Study of Solid-solid crystal structure
phase transformations
Benzene undergoes a phase transition from monoclinic to orthorhombic structure

Most solids undergo a phase transformation from one structure to another.
Ice, for example, has many forms of solid phases, one of the most complex phase diagrams.

How does one study these solid-solid phase transformations?

In general, the volume of the crystallographic unit cell also changes when there is a phase transformation.

Click to edit Master text styles ressure Calculations

- Third level

In microcanonical ensemberth(level E) or canonical ensemble
$(N V T)$, volume is fixed or constant. Pressure fluctuates.
So, these are not suitable for study g crystal-structure transformations.

We need constant pressure ensembles, permitting changes in volume. This was first proposed by Anderson in 1980 , for MD.

Transtition probalility is given by

$$
W(i \rightarrow i+1)=\min \left\{1, e^{-\left(u_{i+1}-v_{i}\right) / k_{B} T}\right\}
$$

In NPT ensemble,

$$
\langle a\rangle_{N P T}=\frac{\int d V \int d \bar{r}_{1} \ldots \cdot d \bar{r}_{N} a\left(\pi_{1,} \ldots \pi_{N}, V\right) e^{-U / k_{B} T} e^{+P V / k_{B} T}}{\int d V \int d \bar{r}_{M}^{N} e^{-V / k_{B} T} e^{+P V / k_{B} T}}
$$

v is a variable of integration in NPT

Click to edit Master text styles Second level
This approach has. Third leveltilehekm. Imagine the following
. Fifth level situation: where volume contracts $L^{\prime}<L$. What happens to particles near the boundary? Suddenly there are particles outride

$$
\begin{aligned}
& \leftarrow L \rightarrow \quad \leftarrow L^{\prime} \rightarrow
\end{aligned}
$$

the simulation cell. If volume expends then there are cid regions:

To overcome this problem se define $\bar{s}_{i}=\bar{r}_{i} / L$

$$
\begin{aligned}
& \langle a\rangle=\frac{\int d V \int d \bar{s}_{1} \ldots d \bar{s}_{N}}{} \bar{a}\left(\bar{s}_{1} \ldots \bar{s}_{N}, V\right) e^{-V\left(\bar{s}^{N}, V\right) / k_{B} T} V^{N} \\
& \int d \bar{s}_{1} \ldots d \bar{s}_{N} e^{-V\left(\bar{s}^{N}, V\right) / k_{B} T} V^{N} \\
& V^{N}=\ln e^{V^{N}}=e^{\ln V^{N}}=e^{N \ln V} \\
& W=\left(U_{i+1}-U_{i}\right)+P\left(V^{\prime}-V\right)+N \ln \left(V^{\prime} / V\right)\left(k_{B} T\right)
\end{aligned}
$$

Scaled variables \bar{s}_{i} are sitting a unit cube.
Simulation cell is now like a balloon.

\downarrow

Difficulty in using NPT simulations for crystal structure transformations:

Crystal Structure

Crystal structure of a material can be specified by the unit cell and atomic positions within the unit cell. This repeats to fill the whole space.

The unit cell is described by lattice parameters, the length of the edges of the cell and the angle between them.

There are seven seven unique crystal systems - cubic, hexagonal, tetragonal, rhombohedral, orthorhombic, monoclinic, triclinic.
(1) Cubic

(2) Hexagonal

(3) Tetragonal

(5) Monoclinic

$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\alpha=\gamma=90^{\circ} \neq \beta$
(6) Rhombohedral

$$
\begin{aligned}
& a=b=c \\
& \alpha=\beta=\gamma \neq 900
\end{aligned}
$$

(4) Orthorhombic

(7) Triclinic

$a \neq b \neq c$
$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Difficulty in packing crystallographic unit cells

Since it is not possible to fill all cubic space with non-aubic unit cells of a crystal, some usid space is inevitable. This means no $P B C$!

No $P B C$ means no bulk simulations!

The formulation of Parrinello Rahman method

h

$$
\Omega=\mathrm{a} .(\mathrm{b} \times \mathrm{c})
$$

Now the position of a particle \boldsymbol{i} defined by

$$
\mathrm{S}_{\mathrm{i}}
$$

Where has components ($\left.\zeta_{i}, \eta i, \zeta i\right)$ each going from 0 to 1.

The Lagrangjan of the system can be written in the following way

$$
\mathrm{L}=\frac{1}{2} \sum \mathrm{~m}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}} \underline{G s}_{\mathrm{i}}-\sum_{\mathrm{i} \neq \mathrm{j}} \varphi\left(\mathrm{r}_{\mathrm{ij}}\right)+\frac{\mathrm{I}}{2} \mathrm{~W} \operatorname{Tr}\left(\underline{\mathrm{~h}^{\prime}} \underline{\mathrm{h}}\right)-\mathrm{p}_{\mathrm{ext}} \Omega
$$

G = h'h, pext is the externally applied hydrostatic pressure.
The prime denotes the transpose of the matrix and dot denotes the time derivative

Various terms in the Lagrangian

${ }^{\text {u }}$ The first term of the Lagrangian is the kinetic energy of the particles.

$$
\begin{aligned}
& \overrightarrow{\mathrm{s}_{\mathrm{i}}^{\prime} G} \overrightarrow{\mathrm{~s}_{\mathrm{i}}}=\left(\mathrm{h}^{-1} \overrightarrow{r_{\mathrm{r}}}\right)^{\prime} h^{\prime} h\left(\mathrm{~h}_{\overrightarrow{r_{i}}}^{\overrightarrow{-1}} \overrightarrow{\mathrm{r}_{\mathrm{i}}}\right) \\
& =\underset{\vec{r}}{\dot{r}_{i}^{\prime}}\left(\mathrm{h}^{-1}\right)^{\prime} \mathrm{h}^{\prime} \mathrm{hh}^{-1} \dot{r}_{\mathrm{i}} \\
& =\underset{\vec{r}}{\overrightarrow{r_{i}^{\prime}}} \underset{\vec{r}}{\vec{r}}\left(h^{\prime}\right)^{-1} h^{\prime} \vec{r}_{i} \\
& =\underset{\rightarrow}{\mathrm{r}_{\mathrm{i}}^{\prime}} \mathrm{r}_{\mathrm{i}} \\
& =\dot{\mathrm{r}}^{2}
\end{aligned}
$$

${ }^{\text {a }}$ The second term is the interaction potential energy of the particles in the system.
${ }^{\text {a }}$ The third term is the kinetic energy associated with the MD cell deformation and W has the dimension of mass.
${ }^{\text {u }}$ The remaining term arises from the external pressure pext.

The equations of motion

There are two generalized coordinates in the system \mathbf{s} and \mathbf{h}. Thus we will have two equations of motion.

The Lagrange's equation of motion is defined as

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{q}}_{\mathrm{i}}}\right)-\frac{\partial \mathrm{L}}{\partial \mathrm{q}_{\mathrm{i}}}=0
$$

where qi's are the generalized coordinates

Equation of motion with respect to the generalized coordinate s

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{~s}}_{\mathrm{i}}}\right)=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~m}_{\mathrm{i}} \mathrm{G} \dot{s}_{\mathrm{i}}\right)=\mathrm{m}_{\mathrm{i}} \dot{\mathrm{G}}_{\mathrm{i}}+\mathrm{m}_{\mathrm{i}} \ddot{\mathrm{G}}_{\mathrm{i}}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial s_{i}}=-\sum_{i \neq j} \frac{\partial \varphi\left(r_{i j}\right)}{\partial s_{i}}=-h^{\prime} \sum_{i \neq j} \frac{\partial \varphi\left(r_{i j}\right)}{\partial r_{i}} \\
& =-h^{\prime} \sum_{\mathrm{i} \neq \mathrm{j}} \frac{\partial \varphi\left(\mathrm{r}_{\mathrm{ij}}\right)}{\partial \mathrm{r}_{\mathrm{i}}} \frac{\mathrm{r}_{\mathrm{ij}}}{\mathrm{r}_{\mathrm{ij}}} \\
& =h^{\prime} \sum_{\mathrm{i} \neq \mathrm{j}} \chi\left(\mathrm{r}_{\mathrm{ij}}\right) \mathrm{h}\left(\mathrm{~s}_{\mathrm{i}}-\mathrm{s}_{\mathrm{j}}\right), \chi\left(\mathrm{r}_{\mathrm{ij}}\right)=-\frac{\partial \varphi\left(\mathrm{r}_{\mathrm{ij}}\right)}{\mathrm{r}_{\mathrm{ij}} \mathrm{r}_{\mathrm{i}}} \\
& =\mathrm{G} \sum_{\mathrm{i} \neq \mathrm{j}} \chi\left(\mathrm{r}_{\mathrm{ij}}\right)\left(\mathrm{s}_{\mathrm{i}}-\mathrm{s}_{\mathrm{j}}\right)
\end{aligned}
$$

Now equating the two terms

$$
\begin{aligned}
& m_{i} G \ddot{s}_{i}+m_{i} \dot{G}_{i}=G \sum_{i \neq j} \chi\left(r_{i j}\right)\left(s_{i}-s_{j}\right) \\
& \Rightarrow m_{i} \ddot{\mathrm{~s}}_{i}=G \sum_{i \neq j} \chi\left(r_{i j}\right)\left(s_{i}-s_{j}\right)-m_{i} \dot{G} \dot{s}_{i} \\
& \Rightarrow \ddot{s}_{i}=m_{i}^{-1} \sum_{i \neq j} \chi\left(r_{i j}\right)\left(s_{i}-s_{j}\right)-G^{-1} \dot{G}_{i}
\end{aligned}
$$

Equation of motion with respect to \mathbf{h}

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{h}_{\mathrm{ij}}}\right)=W \ddot{\mathrm{~h}}_{\mathrm{ij}} \\
& \frac{\partial \mathrm{~L}}{\partial \mathrm{~h}_{\mathrm{ij}}}=\sum \mathrm{m}_{\mathrm{i}}\left(\mathrm{hs}_{\mathrm{i}} \dot{\mathrm{j}}^{\prime} \mathrm{s}_{\mathrm{i}}-\sum_{\mathrm{i} \neq \mathrm{j}} \frac{\partial \varphi\left(\mathrm{r}_{\mathrm{ij}}\right)}{\partial \mathrm{r}_{\mathrm{ij}}} \mathrm{~s}_{\mathrm{ij}}-\mathrm{p}_{\text {ext }} \frac{\partial \Omega}{\partial \mathrm{h}_{\mathrm{ij}}}\right. \\
& =\sum \mathrm{m}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \mathrm{~h}^{-1} \mathrm{v}_{\mathrm{i}}-\sum \frac{\partial \varphi\left(\mathrm{r}_{\mathrm{ij}}\right)}{\partial \mathrm{r}_{\mathrm{ij}}} \frac{\mathrm{r}_{\mathrm{ij}}}{\mathrm{r}_{\mathrm{ij}}} \mathrm{~s}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ext}} \frac{\partial \Omega}{\partial \mathrm{~h}_{\mathrm{ij}}} \\
& =\sum \mathrm{m}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \frac{\sigma}{\Omega} \mathrm{v}_{\mathrm{i}}+\sum \chi\left(\mathrm{r}_{\mathrm{ij}}\right)\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right) \frac{\sigma}{\Omega}\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right)-\mathrm{p}_{\text {ext }} \frac{\partial \Omega}{\partial \mathrm{h}_{\mathrm{ij}}} \\
& \mathrm{~W} \ddot{\mathrm{~h}}=\left(\pi-\mathrm{p}_{\text {ext }}\right) \sigma \\
& \Rightarrow \ddot{\mathrm{h}}=\mathrm{W}^{-1}\left(\pi-\mathrm{p}_{\text {ext }}\right) \sigma
\end{aligned}
$$

where

$$
\Omega \underline{\pi}=\sum m_{i} v_{i} v_{i}+\sum_{i \neq j} \chi\left(r_{i j}\right)\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right)\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right) \text { and } \sigma=\Omega \mathrm{h}^{-1}
$$

Example of Parrinello-Rahamn method

f.c.c to b.c.c transition

Lennard-Jones potential and a pair potential suitable for rubidium metal is used to investigate the f.c.c. to b.c.c. transition.

Initially a system consisting of 500 particles forming an f.c.c. structure of cubic length ।* is taken. The equivalent number density is $\rho^{*}=0.96$.

MD simulation is performed with a time step $\Delta t^{*}=0.005$.
In this calculation the values of various parameters are as follows:

$$
W^{*}=20, \text { pext }=4.0
$$

Temperature $\mathrm{T}^{*}=0.15$

Monitoring radial distribution function

Polyatomic systems

Similar problem in MC simulation

In the simulation of the ordered phase III of carbon tetrachloride, it was observed that the matrix elements of matrix h were continuously changing even after several thousand MC moves.

MC move	Components of \mathbf{a} in \AA	Components of \mathbf{b} in \AA	Components of \mathbf{c} in \AA
20	$(18.3,0,0.2)$	$(0,11.5,0)$	$(-4.7,0.1,17.9)$
600	$(18.1,-0.4,0.6)$	$(0.3,11.7,-0.1)$	$(-4.2,0.3,17.8)$
1200	$(18.3,-0.2,-0.5)$	$(0.1,12,0.3)$	$(-3.9,-0.2,17.9)$
1950	$(18.1,-0.8,-1.1)$	$(0.7,11.9,0.9)$	$(-2.9,-1.2,17.8)$

MC moves

The magnitude of the cell vectors and the angles between them fluctuate around the mean values.

On the other hand the components cx and az are continuously drifting during the course of the simulation.

A problem in variable shape MD simulation

In the simulation of solid nitrogen in its high pressure cubic phase, the MD cell vectors are found to be changing continuously for long time.

In the figure below, the MD cell vectors have been projected on the surface of a sphere and the sphere is viewed from the X, Y and Z directions respectively.

The upper portion of the figure shows the trajectories of the MD cell basis vectors indicating the continuous drift in the components of the cell vectors.

Rotation of the simulation cell

The observations from the previous slides indicates that the simulation cell And the molecules are constantly rotating as a whole in space.

The reason for the rotation of the cell is due to the following reason.
The matrix \underline{h} has nine components.
Only 6 parameters are necessary to define the shape of the simulation cell. These are a, b, c, α, β, γ.

The remaining three parameters describe the rotation of the cell.

Stopping the rotation of the MD cell

${ }^{\text {u }}$ Matrix h can be separated into a symmetric part S and an antisymmetric part A .

$$
\mathrm{h}=\mathrm{S}+\mathrm{A}
$$

${ }^{\text {a }}$ If we initially select the h matrix in a symmetric form, the growth of the antisymmetric component A is closely related to the rotation of the MD cell.
" The imposition of the constraint $\mathrm{A} \equiv 0$ reduces the number of independent parameters to six and can stop the rotation of the MD cell.
${ }^{\circ}$ The imposition of the symmetry for h in the simulation has the same effect as the addition of a rotation(R) that transforms h in to a symmetric form at each time step.
${ }^{\text {a }}$ The procedure to use the equation of motion for S is as follows:
(1) Choose an initial configuration with an appropriate h matrix.
(2) Transform all the vectors in the real frame by the matrix R and give symmetrical initial values for $h, h, . . .$.
(3) Then carry out the simulation using the equation of motion for S .

MC and variable shape simulation

MC approach to variable shape simulation

General isothermal isobaric ensemble

The simulation cell is defined by three vectors \vec{a}, \vec{b} and \vec{c}
The representation of the cell by these three vectors permits the cell to have any desired crystal symmetry.

The shape of the cell can be varied by appropriate changes in \vec{a}, \vec{b} and \vec{c}.
The \underline{h} matrix is made in such a way that the lower triangle elements are zero. This will prevent the rotation of the simulation cell by allowing only six out of nine degrees of freedom to vary.

$$
\underline{h}=\left(\begin{array}{ccc}
a_{x} & b_{x} & c_{x} \\
0 & b_{y} & c_{y} \\
0 & 0 & c_{z}
\end{array}\right)
$$

The scaled coordinates are used to perform the simulation

$$
\overrightarrow{\mathrm{si}}=\mathrm{h}-\overrightarrow{\mathrm{Hr}} \mathrm{i}
$$

The advantage of using the scaled coordinates is that it is easier to employ periodic boundary conditions in the scaled coordinates frame than in the real space coordinate frame.

Here coordinates $\overrightarrow{\text { ri }}$ are the real coordinates and $\overrightarrow{\text { si }}$ are the scaled coordinates lying in the range from 0 to 1 .

The partition function is given by the following expression.

$$
\Xi=\frac{\Lambda\left(2 \pi \mathrm{~m} \beta / \mathrm{h}^{2}\right)^{3 \mathrm{~N} / 2}}{\mathrm{~N}!} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \operatorname{da}^{-} d \overline{\mathrm{~b}} d \bar{c} \exp (-\beta \mathrm{P} \operatorname{det} \underline{\mathrm{~h}}) \int_{\operatorname{det} \underline{\mathrm{h}}} \exp \left[-\beta \Phi\left(\mathrm{r}^{\mathrm{N}}\right)\right] \mathrm{dr}^{\mathrm{N}}
$$

The Monte Carlo scheme

Take an initial configuration of all the particles in the system.
Give a trial move to the particle coordinates followed by a trial move to the h matrix elements.

$$
\begin{aligned}
& \text { si' }=\text { si }+ \text { kdsi } \\
& \text { hij' }=\text { hij + ๆdh }
\end{aligned}
$$

Here si' and hij' are the new scaled coordinates and new $\underline{\mathrm{h}}$ matrix elements respectively. ξ and η are two random numbers ranging from -1 to 1 .

Now calculate the energy of the new configuration Φ^{\prime}. If Φ is the energy of the old configuration before displacement of the particle then calculate the following quantity.

$$
\mathrm{W}=\left(\Phi^{\prime}-\Phi\right)+\mathrm{P}\left(\operatorname{det} \underline{\mathrm{~h}^{\prime}}-\operatorname{dte} \underline{\mathrm{h}} \underline{)}+\mathrm{N} \beta-1 \ln \left(\operatorname{det} \underline{h^{\prime}} / \operatorname{det} \underline{\mathrm{h}}\right)\right.
$$

MC scheme

Acceptance of the trial move: the criteria
The probability of acceptance p follows the following rule
(1) if $\mathrm{W} \leq 0$ then $\mathrm{p}=1$
(2) If $\mathrm{W}>0$ then $\mathrm{p}=\exp (-\beta \mathrm{W})$

The trial configuration is accepted with probability p and rejected with probability (1-p)

Prevention of rotation of the MC cell

uThe rotation may occur because of the particular initial configuration of the molecules or due to a particular configuration of the molecules during the course of the simulation.
"Although the rotation of the cell does not cause problem in obtaining the average of the thermodynamic properties, it gives rise to the difficulties in calculating the mean positions of the atoms in elucidating the crystal structure of the phase being simulated.

MC cell

"The rotation of the cell can be prevented by permitting only six out of nine degrees of freedom to vary during the simulation.
${ }^{\text {ath }}$ This is done by restricting the lower diagonal elements of the cell matrix to zero. This corresponds to the vectora being aligned along x-axis, vectorb lying in the yz plane.

Effect of temperature
(Disorglanized energy):
(i) Melting of rotational degrees of freedom
(Crystal \qquad \rightarrow Plastic crystals) Ex: Globular molecules
(ii) Melting of translational degrees of freedom
(Crystal \qquad Liquid crystal)
(iii) Melting of rotational and translational degrees of freedom
(Crystal \qquad $\xrightarrow{\text { Liquid) }}$
(iv) Melting of torsional degrees of freedom (Biphenyl, Stilbene, Azobenzene)

(v) Melting of vibrational degrees of freedom (as in cyclohexanone crystal)

(vi) Structural transformations to other polymorphs

Effect of Pressure (Orgainized

 energy):1. Structural transformations to other polymorphs
2. Partial or complete orientational /conformational ordering

Conformationally/

Conformational/

orientationally ordered crystal

orientational glass

Contentst:

1. Pressure induced ordering in biphenyl
2. Pressure induced ordering in p-terphenyl
3. Temperature induced conformational disorder in stilbene
4. Pressure induced ordering in stilbene
5. Adamantane

6. High pressure adamantane up to 26 GPa (Rigid body and flexible body assumptions for molecules)

Computer Experimental Techniques:

Structural transformations - associated with volume change Structural investigations are carried out at constant T and P

Isothermal-isobaric variable shape simulations - ultimate tool to model these structural transformations as it allows the unit cell variation as well as the changes in the molecular level.

NPT-MC

- Gives only structural quantities.

In this ensemble, any average quantity (structural quantity)
Is given as

The integration is only over the configurational phase space.

Flexibility of molecules incorporated by including One or more low frequency modes.
biphenyl and p-terphenyl - Torsional mode (associated with flipping motion of phenyl rings)

Stilbene - Torsional mode (associated with the pedal-like motion along ethylene bond)

Adamantane - 6 low frequency modes (from ab initio electronic structure calculations)

Chapter 2

Pressure induced ordering in Biphenyl and structural characterization of high pressure phase_

1.High pressure IR/Raman study shows a possible transition of molecules from a twisted form to planar
2. The transition from twisted to planar conformation involves the transformation of $\mathbf{U}(\Phi)$ from a W-shaped to U-shaped
3. Disappearance of peaks associated with the out-of-plane bending modes of hydrogens has been observed at high pressures.

Guha et. al., Phys. Rev. Lett., 82, 3625(1999). Guha et. al., J. Phys. Chem., A105, 6203(2001).

Objectives of our calculations:

1. Structural characterization of high pressure phase at both molecular and unit cell level.
2. What is the nature of the transition?
3. Calculating the IR/Raman spectra as a function of pressure and looking at the intensity variation of out-of-plane bending modes of hydrogen as a function of pressure.

Structure (of the unit cell) as a function of

pressure

Cell parameter variation doesn't show any discontinuity.

Variation of r.d.f as a function of pressure

Liquid-like behavior in the atom-atom r.d.fs and solid-like behavior (with well defined peaks) in c.o.mc.o.m. r.d.f is the indication for orientational disorder (at $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=300 \mathrm{~K}$).

Orientationally ordered at and above 1 GPa and 300 K .

Energetics

$\mathrm{U}_{\text {inter }}$ shows a minimum. After, a certain pressure value, the atoms try to occupy the same spacial coordinate resulting in increasing the repulsion energy.
$\mathrm{U}_{\text {intra }}$ increases as the repulsion energy in the BHS potential starts increasing.
($\mathrm{U}_{\text {inter }}$ minimum - it corresponds to the transition Pressure.

Is this universal behavior?

Twisted to planar conformational change in molecules

At low pressures the phenyl rings of molecules undergo flipping between the twist angles $\pm \boldsymbol{\Phi}$.

As the pressure increases the molecules becoming planar which is evident from the population of molecules with $\Phi=\mathbf{0}^{\circ}$.

Average dihedral angle and average absolute dihedral angle

< Φ > variation
!
molecules are planar independent of pressure
$<|\Phi|>$ quantifies the twisted nature of the molecules at room temperature and the planarisation as a function of pressure.

W-shaped to U-shaped transformation of $\mathbf{U}(\Phi)$

Effect of pressure is to Transform the shape of U(f) from W-shaped to U-shaped.

Earlier calculated energy difference between
$\mathrm{U}_{\text {non-planar }}$
$\mathrm{U}_{\text {twist }}$ is $8.59 \mathrm{~kJ} / \mathrm{mol}$.
From the present calculation the value is $8.00 \mathrm{~kJ} / \mathrm{mol}$

In contrast, temperature variation alters the population of Molecules In different states and doesn't alter the functional form

Nature of transition?

1. Compressibility calculated from the volume fluctuation.

$$
\kappa=\frac{\left\langle V^{2}\right\rangle-\langle V\rangle^{2}}{\langle V\rangle k_{\mathrm{B}} T}
$$

2. Derivative of volume with respect to pressure.

Compressibility as a function of pressure shows the discontinuity between 0.7-0.9 GPa suggesting the transition to be second order.

A view along c-axis of the unit cell

At $\mathrm{P}=4 \mathrm{GPa} \mathrm{T}=300 \mathrm{~K}$

A view along long molecular axis of the unit cell

At $\mathrm{P}=1$ atm $\mathrm{T}=300 \mathrm{~K}$

At $\mathrm{P}=4 \mathrm{GPa} \mathrm{T}=300 \mathrm{~K}$

Evolution of IR spectra as a function of pressure

Average structure from simulation

Ab initio electronic structure calculations (with structural constraints)
(Electronic, optical properties)

Disappearance of a few peaks (of out-of-plane bending modes
of hydrogen atoms)
indicates the conformational changes from twisted to planar conformation.

Out-of-plane bending modes of hydrogen

Conclusions:

1. Transition of the molecular conformation from twisted to planar form has been modeled successfully.
2. The transition may be a second order.
3. Transformation of the functional form of $\mathrm{U}(\phi)$ from

W-shaped to U-shaped has been observed
4. Transformation of bimodal distribution of dihedral angles
to an unimodal distribution has been observed.
5. IR spectra as a function of pressure has been calculated and disappearance of out-of-plane bending modes of hydrogens has been observed

CHAPTER 3

Pressure induced ordering transition in p-terphenyl

1. Modeling the room temperature phase of p-terphenyl with different potential models including the improved potential model
2. Pressure variation calculation up to 5 GPa and comparing the simulated structure with the X -ray diffraction results
3. Understanding the flipping motion associated with the phenyl rings

Modeling the room temperature phase of p-terphenyl

Model I - Williams intermolecular interactions

- BHS for intramolecular interaction

Model II - Filippini and Gavezzotti intermolecular interactions

- BHS for intramolecular interaction

Model III - Modified Williams intermolecular interactions - intramolecular interaction from ab initio calculations

Model IV - Modified Filippini intermolecular interactions

- BHS for intramolecular interaction

Table 5 Average cell parameters (with the percentage deviation) at 300 K for models
I-IV compared with the experimental cell parameters.

	$a_{n} \AA$	$b_{1} \AA$	$c_{1} \AA$	$\alpha_{1} \operatorname{deg}$	β_{1} deg	$\gamma_{1} \operatorname{deg}$
XRD	8.02	5.58	13.58	90.00	92.10	90.00
Model I	$8.52(6.2)$	$5.47(-2.0)$	$16.49(21.4)$	$86.67(-3.7)$	$91.04(-1.2)$	$89.91(-0.1)$
Model II	$8.30(3.5)$	$5.40(-3,2)$	$15.68(15.5)$	$91.14(1.3)$	$88.85(-3.5)$	$89.97(-0.0)$
Model III	$7.83(-2.4)$	$5.77(3.4)$	$12.15(-10.5)$	$91.25(1.4)$	$97.26(5.6)$	$89.38(-0.7)$
Model IV	$8.11(1.1)$	$5.21(-6.6)$	$12.73(-6.3)$	$88.94(-1.2)$	$90.42(-1.8)$	$89.87(-0.1)$

Overall, all the potential models fail to reproduce the cell parameter c.

Model IV reproduces structure reasonably well within the allowed threshold value for the deviations.

These potential models are derived with the rigid body assumption of molecules.

Structure: (Compared with X-ray diffraction results by Pushnig et. al):

1.Except c all cell parameters are reproduced with in the threshold limit all over the pressures at 300 K
2. Simulated cell volume is $8-10 \%$ lesser than that of experimental structure.

Puschnig et al., High Pressure Res., 22, 105(2002)

At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=300 \mathrm{~K}$ the structure is orientationally disordered At and above $\mathrm{P}=1 \mathrm{GPa}$ the structure is orientationally ordered Appearance of a new peak in c.o.m.-c.o.m. r.d.f and shifting of the second peak towards lower r suggests that

Orientational order affects the translational order to a greater extent in this case.

Energetics:

Between the pressures 1 GPa - 1.5 GPa the transition from bimodal to unimodal distribution of dihedral angles occur.

$f(\phi)=C_{1} \exp (-u(\phi) / k T$

$$
u(\phi)=C_{2}-k T \ln f(\phi)
$$

where C_{2} is $k T l n C_{1}$.

U-shaped (at 1.5 GPa)

Snapshot of simulation

A view along long molecular axis

$\mathrm{P}=1 \mathrm{~atm} / \mathrm{T}=300 \mathrm{~K}$

$\mathrm{P}=4 \mathrm{GPa} / \mathrm{T}=300 \mathrm{~K}$

Snapshot of simulation

A view along c axis

$\mathrm{P}=1 \mathrm{~atm} / \mathrm{T}=300 \mathrm{~K}$

$\mathrm{P}=4 \mathrm{GPa} / \mathrm{T}=300 \mathrm{~K}$

Conclusions:

1.Structure of room temperature p-terphenyl has been reproduced reasonably well with intermolecular potential refined by us and BHS intramolecular potential

2. Transformation of the functional form of $U(\phi)$ from W-shaped to U-shaped has been observed
3. Transformation of bimodal distribution of dihedral angles
 to an unimodal distribution has been observed.
4. Complete planarisation occur at the pressure 1.5 GPa.

Chapter 4

Temperature induced conformational disorder in stilbene (Molecular pedals)
Experimental results

Temperature dependence of the difference
Fourier map indicated two residual peaks
which disappeared at low temperature and
increased in intensity at higher temperatures.

! INDICATION OF DYNAMICAL DISORDER

The disorder has been attributed to the inter-conversion between the conformers through pedal-like motion.

Harada, J.; Ogawa. K.; J. Am. Chem. Soc., 123, 10884(2001)

Disorder is there even at Site 1

Earlier structural studies report the disorder only at site 2.

Recent studies by Ogawa and Harada Report the disorder at site 1 .

Harada, J.; Ogawa. K.; J. Am. Chem. Soc., 123, 10884(2001)

Objectives of our calculations

Are site 1 molecules too disordered?
What are the two transitions observed from Raman spectroscopic measurements in the T range 115-375 K

Does the anomalous ethylene bond length variation exist or is it an artifact of fitting procedure used in the disorder model for solving structure?

Structure

This potential model is able to predict the structural quantities with in the threshold limit except
for the cell parameter b Where the deviation is $\mathbf{6 - 1 0} \%$.

Dynamical disorder?

Pedal-like motion seems to occur at temperatures higher than
200K (actually at 180K).

The energies of the minor conformer is not equal to the major conformer (with 0° dihedral angle) which is not the case in the gaseous phase.

Disorder at Site 1 and site 2

conformational disorder

 starts at 180 K at site 2 and at 250 K at site 1 .At 300 K the barriers at -90 deg is
7.362 and $6.860 \mathrm{~kJ} / \mathrm{mol}$ (Site 2 and site1)

This corresponds to $59.70 \mathrm{~K}(0.5093 / \mathrm{R})$

$$
\stackrel{\text { onset }}{\mathrm{T}_{1}} \stackrel{\text { onset }}{=} \mathrm{T}_{2}+59.70 \mathrm{~K}
$$

With the error bar $\pm 8 \mathrm{~K}$.

Explaining the two transitions in the range 113K-375K

*Chakrabarti, S.; Misra, T.N.; Bull. Chem. Soc. Jpn., 64, 2454(1991).

Thermodynamically more stable and at the same time Kinetically less stable
(by $2 \mathrm{~kJ} / \mathrm{mol}$)

But as the barrier associated with site 2 for the interconversion is lesser by $0.5 \mathbf{k J} / \mathbf{m o l}$ than the barrier for site 1 .

Molecules at Site 2
Strongly interacting but still prone to have more disorder.

From slope of the van't Hoff plot
$\Delta \mathrm{H}_{\text {disordered-ordered }}=15.59 \mathrm{~kJ} / \mathrm{mole}$
Higher than experimental results*

From slope of the Arrhenius plot
$\mathrm{E}_{\mathrm{a}}=12.46 \mathrm{~kJ} / \mathrm{mol}$
Better than $\mathrm{E}_{\mathrm{a}}=63.4 \mathrm{~kJ} / \mathrm{mol}$ by Galli et al

Harada, J.; Ogawa, K.; J. Am .Chem. Soc., 126, 3539(2004). Galli et al., J. Am. Chem. Soc., 121, 3767 (1999).

Snapshots at 150 K and 300 K and at 1 atm pressure

No disorder

Disorder is $\mathbf{8 - 1 0 \%}$

Bond lengths variation as a function of temperature

Bond length variation as function of dihedral angle. lb initio calculation at FT/6-31G(d) - constrained stimization)

Dihedral angle distributions

 a function of temperature.Average bond length as a inction of temperature.

Shows two discontinuities

(a) Disorder at site 2 (b) Disorder at site 1

Nature of transition:

Thermal expansion coefficient

At 170 K corresponding to the onset of disorder at site 2

At 250 K corresponding to the onset of disorder at site 1

Conclusions

1. Simulation results could show the dynamical orientational disorder in stilbene as a function of temperature.
2. Disorder treats molecules in different sites in different way
(a) In site 2 disorder occurs at lower temperature (at $180 \mathrm{~K})$ as the activation energy is less compared to that for
 site 1.
(b) In site 1 disorder occurs at slightly higher T (at 250 K).
3. Simulation results combined with ab initio calculations could show the bond length variation as a function of temperature.

Chapter 5

Site dependent pressure effect on conformational disorder and pedal-like motion in stilbene

What is the effect of pressure on conformational disorder and pedal-like motion in stilbene?

Does the disorder disappear completely as a function of pressure?

Does the pressure affect disorder in different sites in different way?

Average absolute dihedral angle as a function of P

Molecules become Planar at high P.

Better packing Results in stronger Interaction.

Effect of pressure on pedal-like motion

Pedal-like motion
 Disappears at Site 1 at 0.8 GPa

Pedal-like motion
Disappears at Site 2 at 1.4 GPa

Dihedral angle distribution

At site 1, disorder Doesn't disappear

At site 2, disorder Disappears at 1.25 GPa

Potential energy landscape

In site 1, the u(Φ) is always double well potential

In site 2, the $\mathbf{u}(\Phi)$ is always double well potential at low P and single-well at high P.

Nature of transition (may not be a first order)

Conclusions

1. Dynamic disorder at site 1 disappears and static disorder remains.
2. Static and dynamic disorder at site 2 disappear at 1.25 GPa.

This is consistent with the earlier observation E_{a} for pedal-like motion is more for site 1 molecules and less for site 2 molecules.

Chapter 6

Temperature induced orientational disorder

Temperature
Crystalline phase \longrightarrow Plastic crystal
(Tetragonal P42 $1 / \mathrm{c}$)
(Cubic Fm3m)

Pressure induced orientational ordering transition

> Plastic crystal \longrightarrow $($ Fm3m $)$ $\begin{gathered}\text { Pressure } \\ \left(\mathrm{P} \overline{4} 2_{1} / \mathrm{c}\right)\end{gathered}$

Variation of cell parameters as a function of temperature

Abrupt change in cell parameters and volume between 300 K 310K suggests first order phase transition

RDF as a function of temperature

Orientational correlation function

<oi>=non-zero for
Crystals orientationally ordered
$<o_{i}>=z e r o$ for orientationally disordered
crystals

Cell parameter variation as a function of pressure.

RDF as a function of pressure

Variation intermolecular energy as a function of pressure

$\mathrm{U}_{\text {inter }}$ shows a minimum at the pressure where the orientational ordering occurs

Low T tetragonal phase and high pressure phase are isostructura

Snapshots of simulations

${ }^{\dagger}{ }^{\text {\% }}$
${ }^{(4)}{ }^{\oplus}{ }^{\oplus} \oplus^{\oplus}{ }^{+}$

再

Phase diagram (200-2000 K and 1atm - 4 GPa)

T variation and P variation runs result in same coexistence curve

High pressure phases of adamantane

Structural investigations (X-ray)* and Raman spectroscopic\# studies at pressures up to $26 \mathrm{GPa}(\mathrm{T}=300 \mathrm{~K})$ report five different transitions

1. First transition is associated with the disorder-order transition occurring at $0.5 \mathbf{G P a}$
2. Pressure dependence of internal mode frequencies suggest four phase transitions in the pressures $2.8 \mathrm{GPa}, 8.5 \mathrm{GPa}$, 16 GPa (tetragonal) and at 24 GPa (monoclinic) (These results are also supported by structural investigations.)

\author{

* Vijayakumar, V. et al. J. Phys.: Condens. Matter. 13, 1961(2001)
 \# Rekha Rao et al. J. Chem. Phys. 112, 6739(2000)
}

Objectives of our calculations

To compute equation of state c/a variation and compare with experimental results

To look at the structural changes (at unit cell level) as a function of pressure

To look at nature of molecular geometry distortion as a function of pressure.

Computed equation of state compared with the experimentally calculated.

c/a variation as a function of pressure

Appearance of new peaks! (signature of structural phase

 transitions)
0.5-1 GPa (2 ${ }^{\text {nd }}$ peak)
 $2.0-3.0 \mathrm{GPa}$ (3rd peak)
 6.0-7.0 GPa
 (1st peak)

Simulations could predict 3 structural phase transitions In the pressure range 1atm -16 GPa.

Nature of molecular distortion in site 1 molecules

Tetrahedra expand Octahedra contract

Nature of distortion of molecules in site 2 molecules

Tetrahedra contract
Octahedra contract

Molecules in different sites have different molecular

 Environment.

Various Examples

Crystal to plastic crystal transition in CCl_{4} (MC simulation)

\checkmark Solid carbon tetrachloride exists in five phases Ia, Ib, II, III and IV.
\checkmark Ia and Ib are plastic-crystalline.
\checkmark la exists only at low pressures and is metastable with respect to Ib .
\checkmark Phase II exists at intermediate pressures and has complicated ordered structure.
\checkmark Phase III exists only at high pressures with the simplest ordered structure.
\checkmark Phase III is crystalline.
\checkmark Extended Monte Carlo method in the isothermal isobaric ensemble is employed to investigate the crystal(phase III) to plastic-crystal transition in CCL_{4}.

The transition in CCl_{4}

Initially the experimental structure of phase III of CCl_{4} is taken
The lattice parameters are $\mathrm{a}=9.079, \mathrm{~b}=5.764, \mathrm{c}=9.201 \AA$ and $\beta=104.29^{\circ}$
Initiallvy the simulation was carried nut at 280 K and 1.0 GPa .

\checkmark When the temperature is increased to 380 K , the peaks of the rdf broaden and also volume and configurational energy increases. The broader peaks of the rdf suggest increased molecular motion and presence of orientational ordering.
\checkmark Further increase in temperature to 430 K
results in considerable changes. The
rdfs also shows significant changes.
The broad nature of the rdf peaks suggests that the molecules are orientationally disordered. Thus CCl_{4} has undergone
a transition from ordered phase III to a disordered plastic crystal phase on going from 380 to 430 K

Structural transitions in superionic conductors

Variable shape molecular dynamics technique was used to study the $\alpha \leftrightarrow \beta$ phase transition in AgI.

Upon heating of β-AgI, the iodine ions undergo a hcp \rightarrow bcc transformation and silver Ions become mobile.

The reverse transformation is observed on cooling of α-AgI.
(a) Pair correlation function after cooling from α phase at 700 K .
(b) Pair correlation function at 343.8 K on quenching to a very low temperature. The two peaks marked hcp contains two and twelve particles. This shows that the pair correlations are for β-AgI with a wurtzite structure.

Transition in adamantane

At low temperatures (say 110 K) adamantane exists as an ordered tetragonal solid.
As the temperature is increased (say to 298 K), adamantane undergoes a structural transition from tetragonal ordered solid to an orientationally disordered cubic phase.

(b)
(a) Ordered tetragonal solid at low temperature.
(b) Orientationally disordered cubic phase at higher temperature.

