Zero-Knowledge and/or Succinct Proofs or Arguments

Efficient|Zero-Knowledge Proofs;
A Modular Approach

Yuval Ishai
Technion
I = 4

Foundational Aspects of Blockchain Technology, ICTS Bangalore, Jan 16, 2020

Broad Motivation

« ZK research is a big party
— Many motivating applications
— Many challenging questions
— Many exciting results
» Big party — Big mess?

* This talk: advocating a modular approach
— Separate “information-theoretic” and “crypto” parts
— General cryptographic compilers (IT — crypto)
— General information-theoretic compilers (IT — IT)

NP relation R(x,w)

Boolean circuit @
Arithmetic circuit : _
RAM Convenient Representation
RICS
TINyRAM Computational model
QSP,QAP,SSP .
Different kinds Information-Theoretic Proof System
(coming up) “ZK-PCP”

Crypto assumptions /

Generic models crypto compiler

ZK Proof/Argument

MPC
protocols

IT
Compilers

Carmit’'s
talk

~

=

NP relation R(x,w)

L

Convenient Representation

Computational model

N

Information-Theoretic Proof System

“ZK-PCP”

m crypto compiler

ZK Proof/Argument

Why?

o Simplicity
— Break complex tasks into simpler components
— Easier to analyze and optimize
— Potential for proving lower bounds

* Generality
— Apply same constructions in different settings
— Research deduplication, less papers to read/write

« Efficiency
— Port efficiency improvements between settings
— Mix & match different components
— Systematic exploration of design space

ZK Z00

(ignoring assumptions for now...)

Qualitative Tfeatures Quantitative features
* Interactive? - Communication

* Succinct? » Prover complexity
 Fast verification? « Verifier complexity

 Public verification?

* Public input?
e NP vs. P? Standardization process

Commercialization efforts

* Trusted setup? Several talks in this workshop

e Symmetric crypto only?
. Post quantum? [Optimal ZKP protocol?}

Food for thought...

 Which verifier is better?
— V1: SHA256 hash
— V2: PKE decryption

« V2 can be more obfuscation-friendly! [BISW17]
— Relevant complexity measure: branching program size
— Promising avenue for practical general-purpose obfuscation
— Motivated “lattice-based” designated-verifier SNARKS

« Similar: MPC-friendly prover, etc.

Back to the 20" Century

Theorem [Gmwas]:
Bit-commitment — ZKP for all of NP

Theorem [GMW86+Naor89+HILL99]:
One-way function — ZKP for all of NP

Theorem [owo3]:
ZKP for “hard on average” L in NP — i.0. one-way function

Are we done?

ZKP for 3-Colorability

[GMW8S6]

* Prover wants to prove that a given
graph is 3-colorable

“0 (
‘ﬂ.ﬁféc
I {)

ZKP for 3-Colorabillity

* Prover wants to prove that a given
graph is 3-colorable

— X=graph w=coloring

e e
% ® .

ZKP for 3-Colorabillity

* Prover randomly permutes the 3 colors
(6 possibilities)

< 9-@ 0-0 0-0

e e
% S .

ZKP for 3-Colorabillity

* Prover randomly permutes the 3 colors
(6 possibilities)

< 9-@ 0-0 0-0

e e
% S .

ZKP for 3-Colorabillity

* Prover separately commits to color of each
node and sends commitments to Verifier

AN

/
AN

ZKP for 3-Colorabillity

* Verifier challenges Prover by selecting a
random edge

AN

/
AN

ZKP for 3-Colorabillity

* Prover sends decommitments for opening
the colors of the two nodes

A

=5

A

ZKP for 3-Colorabillity

 Verifier accepts If both colors are valid and
are distinct (otherwise it rejects).

* Repeat O(|E|) times to amplify soundness

%\Zk

A

Issues

« Security proof more subtle than it may seem
— Need to redo analysis for Hamiltonicity-based ZK?

« Two sources of inefficiency
— Karp reduction
— Soundness amplification (+ many rounds)

Abstraction to the rescue...

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) —» m

O — (1322132222 3if12113114(21)j1

o

Verifier

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) —» m

O = (132213122 23if1211311f(21)j1
Verifier
« Simple security definition « Clean efficiency measures

« Completeness

« Perfect (public-coin) ZK

« Soundness error €
(amplified via repetition)

Alphabet size
Query complexity
Prover computation
Verifier computation

Information-Theoretic Proof System: ZK-PCP

-
L- Here: ZK for queries made by honest verifier

More difficult: ZK for t-bounded malicious verifiers [KPT97, IMS12, IWY16] }

VAL

/

Verifier

« Simple security definition

Completeness
Perfect (public-coin) ZK
Soundness error €

(amplified via repetition)

« Clean efficiency measures

Alphabet size
Query complexity
Prover computation
Verifier computation

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) —» m

O = (132213122 23if1211311f(21)j1
Verifier
+Stat-binding| | +Stat-hiding +Random
Crypto compilers commit commit oracle
[GMWS86, [GK986, [FS86,Mic00]
.~ PWO09] N 7 IMS12] N4
ZK in plain model NIZK in ROM

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) —» m

T = |a(|3(2f2f2|3]|2]l2lf2!f2![3l2(I3[1|2]1

Verifier e _
Recent line

of work...

+Stat-binding| | +Stat-hiding m

Crypto compilers commit commit
[GMWS86, [GK986, [FS86,Mic00]
.~ PWO09] _\/_II\/I812] N4

ZK in plain model

NIZK in CRS model

Information-Theoretic Proof System:

Prover: (Xx,w) —» m

2

1

3

1

2

1

1

3

1

Verifier (

/

Crypto compilers

< PW09]

ZK in plain model

+Stat-binding

commit

[GMWSS6,

NIZK In

Hidden Bits Model

}

+Stat-hiding
commit

[GK96,

vwmz] N

+Trapdoor
permutation

[FLS90]

NIZK in CRS model

Information-Theoretic Proof System: ZK-PCP

Prover: (Xx,w) —» m

O — (1322132222 3if12113114(21)j1

o

Verifier

Less “magical™?

Better parameters?

IT Compilers: MPC — ZK-PCP
[IKOS07]

-
VS,

4
]
H
|

Do

LX)
R
<7\ DY
TS

Simple ZK proofs using:

(2,5 or (1,3) semi-honest MPC [BGW88,CCD88,Mau02]

* (2,3) or (1,2) semi-honest MPCOT [vao86,GMW87,GV87,GHY87, HV16]

* Practical [GMO16,CDG+17,KKW18] = post-quantum signatures!

ZK proofs with O(|C|) communication

* (n/5,n) malicious MPC based on AG codes [CC06,D106,IKOS07]

Hitting the circuit-size barrier?

« Sublinear ZK for special tasks: linear algebra, non-abelian groups,...
 Going (somewhat) sublinear in general: Ligero [AHIV17] - Carmit’s talk

Going fully sublinear?

Traditional PCPs

Xel = dn Pr[Verifier accepts rn] =1
XeL = va* Pr[Verifier accepts n*]<1/2

PCP Theorem [AS92,ALMSS92,Dinur06]:

NP statements have polynomial-size PCPs in which the
verifier reads only O(1) bits.

— Can be made ZK with small overhead [KPT97,IW04]

Still need crypto compiller...

Verifier Prover

ZK-PCP nef{0,1}poly(xw)

ACC/REJ

Crypto Compiler
[Kil93,Mic94]

/ Merkle Tree construction \

H = collision resistant hash function
H:{0,1}*>{0,1}«

Limitations

withess

EEREARRAREAR:

Computationally
Heavy!

PCP Encoding

LLLLLEEEEEE R R E iy Betterwith

hidden-order

Cryptographic groups
Hashing [LM19,BBF19]
Sub-optimally
succinct
H

+ opening PCP queries

Relaxing PCP model 1: Interaction

Prover

S
|
R
W
=
N
=
W

(21241311113 |11}|2

/

Verifier
Challenge

Ty = |1[13[|1[j2f 131

21111113131
Interactive PCP [KR08,GIMS10]
|OP [BCS16,RRR16]

Practical systems: Verifier
STARK, Aurora Challenge

Relaxing PCP model 2: Linear PCP
[ALMSS98,IKO07,BCIOP13]

over a (large)
finite field F

Prover

T — 4|32 2(8|f3112112119(3}|{1116(1}2]|1

iInner product

q: = |5||3|[e]|2|[1][3]|2{[2]l|2|[e]l2|3]l1]|8]2
q, = |7||3|[1]|2|[4][3]|2{[2]| 7| 2|[3])|2|[7]l2]|2]f2
q; = [1]|2[1]|2|[2][o]l2|[2]|5[1]4][2]3]|1|[3]|2
a, Verifier
X
a,
| >ACC/REJ
ds

Advantages of Linear PCPs

e Simple!

— Coming up...
« Short, efficiently computable

— O(|C])-size, quasi-linear time via QSP/QAP [GGPR13, ..]
* Negligible soundness error with O(1) queries

— Reusable soundness

Pr[t" is accepted] is either 1 or O(1/|F|)
— Near-optimal succinctness
— In fact, 1 query is enough! [BCIOP13]

Example: The Hadamard PCP

[ALMSS91,IKO07]

W6 =0
We-(W,+W,+We) =0

* Proof: T = (W, W x W)
« 3 linear queries, soundness error 2/|F|:

— Consistency of two parts of T: <W, R>2=<W x W, R x R>
— Consistency with gates: random linear combination of equations

Crypto Compilers for Linear PCPs

* First generation [IKO07,GI08,Gro09,SMBW12,...]

— Standard assumptions
 Linearly homomorphic encryption, discrete log

— Interactive, one-way-succinct/somewhat succinct
— |ldea: use succinct vector-commitment with linear opening

« Second generation [Gro10b,Lip12,GGPR13,BCIOP13,...]
— Strong “knowledge” or “targeted malleability” assumptions
— Non-interactive using a (long, structured) CRS
— Publicly verifiable via pairings
— ldea: include “encrypted queries” in CRS

Crypto Compiler: First Attempt

Prover

T = (43112121813 1|2|1][9]|3|11216/11(2

q: = |5||3|[e]|2|[1][3]|2|[2]| 1| 2|[6]l1|[3]1]8
q, = |7||3|[1]|2|[4][3]|2{[2]| 7| 2|[3]|1|[7] 1]|2
q; = [1]|2{[1]|2|[2][o]lz|[2]|5[1]|4][1]3]/1]3
a, Verifier
X
a,
| >ACC/REJ
ds

d4
d,
ds3

Crypto Compiler: First Attempt
CRS

3ffefi2ifry3|fry2|f11ifef1|f341}l8

SN 2104\(3lf2((21(71131y71)1}|2

212 (t21119l2 2514214113 1(3

Prover

L2183 1(21913|11]|6]|1]|2

Verifier

> ACC / REJ

Crypto Compiler: First Attempt

RS

C

. = HINNINENNNENEEEEN
4, = ..[Iinearly homomorphic encryption]... -
.- NNNENEENENENENEE

Prover

T = (4312121813121 |l9|f311211611(2](1

a, Verifier

Crypto Compiler: First Attempt

RS

C
.= ININENNNNNNENEEE ~
4, = ..[II early homomorphic encryption]... -
.~ ENECUNNNENENENEE

Prover
T = 43128}\ \l219316121
éroblem 1: May allow more than just linear functions! \

a, Solution 1: Assume it away: “linear-only encryption”

« A natural instance of targeted malleability [BSW12]

a, » Plausible for most natural public-key encryption schemes
... Including post-quantum ones [Reg05,BISW17]

as \ « Win-win flavor /

Crypto Compiler

CRS

= IHHEENEEEEEEEEEN
— ..[lnearly homomorphic encryptlon]...

(

Prover

<_([3]1|l2]1]loff3]l2][e] 1] 2] 2

% sn,{\
\\
‘

Problem 2: Prover can apply different rr; to each g; or even combine g;

Solution 2: Compile LPCP into a proof system that resists this attack
« Linear Interactive Proof (LIP): 2-message IP with “linear-bounded” Prover

| .

* IT compiler: LPCP - LIP via a random consistency check [BCIOP13]

\

_

Crypto Compiler

CRS

C[Z — ..[lnearly homomorphic encryptlon]...

43 =

T — |[4]3 3|1

2

1

9

\

/

Problem 3: Only works in a designated-verifier setting

[H

Prover

Solutions 3;

» Look for designated verifiers around your neighborhood

-

\

LPCP with deg-2 decision + “bilinear groups” = public verification [Gro00,BCIOP03]

_/

Alternative OLE-Based Compiler
[BCGI18,CDIKLOV19]

Prover

T = (4312121813121 |l9]f3112)1611(2](1

Under LPN-style assumptions:
(non-succinct, preprocessing)
NIZK for arithmetic circuits with small constant computational overhead

HEEEELE

Verifier

Combining the Two Relaxations: Linear IOP

d,

Variant: ILC
Prover [BCGGHJ17]
_| Variant: polynomial IOP
2111 Crypto compilers via polynomial commitments
— [ZGKPP17,WTsTW18,5et19,XZZPS19,BFZ19]
2j(L[(3][2f[2][2 {2 f[e (2 [3][2][8][%]
Verifier
Challenge

2111322121313 1111)12]||1

2141032271231y 7111)12]|1

Challenge

Captures interactive proofs for P
[GKRO8,RRR16]

Fully Linear PCP/IOP
[BBCGI19]

* Suppose statement x is known to prover but is
— Secret-shared between two or more verifiers
— Distributed between two or more verifiers
— Encrypted or committed

* Tool: fully linear proof systems
— Only allow linear access to x: g; applies jointly to (x,)
— Meaningful even for “simple” languages and even if P=NP
— Strong ZK: statement x remains hidden from verifiers

« Standard LPCPs are fully linear, but long proofs

— Talk next week by Niv:
Short ZK-FLPCPs for simple languages + applications

Fully Linear PCP/IOP
[BBCGI19]

® -
Su Section 2 of ePrint 2019/188: IS
— J High-level overview of PCP types + crypto compilers

— Distributed between two or more verifiers

— Encrvai\tted

e TOO Also studied over general graphs in a distributed

computing context [KKP10 KOS18 NPY18]
-0 i 0 (x,m)

— Meaningful even for “simple” languages and even if P=NP
— Strong ZK: statement x remains hidden from verifiers
« Standard LPCPs are fully linear, but long proofs

— Talk next week by Niv:
Short ZK-FLPCPs for simple languages + applications

Conclusions

* Modular approach to efficient ZK/SNARG design

— Information-theoretic ZK-PCP + crypto compiler

* point queries vs. linear queries
* non-interactive vs. interactive

o ([

Constant computational overhead w/negligible error?

- Known for arithmetic computations with linear queries

- Open for Boolean circuits or with point queries

- Applies both to low-query PCPs and (arbitrary) ZK-PCPs

yature

N9]
Al

/

. Wner PTUYTESS

— Better PCPs (and lower bounds)
~—

Better 1-query Linear PCP? [Start with 1-query Fully Linear PCP? }

- Avoid PCP theorem

- Achieve strong soundness J

Conclusions

* Modular approach to efficient ZK/SNARG design

— Information-theoretic ZK-PCP + crypto compiler
* point queries vs. linear queries
* non-interactive vs. interactive

» Applies to most efficient protocols from the literature

1 R (14 P | 1 1 23 L a’ Fem s s -

- Better tools: subvector commitments, polynomial commitments,...
- Better compilers for general (Interactive) Linear PCP?
e LG - Eliminate generic models and “non-falsifiable” assumptions

_ Bett Wmear PCPs?

— Better cryW

— Better IT compilers

The research leading to these results has received
funding from the European Union's Horizon 2020
Research and Innovation Program under grant
agreement

no. 742754 — ERC — NTSC

. European
s« i " ala
YL Research

HOTC| couner

' @

L]
.......
......

