Functional Materials IV: Ferroics and Multiferroics (contd)

Umesh V. Waghmare Theoretical Sciences Unit Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore http://www.jncasr.ac.in/waghmare

Funded by the Department of Science and Technology & CSIR, Gol

Collaborators

- Anil Kumar (JNCASR, Rutgers),
- T Nishimatsu (Tohoku),
- S Kouser (JNCASR)
- Jaita Paul (SNBNCBS)
- Experiments: A Shirin and CNR Rao.

Ferroelectrics: free energies from first-principles

Phenomena at long length and time scales in both extended and confined materials

➢ Ferroelectric BaTiO₃

<u>High</u> Temperature
 CUBIC Structure:
 <u>PARAELECTRIC</u>

>a = b = c

➢ <u>Room</u> Temperature

FETRAGONAL Structure: <u>FERROELECTRIC</u>

> a = b \neq c: strain

★ Ti⁴⁺ and Ba²⁺ shifted wrt O²⁻ →
<u>finite dipole moment: polar phonon</u>

Ferroelectric Phase transition(s)

Why free energies (I)?

• Nature of the transition and its free energy land-scape:

MFT versus exact free energies:

Work by Heine's group (90's): in "mean field" approach, F(P) is *non-analytic* near P=0.

Landau MFT: second order transition (Rabe and Waghmare (1996)).

First-order transition: driving mechanism?

Why free energies (II)?

Polarization Switching in ferroelectrics [thin films]:

Time-scales (> ns) and length-scales (domains > 10 nms)

Kay-Dunn scaling in FE films: $E_c \sim d^{-2/3}$ [Heterogeneous Nucleation of Domains]

Details of the free energy land-scape (eg. barriers along the paths of formation and switching of domains) determine switching properties Why free energies (III)?

• **Relaxor ferroelectrics** (eg. PbMg_{1/3}Nb_{2/3}O₆): Glassy Dynamics Nano-polar regions **[NPR]**

free energy barriers relevant to their dynamics and flipping

Need domain wall energies, associated free energy barriers

Why free energies (IV)?

- Simulation of FE devices at nano-scale
- Continuum + atomistic analysis: quasi-continuum

Expand the range of problems one can tackle.

We use this approach to study structural phase transitions and domains in $BaTiO_3$, which is a ferroelectric material.

BaTiO₃ Hamiltonian

$$H_{0} = \frac{M_{dipole}^{*}}{2} \sum_{i,\alpha} \dot{\xi}_{i,\alpha}^{2} + \frac{M_{acoustic}^{*}}{2} \sum_{i,\alpha} \dot{\omega}_{i,\alpha}^{2} + V^{self}(\{\vec{\xi}\}) + V^{dipole}(\{\vec{\xi}\})$$
$$+ V^{short}(\{\xi\}) + V^{elastic,homo}(\eta_{1},...,\eta_{6}) + V^{elastic,inhomo}(\{\vec{\omega}\})$$
$$+ V^{coup,homo}(\{\vec{\xi}\},\eta_{1},...,\eta_{6}) + V^{self}(\{\vec{\xi}\},\{\vec{\omega}\})$$

Parameters determined from first-principles

[BaTiO3: Nishimatsu et al (2010); PbTiO3: Waghmare et al (1997)].

- ξ = Ti off-centering [3-D classical vector dof/cell]
- ω = translational (acoustic) mode [3-D classical vector dof/cell]

\rightarrow inhomogeneous strain

 η = homogeneous strain components [6 global dof]

Molecular Dynamics:

FERAM code developed by

T Nishimatsu, U. V. Waghmare, Y. Kawazoe & Vanderbilt; PRB (2008).

http://loto.sourceforge.net/feram

Nishimatsu, Iwamoto, Kawazoe, Waghmare, Phys Rev B 82, 134106 (2010)

Transition Temperature as a Function of Film-Thickness: perfect electrodes

Without epitaxial strain With epitaxial strain (-0.01) 400 500 450 350 $T_c(3)B$ ◆ T_c(3)F 400 300 $T_c(2)B$ T_c(z) (K) 350 250 • T_c(2)F $\overline{\mathcal{S}}$ $T_c(1)B$ $T_c(1)B$ 300 Ц Ч 200 $T_c(1)F$ 250 150 200 L 10 100 └─ 0 20 30 20 40 10 30 50 50 Film thickness (Å) Film thickness (Å)

 $> T_c(x,y)$ also depends strongly on L

For Thin films with epitaxial strain, T_c(z) is enhanced

Paul, Nishimatsu, Kawazoe, Waghmare, PRL (07), APL (08), PRB (09).

What is the nature of ferroelectric phase at low T? *(imperfect electrodes)*

A clear indication of a phase with stripe-like domains Experiments: Fong et al, Science 304, 1650 (2004).

Free Energy

➤Thermodynamically, at a given temperature stability of the system is determined by the minimum of free energy.

>Dynamics of the system as function of temperature.

Minimum Energy Pathways (MEP) and free energy barriers: events with long time-scale

$$F = -k_{B}T \ln \int \prod_{i} dr_{i} e^{-\beta E(r_{1}, r_{2}, \dots, r_{N})}$$

Evaluation of free energy and determination of the MEPs are quite hard even on the most powerful computers.

Calculation of Free Energy

➢ free energy differences are accessible.

$$\frac{\partial F}{\partial P} = \frac{\int \prod_{i} dr_{i} \frac{\partial E}{\partial P} e^{-\beta E(r_{1}, r_{2}, \dots, r_{N})}}{\int \prod_{i} dr_{i} e^{-\beta E(r_{1}, r_{2}, \dots, r_{N})}} = \left\langle \frac{\partial E}{\partial P} \right\rangle$$

$$\Delta F = \int_{P_1}^{P_2} \left\langle \frac{\partial E}{\partial P} \right\rangle dP$$

Thermodynamic Integral.

Problem in doing this integral

A system prefers to stay at free energy minima; how to constrain it at arbitrary value of P?

<u>Solution</u>: Constrained Order Parameter Simulations.

Order Parameter [P]

Constrained Polarization Simulations of BaTiO₃

Augmented firstprinciples Hamiltonian →

$$H = H_0 - Z^* \vec{E} \cdot \sum_i \xi_i + \Omega \vec{P} \cdot \vec{E} - \frac{\Omega(\varepsilon_{\infty} - 1)}{8\pi} \vec{E}^2$$

H optimized wrt E at each MD step

Thermodynamic Integration

$$H = H_0 - Z^* \vec{E} \cdot \sum_i \xi_i + \Omega \vec{P} \cdot \vec{E} - \frac{\Omega(\varepsilon_{\infty} - 1)}{8\pi} \vec{E}^2$$

$$Z = \int d\xi_i e^{-\beta H} \qquad \& \qquad F = -k_B T \ln Z$$
$$\frac{\partial F}{\partial P} = -k_B T \cdot \frac{\int -\beta \Omega \vec{E} d\xi_i e^{-\beta H}}{\int d\xi_i e^{-\beta H}} \implies \frac{\partial F}{\partial P} = \Omega \langle E \rangle$$
$$\partial F = \Omega \int_{0}^{P} \langle E(\vec{P}) \rangle d\vec{P}$$

Electrical work done by average auxiliary field on P

We use this approach to study structural phase transitions and domains in $BaTiO_3$, which is a ferroelectric material.

Constrained Polarization Simulations of BaTiO₃

Free Energy for different phases of BaTiO₃

First-principles Landau-like Free Energy F(P): Order of the transition

Free Energy Coefficients

-ve Fourth order term of free energy drives the transition 1st order

Fluctuation-driven 1st order phase transition

P=0 state of BaTiO₃ at T=280 K

(A snapshot from a constrained P MD)

The reference configuration (P=0) at T < T_c is not Paraelectric!

Important Addition to Landau-Ginzburg Theory for Ferroelectrics

Effects of depolarization fields in finite systems, etc Guiding principle for continuum: *P(r) field favors to be divergence-free*

Implications of the Generalized Free Energy Functional

Polarization field should be divergence-free, as

Applicable to both *bulk* and *nano-scale* ferroelectrics

Example: nano-thin film of a FE

Effects of depolarization field included naturally. Formation of domain: *curl P is nonzero*

*x*Cross section
Chiral ordering of dipoles
Vertical Section
(With J Paul and T V Ramakrishnan, unpublished)

2

Landau Theory of 1st Order Ferroelectric Transition

Smoother (superheated and supercooled) curves

Hysteresis: Origin in Metastable Degenerate States

Nature of the low temperature phase

Ferroelectric Domains:

free energy of inhomogeneous order parameter

Augmented H remains the same formally:

Access to free energy of any inhomogeneous configuration of P!

Domain Wall Energy

Free energy difference of the two configuration shown above can be used to calculate domain wall energy.

Stability of Domains with system size

Domain is stable if system size > a critical size [> 8nm] for a given temp.

PbTiO₃

Only one transition: Cubic to tetragonal P(001)

90° vs 180° Domains in PbTiO₃

180°: An order of magnitude larger than that of $BaTiO_3$! 90° : More stable

Lower barrier at 260 K due to vicinity to T-O phase transition

Conclusions

- Method for first-principles free energies of structural phase transitions: constrained MD + thermodynamics integration
- Clarified the nature of *fluctuation driven 1st order FE transitions.*
- Addition to Landau free energy functional:
 Polarization field should be divergence-free
- > Spatial fluctuations: Hysteretic $\epsilon(T)$ of BaTiO₃ nanotubes
- \succ Contrast between BaTiO₃ and PbTiO₃

Many applications of the method are possible (eg extension to shape memory alloys) and planned.

