac{\partial}{\partial z}, k \frac{\partial}{\partial z}\right]=\left(h \frac{\partial k}{\partial z}-k \frac{\partial h}{\partial z}\right) \frac{\partial}{\partial z}
$$

The adjoint action of G on \mathfrak{g} is defined by

$$
A d(g)\left(h \frac{\partial}{\partial z}\right)=h(g(z)) g^{\prime}(z) \frac{\partial}{\partial z}
$$

Let $s_{0}(z)=-z$ be the symmetry at the origin $0 \in D$. We obtain the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ into the \pm-eigenspaces

$$
\mathfrak{k}=\left\{X \in \mathfrak{g}: \quad \operatorname{Ad}\left(s_{0}\right) X=X\right\}, \quad \mathfrak{p}=\left\{X \in \mathfrak{g}: \quad A d\left(s_{0}\right) X=-X\right\}
$$

Since $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, we obtain a Lie triple system

$$
[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k} \supset[\mathfrak{p}, \mathfrak{p}], \quad[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p} \supset[\mathfrak{p}, \mathfrak{k}] .
$$

The Jordan triple product $Z \times \bar{Z} \times Z \rightarrow Z$, denoted by $u, v, w \mapsto\left\{u v^{*} w\right\}=\left\{w v^{*} u\right\}$, satisfies

$$
\begin{gathered}
\mathfrak{p}=\left\{\left(v-\left\{z v^{*} z\right\}\right) \frac{\partial}{\partial z}: v \in Z\right\}, \\
\mathfrak{k}=\left\{h(z) \frac{\partial}{\partial z} \text { linear }: h\left\{z v^{*} z\right\}=2\left\{h z, v^{*}, z\right\}+\left\{z(h v)^{*} z\right\}\right\} .
\end{gathered}
$$

Define $\left(u \square v^{*}\right) z=\left\{u v^{*} z\right\}$. Since $[[\mathfrak{p}, \mathfrak{p}], \mathfrak{p}] \subset[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, we obtain the Jordan triple identity

$$
\left[u \square v^{*}, x \square y^{*}\right]=\left\{u v^{*} x\right\} \square y^{*}-x \square\left\{y u^{*} v\right\}^{*} .
$$

In the matrix case $Z=\mathbf{C}^{r \times s}$, consider a 1-parameter group

$$
\left(\begin{array}{cc}
a_{t} & b_{t} \\
c_{t} & d_{t}
\end{array}\right)(z)=\left(a_{t} z+b_{t}\right)\left(c_{t} z+d_{t}\right)^{-1} \in U(r, s)
$$

of Moebius transformations. Its differential is computed as

$$
\left.\frac{d}{d t}\right|_{t=0}\left(a_{t} z+b_{t}\right)\left(c_{t} z+d_{t}\right)^{-1}=\dot{a} z+\dot{b}-z \dot{c} z-z \dot{d}
$$

with $\left(\begin{array}{ll}\dot{a} & \dot{b} \\ \dot{c} & \dot{d}\end{array}\right) \in \mathfrak{u}(r, s)$. The eigenspace decomposition is given by
$\mathfrak{k}=\left\{(\dot{a} z-z \dot{d}) \frac{\partial}{\partial z}: \dot{a} \in \mathfrak{u}(r), \dot{d} \in \mathfrak{u}(s)\right\}, \quad \mathfrak{p}=\left\{\left(\dot{b}-z \dot{b}^{*} z\right) \frac{\partial}{\partial z}: \dot{b} \in \mathbf{C}^{r \times s}\right\}$.
Therefore we obtain
$\left\{z v^{*} z\right\}=z v^{*} z, \quad\left\{u v^{*} w\right\}=\frac{1}{2}\left(u v^{*} w+w v^{*} u\right), \quad u \square v^{*}=\frac{1}{2}\left(L_{u v^{*}}+R_{v^{*} u}\right)$.

Let Z be an irreducible Jordan triple of rank r, with multiplicities a, b. Then $d / r=1+\frac{a}{2}(r-1)+b$ and $p=2+a(r-1)+b$. The tube type case corresponds to $b=0$ or, equivalently, to $\frac{p}{2}=\frac{d}{r}$. Fix a parameter $\nu>p-1=1+a(r-1)+b$. Let Γ_{Ω} denote the Koecher-Gindikin Gamma-function of the symmetric cone Ω. Then

$$
d M_{\nu}(z)=\frac{\Gamma_{\Omega}(\nu)}{\Gamma_{\Omega}(\nu-d / r)} \Delta(z, z)^{\nu-p} \frac{d z}{\pi^{d}}
$$

is a probability measure on D. The weighted Bergman space of holomorphic functions on D is defined as

$$
H_{\nu}^{2}(D)=\left\{\psi \in \mathcal{O}(D, \mathbf{C}): \int_{D} d M_{\nu}(z)|\psi(z)|^{2}<\infty\right\} .
$$

Define an irreducible projective unitary representation of G on $H_{\nu}^{2}(D)$

$$
\left(g^{-\nu} \psi\right)(z)=\operatorname{det} g^{\prime}(z)^{\nu / p} \psi(g(z))
$$

These representations give the scalar holomorphic discrete series of G.
$H_{\nu}^{2}(D)$ has the reproducing kernel

$$
K_{\nu}(z, w)=\Delta(z, w)^{-\nu}=\operatorname{det} B(z, w)^{-\nu / p} .
$$

Thus the orthogonal projection $P_{\nu}: L^{2}\left(D, d M_{\nu}\right) \rightarrow H_{\nu}^{2}(D)$ is

$$
\left(P_{\nu} \psi\right)(z)=\int_{D} d M_{\nu}(w) \Delta(z, w)^{-\nu} \psi(w) .
$$

The inner product is

$$
\left(\psi_{1} \mid \psi_{2}\right)_{\nu}=\frac{\Gamma_{\Omega}(\nu)}{\Gamma_{\Omega}(\nu-d / r)} \int_{D} \frac{d z}{\pi^{d}} \Delta(z, z)^{\nu-p} \overline{\psi_{1}(z)} \psi_{2}(z) .
$$

For $\nu=p, d M_{p}(z)$ is a multiple of the Lebesgue measure $d z$ and

$$
H_{p}^{2}(D)=\left\{\psi \in \mathcal{O}(D, \mathbf{C}): \int_{D} d z|\psi(z)|^{2}<\infty\right\}
$$

is the standard (unweighted) Bergman space.

Consider the algebra $\mathcal{P}(Z)$ of all polynomials $p: Z \rightarrow \mathbf{C}$ and the natural action $\left(k^{-1} p\right)(z):=p(k z)$ of K. The Hua-Schmid-Kostant decomposition asserts that

$$
\mathcal{P}(Z)=\sum_{m} \mathcal{P}_{\boldsymbol{m}}(Z)
$$

is a direct sum of inequivalent irreducible K-modules, labelled by all integer partitions

$$
\boldsymbol{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbf{N}^{r}
$$

with $m_{1} \geq \ldots \geq m_{r} \geq 0$. Moreover, the highest weight vector in $\mathcal{P}_{\boldsymbol{m}}(Z)$ has the form

$$
N_{\boldsymbol{m}}(z)=N_{1}(z)^{m_{1}-m_{2}} N_{2}(z)^{m_{2}-m_{3}} \ldots N_{r}(z)^{m_{r}},
$$

where N_{k} is the Jordan theoretic minor of rank k. For the simplest partition $\boldsymbol{m}=(1,0, \ldots, 0), \mathcal{P}_{\boldsymbol{m}}(Z)$ is the dual space of linear forms on Z. In this case $N_{m}(z)=\left(e_{1} \mid z\right)$.

The Wallach set

$$
W(D)=\left\{\nu \in \mathbf{C}:\left(\Delta\left(z_{i}, z_{j}\right)^{-\nu}\right)_{1 \leq i, j \leq n} \gg 0 \forall z_{1}, \ldots, z_{n} \in D\right\}
$$

consists of all parameters ν, beyond $\nu>p-1$, such that the kernel $K_{\nu}(z, w)$ is still positive. The Hilbert space completion of $\mathcal{P}(Z)$ is the Segal-Bargmann-Fock space

$$
H^{2}(Z)=\left\{\psi \in \mathcal{O}(Z): \int_{Z} \frac{d z}{\pi^{d}} e^{-(z \mid z)}|\psi(z)|^{2}<\infty\right\}
$$

of entire functions, with reproducing kernel expanded in a series

$$
e^{(z \mid w)}=\sum_{\boldsymbol{m}} K_{\boldsymbol{m}}(z, w)
$$

where $K_{m}(z, w)$ denotes the reproducing kernel of the finite-dimensional space $\mathcal{P}_{\boldsymbol{m}}(Z) \subset H^{2}(Z)$.

The Faraut-Koranyi binomial formula is

$$
\Delta(z, w)^{-\nu}=\sum_{\boldsymbol{m}}(\nu)_{\boldsymbol{m}} K_{\boldsymbol{m}}(z, w)
$$

where

$$
(\nu)_{\boldsymbol{m}}=\frac{\Gamma_{\Omega}(\nu+\boldsymbol{m})}{\Gamma_{\Omega}(\nu)}=\prod_{j=1}^{r}\left(\nu-\frac{a}{2}(j-1)\right)_{m_{j}}
$$

denotes the Pochhammer symbol. Here we use Gindikin's formula

$$
\Gamma_{\Omega}(s)=(2 \pi)^{(r-d) / 2} \prod_{j=1}^{r} \Gamma\left(s_{j}-\frac{a}{2}(j-1)\right)
$$

By checking positivity of the coefficients $(\nu)_{\boldsymbol{m}}$ for all partitions \boldsymbol{m} it follows that

$$
W(D)=\left\{\frac{a}{2} \ell: 0 \leq \ell<r\right\} \cup\left\{\nu>\frac{a}{2}(r-1)\right\}
$$

consists of r discrete equidistant points and a continuous part.

The Shilov boundary $S=K / L$, endowed with the K-invariant probability measure, corresponds to the Wallach parameter $\nu=\frac{d}{r}=1+\frac{a}{2}(r-1)+b$, giving rise to the Hardy space

$$
H^{2}(S)=\left\{\psi \in L^{2}(S): \psi \text { holomorphic on } D\right\} .
$$

In the matrix case $Z=\mathbf{C}^{r \times s}$ we have $a=2$, and hence $d / r=s, p=r+s$. The associated Szegö projection $P: L^{2}(S) \rightarrow H^{2}(S)$ has the form

$$
(P \psi)(z)=\int_{S} d u \Delta(z, u)^{-d / r} \psi(u)
$$

Now let $f \in \mathcal{C}(S)$ be a continuous 'symbol' function. The Hardy-Toeplitz operator T_{f} is the bounded operator

$$
T_{f} \psi=P(f \psi)
$$

acting on $H^{2}(S)$. Here $f \in L^{\infty}(S)$ would be possible, but the fine structure of Toeplitz operators is known only for continuous symbols.

Define the Toeplitz C^{*}-algebra

$$
\mathcal{T}(S)=C^{*}\left(T_{f}: f \in \mathcal{C}(S)\right)
$$

on the Hardy space. A similar concept applies to the weighted Bergman spaces and even to the discrete Wallach points (G. Zhang).
Theorem The Toeplitz C^{*}-algebra contains all compact operators $\mathcal{K}\left(H^{2}(S)\right)$ and is therefore irreducible.
Proof Consider the group C^{*}-algebra $C^{*}(K)=\widehat{L_{1}(K)}$ and the commutative C^{*}-algebra $\mathcal{C}(K)$. Then we may form the cocrossed-product $C^{*}(K) \otimes_{\delta} \mathcal{C}(K)$ for a suitable coaction δ. By Katayama duality there is a natural C^{*}-isomorphism

$$
C^{*}(K) \otimes_{\delta} \mathcal{C}(K) \approx \mathcal{K}\left(L^{2}(K)\right) .
$$

Now embed $H^{2}(S) \subset L^{2}(S) \subset L^{2}(K)$ by averaging over the subgroup $L \subset K$. In this way $\mathcal{T}(S)$ contains a full corner $\pi\left(C^{*}(K) \otimes_{\delta} \mathcal{C}(K)\right) \pi$.

For the unit disk $D \subset \mathbf{C}$ and its Hardy space

$$
H^{2}(\mathbf{T})=\left\{\sum_{n=0}^{\infty} a_{n} z^{n}: \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\}
$$

the Toeplitz C^{*}-algebra $\mathcal{T}(\mathbf{T})$ has the irreducible representation on $H^{2}(\mathbf{T})$ as in the general case, but also the characters

$$
\sigma_{c}: \mathcal{T}(\mathbf{T}) \rightarrow \mathbf{C}, \quad \sigma_{c}\left(T_{f}\right)=f(c)
$$

for any $c \in \mathbf{T}$. One shows that these are all irreducible representations so that there is a C^{*}-algebra extension

$$
\mathcal{K}\left(H^{2}(\mathbf{T})\right) \subset \mathcal{T}(\mathbf{T}) \xrightarrow{\sigma} \mathcal{C}(\mathbf{T})
$$

given by the symbol map $\sigma(A)(c):=\sigma_{c}(A)$ for all $A \in \mathcal{T}(\mathbf{T})$.

For a Jordan triple Z an element $c \in Z$ is called a tripotent if $\left\{c c^{*} c\right\}=c$. For matrices these are the partial isometries. Every tripotent c induces a Peirce decomposition

$$
Z=Z_{c}^{2} \oplus Z_{c}^{1} \oplus Z_{c}^{0}
$$

into eigenspaces of $c \square c^{*}$. Each Peirce subspace is again a Jordan triple, the Peirce 2 -space is even a Jordan algebra with unit element c. One can show that

$$
\|u+w\|=\max (\|u\|,\|w\|)
$$

whenever $u \in Z_{c}^{2}, w \in Z_{c}^{0}$. Therefore, if $c \neq 0$, the set

$$
c+D_{c}^{0}:=\left\{c+w: w \in D \cap Z_{c}^{0}\right\}
$$

belongs to the boundary ∂D. These are the so-called boundary components of D. One can show that they are pairwise disjoint and cover the whole boundary. Thus we have a disjoint union

$$
\partial D=\dot{\bigcup}\left(c+D_{c}^{0}\right)
$$

oveer all non-zero tripotent c. The tripotent $c=0$ gives the interior D.

The rank of a tripotent c is the rank of Z_{c}^{2}. For $0 \leq j \leq r$ the set

$$
S_{j}:=\{c \in Z \text { tripotent : rank } c=j\}
$$

is a connected compact K-homogeneous manifold. Equivalently, these are the connected components of the set of all tripotents. Moreover

$$
\partial_{j} D=\dot{U}_{c \in S_{j}}\left(c+D_{c}^{0}\right)
$$

is a G-orbit contained in the boundary. Thus

$$
\partial D=\dot{U}_{1 \leq j \leq r} \partial_{j} D
$$

is a disjoint union of G-orbits, called the boundary strata. If $j=r$ then

$$
\partial_{r} D=S_{r}=S
$$

is the Shilov boundary (realized as a G-orbit $S=G / P$) and the corresponding boundary components are the extreme points, since $Z_{c}^{0}=(0)$. For rank $r=1$ (unit ball) the boundary is smooth.

For each tripotent c consider the Peirce 0 -space Z_{c}^{0}. Then

$$
S_{c}^{0}:=S_{j} \cap Z_{c}^{0}=S\left(D_{c}^{0}\right)
$$

is the Shilov boundary of the symmetric domain D_{c}^{0} of rank $r-j$. Note that $c+S_{c}^{0} \subset S_{r}=S$.
Theorem There exists an irreducible representation σ_{c} of $\mathcal{T}(S)$ on the 'little' Hardy space $H^{2}\left(S_{c}^{0}\right)$ satisfying

$$
\sigma_{c}\left(T_{S}(f)\right)=T_{S_{c}^{0}}\left(f_{c}\right)
$$

for all $f \in \mathcal{C}(S)$ where

$$
f_{c}(s):=f(c+s)
$$

is the boundary evaluation of f. Moreover, these representations are pairwise inequivalent.
Proof Either using the representations of co-crossed products, or by a limit procedure (peaking functions).
For maximal tripotents $c \in S_{r}$ we obtain the characters above, since $H^{2}(p t)=\mathbf{C}$.

The main theorem asserts that the irreducible representations σ_{c}, for any tripotent c, exhaust the full spectrum of $\mathcal{T}(S)$. The main work is to show that

$$
\bigcap_{c \neq 0} \operatorname{Ker}\left(\sigma_{c}\right)=\mathcal{K}\left(H^{2}(S)\right)
$$

consists of all compact operators. The original proof was based on the Choi-Effros theorem on completely positive cross-sections. A proof using Katayama duality is also possible. As a consequence there is a composition series

$$
\mathcal{K}\left(H^{2}(S)\right)=\mathcal{I}_{0} \subset \mathcal{I}_{1} \subset \ldots \subset \mathcal{I}_{r-1} \subset \mathcal{I}_{r}=\mathcal{T}(S)
$$

of C^{*}-ideals \mathcal{I}_{j} such that the subquotients

$$
\mathcal{I}_{j} / \mathcal{I}_{j-1}=\mathcal{C}\left(S_{j}\right) \otimes \mathcal{K}_{j}
$$

are essentially commutative. Here $\mathcal{I}_{-1}:=(0)$. In general, \mathcal{I}_{r-1} is the commutator ideal, so $\mathcal{K}_{r}=\mathbf{C}$. The first non-trivial ideal \mathcal{I}_{1} satisfies

$$
\mathcal{I}_{1} / \mathcal{K} \approx \mathcal{C}\left(S_{1}\right) \otimes \mathcal{K}_{1}
$$

For the unit ball $D \subset \mathbf{C}^{d}$ we have $S=\partial D=\mathbf{S}^{2 d-1}$ and

$$
\mathcal{T}\left(\mathbf{S}^{2 d-1}\right) / \mathcal{K} \approx \mathcal{C}\left(\mathbf{S}^{2 d-1}\right)
$$

is Coburn's Theorem. For the Lie ball in \mathbf{C}^{d}, of rank $r=2$

$$
S_{2}=\mathbf{T} \mathbf{S}^{d-1}
$$

is the so-called Lie sphere, and

$$
S_{1}=\mathbf{S}^{*}\left(\mathbf{S}^{d-1}\right)=\left\{\frac{x+i \xi}{2}:\|x\|=\|\xi\|=1, \quad(x \mid \xi)=0\right\}
$$

is the cosphere bundle. For the Lie ball $\mathcal{K}_{1}=\mathcal{K}\left(H^{2}(\mathbf{T})\right)$ and

$$
H^{2}(S)=H^{2}(\mathbf{T}) \otimes L^{2}\left(\mathbf{S}^{d-1}\right)
$$

via the identification $(\phi \otimes \psi)(\vartheta x)=\phi(\vartheta) \psi(x)$ for $\vartheta \in \mathbf{T}, x \in \mathbf{S}^{d-1}$. Then

$$
\mathcal{I}_{1}=\mathcal{T}(\mathbf{T}) \otimes C Z\left(\mathbf{S}^{d-1}\right)
$$

for the Calderon-Zygmund operators on the sphere \mathbf{S}^{d-1}. In general, \mathcal{I}_{1} consists of (certain) generalized Toeplitz operators on S_{1} in the sense of Boutet-de-Monvel/Guillemin.
$T \in \mathcal{K}(H)$ compact operator, positive part $|T|=\left(T^{*} T\right)^{1 / 2}$

$$
s_{j}(T)=\lambda_{j}(|T|), s_{1} \geq s_{2} \geq s_{3} \geq \ldots
$$

singular values, counted with multiplicity. Put $S_{k}(T)=\sum_{j=1}^{k} s_{j}(T)$.

$$
\begin{gathered}
\sum_{j}^{\infty} s_{j}(T)=\lim _{k} S_{k}(T)<\infty: \quad T \in \mathcal{L}^{1}(H) \text { trace class } \\
T \geq 0: \quad \operatorname{tr} T=\sum_{j} s_{j}(T)=\lim _{k} S_{k}(T) \text { trace } \\
s_{j}(T)=O\left(\frac{1}{j}\right), \sup _{k} \frac{S_{k}(T)}{\log (1+k)}<+\infty: \quad T \in \mathcal{L}^{1, \infty} \text { Dixmier class } \\
T \geq 0 \text { measurable }: \quad t r_{\omega} T=\lim _{k} \frac{S_{k}(T)}{\log (1+k)} \text { Dixmier trace }
\end{gathered}
$$

independent of ultrafilter ω. Extend by linearity $\operatorname{tr}_{\omega}: \mathcal{L}^{1, \infty} \rightarrow \mathbf{C}$.
M compact Riemannian manifold, dimension n, cosphere bundle

$$
\begin{gathered}
\mathbf{S}^{*}(M)=\left\{(x, \xi) \in T^{*}(M):|\xi|=1\right\} \\
Q \in \Psi_{-n}(M)
\end{gathered}
$$

pseudo-differential operator of order $-n$, symbol $\sigma_{-n}(Q)$. Then Connes has shown

$$
t r_{\omega}(Q)=\frac{1}{n!(2 \pi)^{n}} \int_{\mathbf{S}^{*}(M)} d \operatorname{Vol} \sigma_{-n}(Q)
$$

independent of choice of Riemannian metric, since $\sigma_{-n}(Q)$ is homogeneous
$\Omega \subset \mathbf{C}^{n}$ strongly pseudoconvex domain, $\partial \Omega$ smooth boundary, $L^{2}(\Omega)$ for Lebesgue measure

$$
\begin{gathered}
H^{2}(\Omega)=\left\{\phi \in L^{2}(\Omega): \phi \text { holomorphic }\right\} \text { Bergman space } \\
P: L^{2}(\Omega) \rightarrow H^{2}(\Omega) \text { orthogonal projection } \\
T_{f} \phi=P(f \phi) \text { Bergman-Toeplitz operator, } f \in \mathcal{C}^{\infty}(\bar{\Omega})
\end{gathered}
$$

$n=1, \Omega=\mathbf{D}$ unit disk, $f, g \in \mathcal{O}(\overline{\mathbf{D}})$ holomorphic

$$
\operatorname{tr}\left[T_{f}^{*}, T_{g}\right]=\int_{\mathbf{D}} d z \overline{f^{\prime}(z)} g^{\prime}(z)
$$

For $n>1, f_{1}, g_{1}, \ldots, f_{n}, g_{n}$ holomorphic

$$
\left[T_{f_{1}}^{*}, T_{g_{1}}\right] \cdots\left[T_{f_{n}}^{*}, T_{g_{n}}\right] \notin \mathcal{L}^{1}(\Omega)
$$

Let $\Omega=\mathbf{B}_{n} \subset \mathbf{C}^{n}$ unit ball
Helton-Howe $f_{1}, \ldots, f_{2 n} \in \mathcal{C}^{\infty}\left(\overline{\mathbf{B}}_{n}\right)$, complete anti-symmetrization

$$
\begin{gathered}
{\left[T_{f_{1}}, \ldots, T_{f_{2 n}}\right] \in \mathcal{L}^{1}\left(H^{2}\left(\mathbf{B}_{n}\right)\right)} \\
\operatorname{tr}\left[T_{f_{1}}, \ldots, T_{f_{2 n}}\right]=\int_{\mathbf{B}_{n}} d f_{1} \wedge \ldots \wedge d f_{2 n}
\end{gathered}
$$

Englis-Guo-Zhang $f_{1}, g_{1}, \ldots, f_{n}, g_{n} \in \mathcal{C}^{\infty}\left(\overline{\mathbf{B}}_{n}\right)$

$$
\begin{gathered}
{\left[T_{f_{1}}, T_{g_{1}}\right] \cdots\left[T_{f_{n}}, T_{g_{n}}\right] \in \mathcal{L}^{1, \infty}(\Omega)} \\
\operatorname{tr}_{\omega}\left[T_{f_{1}}, T_{g_{1}}\right] \cdots\left[T_{f_{n}}, T_{g_{n}}\right]=\frac{1}{n!} \int_{\partial \mathbf{B}_{n}} d \sigma \prod_{j}\left\{f_{j}, g_{j}\right\}_{b}
\end{gathered}
$$

boundary Poisson bracket, surface measure $d \sigma$

For symmetric domains, we have an orthogonal decomposition

$$
H^{2}(S)=\sum_{m} H_{m}^{2}(S)
$$

over all partitions λ, and the irreducible K-type

$$
H_{\boldsymbol{m}}^{2}(S)=\left\{\left.p\right|_{S}: p \in \mathcal{P}_{\boldsymbol{m}}(Z)\right\}
$$

has the inner product

$$
(p \mid q)_{S}=\frac{1}{(d / r)_{m}}(p \mid q)_{Z}
$$

for all $p, q \in \mathcal{P}_{\boldsymbol{m}}(Z)$. Here the Pochhammer symbol $(\nu)_{m}$ is defined by

$$
(\nu)_{m}=\prod_{j=1}^{r}\left(\nu-\frac{a}{2}(j-1)\right)_{m_{j}}
$$

Let e_{1}, \ldots, e_{r} be a frame of minimal tripotents of Z, with joint Peirce decomposition

$$
Z=\sum_{0 \leq i \leq j \leq r}^{\oplus} Z_{i j} .
$$

Then $\mathcal{P}_{\boldsymbol{m}}(Z)$ has the highest weight vector

$$
N_{m}(z):=N_{1}(z)^{m_{1}-m_{2}} N_{2}(z)^{m_{2}-m_{3}} \ldots N_{r}(z)^{m_{r}}
$$

where N_{1}, \ldots, N_{r} are the Jordan theoretic minors. For $1 \leq i<j \leq r$ put

$$
a:=\operatorname{dim} Z_{i j}, b:=\operatorname{dim} Z_{0 j}
$$

Then

$$
\frac{d}{r}=1+\frac{a}{2}(r-1)+b .
$$

The numerical invariant

$$
p:=2+a(r-1)+b
$$

is called the genus of Z.

The following is joint work with Kai Wang. For partition $(m, 0 \ldots, 0)$ of length ≤ 1 we have

$$
N_{m, 0, \ldots, 0}=N_{1}^{m}(z)=\left(z \mid e_{1}\right)^{m} .
$$

Let Z_{1} be the complex variety of all elements in Z of rank ≤ 1. Then

$$
n:=\operatorname{dim}_{\mathbf{C}} Z_{1}=1+a(r-1)+b=p-1 .
$$

The subspace

$$
\mathcal{P}_{1}^{\perp}(Z)=\left\{p \in \mathcal{P}(Z):\left.p\right|_{Z_{1}}=0\right\}=\sum_{m_{2}>0} \mathcal{P}_{\boldsymbol{m}}(Z)
$$

is an ideal in $\mathcal{P}(Z)$, with quotient module

$$
\mathcal{P}_{1}(Z)=\sum_{m=0}^{\infty} \mathcal{P}_{m, 0, \ldots, 0}(Z) \approx \mathcal{P}(Z) / \mathcal{P}_{1}^{\perp}(Z)
$$

Asymptotically, we have

$$
\operatorname{dim} \mathcal{P}_{m, 0}(Z) \sim c \cdot m^{n}
$$

for some constant $c>0$ independent of m. In fact, for any partition m we have

$$
\begin{gathered}
\operatorname{dim} \mathcal{P}_{\boldsymbol{m}}(Z)=\prod_{j=1}^{r} \frac{\left(1+b+\frac{a}{2}(r-j)\right)_{m_{j}}}{\left(1+\frac{a}{2}(r-j)\right)_{m_{j}}} . \\
\prod_{1 \leq i<j \leq r} \frac{m_{i}-m_{j}+\frac{a}{2}(j-i)}{\frac{a}{2}(j-i)} \frac{\left(\frac{a}{2}(j+1-i)\right)_{m_{i}-m_{j}}}{\left(1+\frac{a}{2}(j-i-1)\right)_{m_{i}-m_{j}}} .
\end{gathered}
$$

For $\boldsymbol{m}=(m, 0, \ldots, 0)$ and m large enough we obtain

$$
\operatorname{dim} \mathcal{P}_{m, 0}(Z) \sim c \cdot m^{b+a(r-1)}=c \cdot m^{n}
$$

for some constant $c>0$ independent of m.

Consider the Hilbert sum

$$
\begin{gathered}
H_{1}^{2}(S)^{\perp}:=\sum_{m_{2}>0} H_{\boldsymbol{m}}^{2}(S)=\overline{\mathcal{P}_{1}^{\perp}(Z)}, \\
H_{1}^{2}(S)=\overline{\mathcal{P}_{1}(Z)}=\sum_{m} H_{m, 0, \ldots, 0}^{2}(S)=H^{2}(S) / H_{1}^{2}(S)^{\perp}
\end{gathered}
$$

regarded as a quotient module. One can show that the orthogonal projection $P_{1}: H^{2}(S) \rightarrow H_{1}^{2}(S)$ belongs to $\mathcal{T}(S)$. Define

$$
S_{f}:=P_{1} f P_{1}=P_{1} T_{f} P_{1}
$$

Theorem For real-analytic polynomials f, g in z, \bar{z} we have

$$
\left[S_{f}, S_{g}\right] \in \mathcal{L}^{n, \infty}
$$

It follows that n-fold products satisfy

$$
\left[S_{f_{1}}, S_{g_{1}}\right] \cdots\left[S_{f_{n}}, S_{g_{n}}\right] \in \mathcal{L}^{1, \infty} .
$$

The compact manifold S_{1} all tripotents of rank 1 is the boundary of the strongly pseudoconvex variety

$$
\Omega=D \cap Z_{1}=\{z \in Z: \operatorname{rank}(z) \leq 1,\|z\|<1\}
$$

which has its only singularity at 0 . Let

$$
H^{2}\left(S_{1}\right):=\left\{\phi \in L^{2}\left(S_{1}\right): \phi \text { holomorphic on } \Omega\right\}
$$

be the associated 'rank 1' Hardy space. Let $\pi: L^{2}\left(S_{1}\right) \rightarrow H^{2}\left(S_{1}\right)$ denote the Cauchy-Szego projection. For $f \in L^{\infty}\left(S_{1}\right)$ we have the Hardy-Toeplitz operator

$$
\tau_{f} \phi=\pi(f \phi)
$$

acting on $\phi \in H^{2}\left(S_{1}\right)$. Let

$$
\mathcal{T}\left(S_{1}\right)=C^{*}\left(\tau_{f}: f \in \mathcal{C}\left(S_{1}\right)\right)
$$

denote the Toeplitz C^{*}-algebra generated by continuous symbol functions.

For $m \geq 0$ put

$$
\Lambda_{m}^{2}:=\frac{(a / 2)_{m}}{(r a / 2)_{m}}
$$

Then the mapping $U: H_{1}^{2}(S) \rightarrow H^{2}\left(S_{1}\right)$, defined by

$$
U p:=\left.\Lambda_{m} \cdot p\right|_{S_{1}}
$$

for $p \in H_{m, 0, \ldots, 0}^{2}$, is a unitary isomorphism. For $f(z)=(z \mid u)$, with restriction $\left.f\right|_{S_{1}}$, we have for $p \in \mathcal{P}_{m}(Z)$

$$
\begin{gathered}
\left.\left.U S_{f} U^{*} p\right|_{S_{1}}=\frac{1}{\Lambda_{m}} U\left(P_{1}((z \mid u) p)\right)=\frac{\Lambda_{m+1}}{\Lambda_{m}} P_{1}(z \mid u) p\right)\left.\right|_{S_{1}} \\
=\left.\frac{\Lambda_{m+1}}{\Lambda_{m}}(\zeta \mid u) p\right|_{S_{1}}=\left.\frac{\Lambda_{m+1}}{\Lambda_{m}} \tau_{\left.f\right|_{S_{1}}} p\right|_{S_{1}} .
\end{gathered}
$$

It follows that

$$
U S_{f} U^{*}-\tau_{f \mid S_{1}}=\tau_{f \mid S_{1}} \circ \Delta,
$$

where the diagonal operator Δ on $H^{2}\left(S_{1}\right)$ defined by

$$
\Delta q_{m}=\left(\frac{\Lambda_{m+1}}{\Lambda_{m}}-1\right) q_{m}
$$

There is a harmonic extension operator

$$
\mathcal{P}: \mathcal{C}^{\infty}(S) \rightarrow \mathcal{C}^{\infty}(D)
$$

given by a Poisson integral

$$
f(z)=\int_{S} d s \mathcal{P}(z, s) f(s)=\int_{S} d s\left(\frac{\Delta(z, z)^{d / r}}{\Delta(z, s)^{d / r} \Delta(s, z)^{d / r}}\right) f(s) .
$$

Theorem For real-analytic polynomials $f_{1}, g_{1}, \ldots, f_{n}, g_{n}$ consider the harmonic extension \hat{f}_{j}, \hat{g}_{j} restricted to S_{1}. Then the Dixmier trace is given by

$$
\operatorname{tr}_{\omega}\left[S_{f_{1}}, S_{g_{1}}\right] \cdots\left[S_{f_{n}}, S_{g_{n}}\right]=\text { const. } \cdot \int_{S_{1}}\left\{\hat{f}_{1}, \hat{g}_{1}\right\}_{b} \cdots\left\{\hat{f}_{n}, \hat{g}_{n}\right\}_{b}
$$

in terms of the boundary Poisson bracket of S_{1}.

