
Approaches towards faster
computation

S. Yashonath
SSCU,
IISc,
Bangalore 560012

In collaboration with

Dr. T.S. Mohan, Infosys Technologies Ltd.

Dr. Raghu Hudli, Managing Director, ObjectOrb
Shrinidhi Hudli
Shrihari Hudli

10/11/10

How to make computation faster :

Improvement in methods – leads to substantial improvement in turnaround time

Algorithmic changes – also leads to significant but not substantial improvement
(e.g., the methods for searching an ordered database – using the binary search)

Use a supercomputer -- as many computer centres do. But not possible for
many or most users.

Use a parallel computer : uses many cores/CPUs to parallelize the problem.

Use a graphics processing unit.

10/11/10

Method Improvement :

Examples of this are

1)From simple hit or miss Monte Carlo to crude MC to importance
 sampling MC.
2)From Born-Oppenheimer approach to solving electronic degrees of
 freedom to Car-Parrinello approach.
3)From multidimensional integral to methods that lead to closest estimate
 such as molecular dynamics method.

10/11/10

Algorithimic changes :

Example :
1) Instead of normal search do a binary search of the database
(log2 N) instead of order N.

10/11/10

Supercomputer :

They attempt to have faster processors
and this makes them fast. These require
special installation
facilities and are power intensive.
They cost a fortune and only a few can
afford.

10/11/10

Parallel Computers :

Employs multiple CPUs or cores and in this comes SIMD and
MIMD.

Single Instruction Multiple Data.
Multiple Instruction Multiple Data.

7

Parallel Programming

Motivation to parallelize long-
running programs and achieve
faster execution times

Concurrently execute steps (parts) of a
program

Search for parallelism is problem
dependent

Data Parallelism

Task Parallelism

Pipelining

8

Models of Parallelism

What do we do in parallel?
Access/transform data in parallel but do
the same task - data parallelism

Work on multiple, but related tasks in
parallel - task parallelism

Different and independent tasks to be
applied on a data stream - pipeline
parallelism; combination of data and
task parallelism

9

Data Parallelism

Thread
t

t1

t2

t3

Each thread works on a mutually exclusive
data set

Does “similar” work
Ideal case, requiring no synchronization

10/11/10

11

Adding Elements of an Array

O(log2 n)

12

Adding two vectors

+

+ + + + + + + + ++

Constant Time

13

Architectural Aspects

“Processor”
 Shared
Memory

“Processor” Dedicated
Memory

• Consider parallelisation on a shared memory machine :

There is a bank balance of Rs. 4,000/-. There are two transanctions : one a
cheque payment into the account of Rs. 1,000/- and a credit card expense
of Rs. 1,500/-.

Suppose the parallel computer reads the balance first. Then the credit card
also reads the balance as Rs. 4,000/-. Add the payment of Rs. 1000/- to it
which gives the answer as Rs. 5,000/- Later, the credit card balance gives
the remaining balance as Rs. 2,500/- This is wrong as the correct balance is
Rs. 3,500/-.

Even if the transactions occur in reverse order then the balance is Rs. 4,500/-
which is also wrong.

This is overcome by locking access to the memory to only one
processor/process/transaction at a time until it is released by it.

10/11/10

API – the new paradigm

• Application program interface is a
software or call that essentially keeps
the nitty-gritty details out of the user.
It provides an user interface that is
simple and details are taken care by
the API.

10/11/10

10/11/10

10/11/10

Tour of a normal program
execution

• A normal fortran or C program you run needs the
following steps :

1)Program writing,

2)Compilation (usually with libraries)

3)Execution

4)Input data/files

5)Output data/files

10/11/10

• Compilation changes the fortran/C code from a
high level language into a set of instructions in
binary number system (which is what a computer
understands).

• It is then loaded into the memory (random access
memory, RAM) along with any libraries used from
where the instructions are sequentially executed
by the CPU.

• Whenever there are data to be read in or written
out, then these are transferred from memory to
hard disk.

10/11/10

GPGPU

• But now-a-days it is possible to run your program
on GPU (graphics processing unit, or your
graphics card) instead of CPU(central processing
unit).

• Normally GPU calculations are used to render a
picture to be put on the screen (which can be
very high, higher than the calculations done on
CPU) or picture rendering.

• However, when we use it to do our scientific
calculations, then it is called GPGPU (instead of
the usual special purpose computation – picture
drawing/rendering).

• GPGPU stands for general purpose graphics
processing unit.

10/11/10

What do we require to compute on
GPU ?

• Obviously, we need a graphics card or something
similar to it.

• We have among others, NVIDIA and ATI.

• We need the software that will help us to talk to
GPU.

• A compiler which can do this is nvcc (c compiler
made by NVIDIA).

• We need to know this language nvcc.

• Also we need to know how the problem can be
parallelized.

10/11/10

Why should we compute on GPU instead of
CPU ?

• CPU these days come with multiple cores : dual core, quad
core, etc. Communication between the cores in much faster
than between CPU is a parallel computer. So, this is better.

• A GPU generally has many more cores than the multicores
of the CPU (upto ~500).

• So, you gain enormous speed by using GPU.

• And communication is faster between these cores than
between CPUs.

• And it is much, much cheaper.

• So it is talked about as supercomputer on your desktop.

• And as supercomputer for the masses.

10/11/10

• The cores on the GPU are generally
somewhat slower than the cores on
the CPU but they are so many in
number that they together beat the
parallel computer or supercomputer
many times over. This has been a
general trend towards calculations
over past two decades.

• CUDA stands for Compute Unified
Device Architecture) helps us to
compile and run both on the CPU and
GPU.

• The most challenging paradigm-shift required
to understand the CUDA programming model
is to realize that the old serial model of looping
over every element in a data structure does
not exist in the CUDA programming style.
CUDA kernels replace the body of a loop, and
loop constructs with indices are replaced by
block and thread size specifications.

10/11/10

10/11/10

// A simple example of CUDA to understand threads and blocks

/* The following code is written in CUDA C, and can be
embedded into a normal C program run on the CPU. It calls a
kernel, which creates two-dimensional blocks of threads of size
BLOCK_SIZE, forming a grid of threads of size GRID_SIZE:

Read more at Suite101:
A Basic NVIDIA CUDA Programming Example
http://www.suite101.com/content/a-basic-nvidia-cuda-programm
ing-example-a236696#ixzz13xKaBOHb
*/

double phi [GRID_SIZE*GRID_SIZE] ;

dim3 threadsPerBlock (BLOCK_SIZE,BLOCK_SIZE) ;

dim3 numBlocks
(GRID_SIZE/BLOCK_SIZE,GRID_SIZE/BLOCK_SIZE) ;

test<<<numBlocks,threadsPerBlock>>>(phi);

http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696
http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696
http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696

10/11/10

Note that the thread blocks could have had any number of
dimensions, depending on the specifics of the problem in
hand. The kernel function test can then manipulate each
element of the array phi[] in parallel:

__global__ void test (double *phi) {

int x = blockIdx.x*BLOCK SIZE + threadIdx. x ;

int y = blockIdx.y *BLOCK SIZE + threadIdx. y ;

phi [x + BLOCK SIZE*y] = 3.14159 ;

}The maximum number of threads in a block and the maximum number
of blocks is determined by the particular GPU architecture. All NVIDIA
GPUs released to date have a maximum block size of 512 threads.
CUDA threads are organized into warps. One warp consists of 32
threads, which are executed together. In addition, all the threads in a
half-warp of 16 threads can read from memory concurrently in a process
known as coalesced memory access. Taking advantage of this process
is crucial for the optimization of CUDA code.

http://computerprogramming.suite101.com/article.cfm/nvidia-cuda-optimization

10/11/10

Example.c and example.cu

10/11/10

10/11/10

Internship summary

• Goals
– Parallelize original FORTRAN MD program in CUDA

– Achieve significant (>100x) speedup

• Steps
– Convert FORTRAN program to C

– Parallelize the C program

FORTRAN program

FORTRAN MD program
algorithm

Converting FORTRAN to C

• Structure of FORTRAN program largely
preserved, but functions split and
stored in separate files

• Module for common variables
converted to a C structure

• C structure for common variables:

C program

Results

• Results of C & FORTRAN programs
compared

• Fluctuations in all energy
computations in C program were less
than FORTRAN

• Added time estimation and progress
indication features in C program

• C program runs slightly faster than
FORTRAN

• Discussion of results in accompanying
PDF

Parallelizing force function in
C program
• Computed force acting on each

particle pair in parallel
– Copied force and position vectors to device

memory
– Computed force acting on each particle on

separate threads
– Total potential energy was computed as a sum of

individual potential
 energies of each particle

• All particles contribute to total potential energy which
was stored in a single variable

• To avoid race condition, device computes potential
energy vectors and host function computes the sum of
the vector elements

Device memory variables

CUDA program

• Use nvcc compiler

Blocks and threads
• Four approaches used:

– 1. One thread, many blocks: Low speedup over C program (5x), because blocks sequentially schedule

– 2. Many blocks, fewer threads: Higher speedup, but low threads per block

– 3. Many threads, fewer blocks: Higher speedup, but many cores are idle

– 4. Maximum blocks and threads: Best speedup results

– Execution times for 13500 particles, 3000 steps

» 1. 13500 blocks, 1 thread: 1 hour 15 minutes

» 2. 375 blocks, 36 threads: 3 minutes 40 seconds

» 3. 27 blocks, 500 threads: 2 minutes 20 seconds

» 4. 448 blocks, 512 threads: 2 minutes 15 seconds

Results

• Fluctuation in energies and
temperature similar to C program

• Since outer for loop was parallelized,
computation reduced from O(n2) to O(n)

• Achieved peak 198x speedup over C
program

• Detailed results in accompanying PDF
file

10/11/10

10/11/10

MDTimes and Mdgraphs

