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How to make computation faster :

Improvement in methods – leads to substantial improvement in turnaround time

Algorithmic changes – also leads to significant but not substantial improvement
(e.g., the methods for searching an ordered database – using the binary search)

Use a supercomputer  -- as many computer centres do. But not possible for 
many or most users.

Use a parallel computer : uses many cores/CPUs to parallelize the problem. 

Use a graphics processing unit.
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Method Improvement : 

Examples of this are 

1)From simple hit or miss Monte Carlo to crude MC to importance 
      sampling MC. 
2)From Born-Oppenheimer approach to solving electronic degrees of 
      freedom to Car-Parrinello approach.
3)From multidimensional integral to methods that lead to closest estimate 
      such as molecular dynamics method.
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Algorithimic changes :

Example :
1) Instead of normal search do a binary search of the database
(log2 N) instead of  order N.
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Supercomputer : 

They attempt to have faster processors 
and this makes them fast. These require 
special installation
facilities and are power intensive.
They cost a fortune and only a few can 
afford.
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Parallel Computers :

Employs multiple CPUs or cores and in this comes SIMD and 
MIMD.

Single Instruction Multiple Data.
Multiple Instruction Multiple Data.
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Parallel Programming

Motivation to parallelize long-
running programs and achieve 
faster execution times

Concurrently execute steps (parts) of a  
program

Search for parallelism is problem 
dependent 

Data Parallelism 

Task Parallelism 

Pipelining 
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Models of Parallelism

What do we do in parallel?
Access/transform data in parallel but do 
the same task - data parallelism

Work on multiple, but related tasks in 
parallel - task parallelism

Different and independent tasks to be 
applied on a data stream - pipeline 
parallelism; combination of data and 
task parallelism 
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Data Parallelism

Thread
t

t1

t2

t3

Each thread works on a mutually exclusive 
data set

Does “similar” work
Ideal case, requiring no synchronization 
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Adding Elements of an Array

O(log2 n)
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Adding two vectors

+

+ + + + + + + + ++

Constant Time
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Architectural Aspects

“Processor”
   Shared
Memory

“Processor”   Dedicated
Memory



• Consider parallelisation on a shared memory machine :

There is a bank balance of Rs. 4,000/-. There are two transanctions : one a 
cheque payment into the account of Rs. 1,000/- and a credit card expense 
of Rs. 1,500/-. 

Suppose the parallel computer reads the balance first. Then the credit card 
also reads the balance as Rs. 4,000/-. Add the payment of Rs. 1000/- to it 
which gives the answer as Rs. 5,000/- Later, the credit card balance gives 
the remaining balance as Rs. 2,500/- This is wrong as the correct balance is 
Rs. 3,500/-. 

Even if the transactions occur in reverse order then the balance is Rs. 4,500/- 
which is also wrong. 

This is overcome by locking access to the memory to only one 
processor/process/transaction at a time until it is released by it.
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API – the new paradigm

• Application program interface is a 
software or call that essentially keeps 
the nitty-gritty details out of the user. 
It provides  an user interface that is 
simple and details are taken care by 
the API. 

10/11/10



10/11/10



10/11/10

Tour of a normal program 
execution 

• A normal fortran or C program you run needs the 
following steps :

1)Program writing, 

2)Compilation (usually with libraries)

3)Execution

4)Input data/files

5)Output data/files
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• Compilation changes the fortran/C code from a 
high level language into a set of instructions  in 
binary number system (which is what a computer 
understands).

• It is then loaded into the memory (random access 
memory, RAM) along with any libraries used from 
where the instructions are sequentially executed 
by the CPU. 

• Whenever there are data to be read in or written 
out, then these are transferred from memory to 
hard disk.
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GPGPU

• But now-a-days it is possible to run your program 
on GPU (graphics processing unit, or your 
graphics card) instead of CPU(central processing 
unit).

• Normally GPU calculations are used to render a 
picture to be put on the screen (which can be 
very high, higher than the calculations done on 
CPU) or picture rendering.

• However, when we use it to do our scientific 
calculations, then it is called GPGPU (instead of 
the usual special purpose computation – picture 
drawing/rendering).

• GPGPU stands for general purpose graphics 
processing unit.
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What do we require to compute on 
GPU ?

• Obviously, we need a graphics card or something 
similar to it.

• We have among others, NVIDIA and ATI.

• We need the software that will help us to talk to 
GPU.

• A compiler which can do this is nvcc (c compiler 
made by NVIDIA).

• We need to know this language nvcc.

• Also we need to know how the problem can be 
parallelized.
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Why should we compute on GPU instead of 
CPU ?

• CPU these days come with multiple cores : dual core, quad 
core, etc. Communication between the cores in much faster 
than between CPU is a parallel computer. So, this is better. 

• A GPU generally has many more cores than the multicores 
of the CPU (upto ~500).

• So, you gain enormous speed by using GPU. 

• And communication is faster between these cores than 
between CPUs.

• And it is much, much cheaper. 

• So it is talked about as supercomputer on your desktop. 

• And as supercomputer for the masses.
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• The cores on the GPU are generally 
somewhat slower than the cores on 
the CPU but they are so many in 
number that they together beat the 
parallel computer or supercomputer 
many times over. This has been a 
general trend towards calculations 
over past two decades.

• CUDA stands for Compute Unified 
Device Architecture) helps us to 
compile and run both on the CPU and 
GPU.



• The most challenging paradigm-shift required 
to understand the CUDA programming model 
is to realize that the old serial model of looping 
over every element in a data structure does 
not exist in the CUDA programming style. 
CUDA kernels replace the body of a loop, and 
loop constructs with indices are replaced by 
block and thread size specifications.
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// A simple example of CUDA to understand threads and blocks

/*     The following code is written in CUDA C, and can be 
embedded into a normal C program run on the CPU. It calls a 
kernel, which creates two-dimensional blocks of threads of size 
BLOCK_SIZE, forming a grid of threads of size GRID_SIZE:

Read more at Suite101: 
A Basic NVIDIA CUDA Programming Example 
http://www.suite101.com/content/a-basic-nvidia-cuda-programm
ing-example-a236696#ixzz13xKaBOHb
*/

double phi [GRID_SIZE*GRID_SIZE ] ;

dim3 threadsPerBlock (BLOCK_SIZE,BLOCK_SIZE) ;

dim3 numBlocks 
(GRID_SIZE/BLOCK_SIZE,GRID_SIZE/BLOCK_SIZE) ;

test<<<numBlocks,threadsPerBlock>>>(phi);

http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696
http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696
http://www.suite101.com/content/a-basic-nvidia-cuda-programming-example-a236696
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Note that the thread blocks could have had any number of 
dimensions, depending on the specifics of the problem in 
hand. The kernel function test can then manipulate each 
element of the array phi[] in parallel:

__global__ void test (double *phi ) {

int x = blockIdx.x*BLOCK SIZE + threadIdx. x ;

int y = blockIdx.y *BLOCK SIZE + threadIdx. y ;

phi [ x + BLOCK SIZE*y ] = 3.14159 ;

}The maximum number of threads in a block and the maximum number 
of blocks is determined by the particular GPU architecture. All NVIDIA 
GPUs released to date have a maximum block size of 512 threads. 
CUDA threads are organized into warps. One warp consists of 32 
threads, which are executed together. In addition, all the threads in a 
half-warp of 16 threads can read from memory concurrently in a process 
known as coalesced memory access. Taking advantage of this process 
is crucial for the optimization of CUDA code.

http://computerprogramming.suite101.com/article.cfm/nvidia-cuda-optimization


10/11/10

Example.c  and  example.cu
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Internship summary 

• Goals
– Parallelize original FORTRAN MD program in CUDA

– Achieve significant (>100x) speedup

•    Steps
– Convert FORTRAN program to C

– Parallelize the C program



FORTRAN program



FORTRAN MD program 
algorithm



Converting FORTRAN to C

• Structure of FORTRAN program largely 
preserved, but functions split and 
stored in separate files

• Module for common variables 
converted to a C structure

• C structure for common variables:



C program



Results

• Results of C & FORTRAN programs 
compared

• Fluctuations in all energy 
computations in C program were less 
than FORTRAN

• Added time estimation and progress 
indication features in C program

• C program runs slightly faster than 
FORTRAN

• Discussion of results in accompanying 
PDF 



Parallelizing force function in 
C program
• Computed force acting on each 

particle pair in parallel
– Copied force and position vectors to device 

memory
– Computed force acting on each particle on 

separate threads
– Total potential energy was computed as a sum of 

individual potential
 energies of each particle

• All particles contribute to total potential energy which 
was stored in a single variable

• To avoid race condition, device computes potential 
energy vectors and host function computes the sum of 
the vector elements



Device memory variables



CUDA program

• Use nvcc compiler



Blocks and threads
• Four approaches used:

– 1. One thread, many blocks: Low speedup over C program (5x), because blocks sequentially schedule

– 2. Many blocks, fewer threads: Higher speedup, but low threads per block

– 3. Many threads, fewer blocks: Higher speedup, but many cores are idle

– 4. Maximum blocks and threads: Best speedup results

– Execution times for 13500 particles, 3000 steps

» 1. 13500 blocks, 1 thread: 1 hour 15 minutes

» 2. 375 blocks, 36 threads: 3 minutes 40 seconds

» 3. 27 blocks, 500 threads: 2 minutes 20 seconds

» 4. 448 blocks, 512 threads: 2 minutes 15 seconds



Results

• Fluctuation in energies and 
temperature similar to C program

• Since outer for loop was parallelized, 
computation reduced from O(n2) to O(n)

• Achieved peak 198x speedup over C 
program

• Detailed results in accompanying PDF 
file
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MDTimes and Mdgraphs


