Pancharatnam-Zak phase*

Vivek M. Vyas Theoretical Physics Group Raman Research Institute

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

^{*}With D. Roy & J. Samuel (based on arXiv:1909.00818)

Zak phase

Thouless (1982 - 1983) discover the topological invariant - TKNN - Chern class in condensed matter systems

$$\int d^2k \, \left(\partial_{k_1}A_{k_2}-\partial_{k_2}A_{k_1}\right)$$

 Berry (1983-1984) shows the origin of geometric phase in adiabatic quantum evolution

$$\oint d\vec{R}\cdot\vec{A}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Barry Simons (1983) points out the mathematical connection between the above
 First condensed matter manifestation of geometrical phase was shown

- Motivated by Berry (1984), Zak (1989) shows another manifestation of geometric phase in 1D periodic lattice system
- \blacktriangleright Considers the adiabatic motion of electron in Bloch state ψ_{nk} influenced by a weak tangential electric field
- Argues that $k \rightarrow k + eA(t)$ causes a circuit in FBZ, which can be understood as a circle
- Possibility of adiabatic cyclic geometric phase (Berry kind)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Hamiltonian Bloch eigenstates $\psi_{nk}(x)$ can be written as:

$$\psi_{nk}(x) = e^{ikx} u_{nk}(x), \qquad u_{nk}(x+a) = u_{nk}(x)$$

in terms of cell periodic Bloch states $u_{nk}(x)$

- Considers the Hamiltonian: $\hat{H} = \frac{1}{2\mu} \left(\hat{\rho} eA(t) \right)^2 + V(\hat{x})$
- Zak shows that the geometric phase acquired during the circuit is

$$\gamma_{Zak} = i \int_0^{\frac{2\pi}{a}} dk \, \langle u_n(k) | \frac{\partial}{\partial k} | u_n(k) \rangle$$

Argues existence of a notion of position: Band center $x_c = \frac{a}{2\pi} \gamma_{Zak}$

Later Resta, Vanderbilt and others show that change in electric polarisation is

$$\Delta P = e \Delta x_c$$

- The modern understanding of polarisation in dielectrics is based upon this notion
- Celebrated piece of work: many applications

Derivation is unsatisfactory, k is treated as a continuous variable, and changes as a function of time,

$$\mathsf{BUT} \ [\hat{H}, \hat{T}_x(a)] = 0 \qquad \qquad \mathsf{implying} \ \Delta k = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

selection rule !

- The expression for \(\gamma_{Zak}\) is NOT gauge invariant
- Known to change its value under unit cell reparametrisation
- ▶ For SSH model, several values of γ_{Zak} are quoted in the literature
- General agreement that γ_{Zak} itself is a unphysical, unobservable quantity; only $\Delta \gamma_{Zak}$ matters

Kinematics

- Consider 1D lattice system with the existence of periodic boundary condition (PBC)
- The system can be thought of as a periodic lattice forming a ring
- We allow a linearly time-varying magnetic flux $\Phi_B(t)$ to pierce the ring, while giving rise to a weak tangential electric field E
- A system described by the Hamiltonian:

$$\hat{H}_{lpha(t)}=rac{1}{2\mu}\left(\hat{p}+\hbarlpha(t)
ight)^{2}+V(\hat{x}),$$

where the time-dependent vector potential A(t) = -Et and $\alpha(t) = -eA(t)/\hbar$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

• Hamiltonian admits normalized instantaneous eigenstates $|\Psi_{nk_m\alpha}\rangle$ which solve:

$$\hat{H}_{\alpha} |\Psi_{nk_m\alpha}\rangle = E_{nk_m\alpha} |\Psi_{nk_m\alpha}\rangle$$

$$\hat{T}_{x}(a) |\Psi_{nk_m\alpha}\rangle = e^{ik_ma} |\Psi_{nk_m\alpha}\rangle$$

- Owing to PBC, we have $\Psi_{nk_m\alpha}(x + Na) = \Psi_{nk_m\alpha}(x)$, so that each band consists of exactly N states with quantum number $k_m = \frac{2\pi}{Ma}m$, where $m = 0, 1, \dots, N-1$
- So the states Ψ_{nkm}α and Ψ_{nkm+N}α are <u>colinear</u>:

$$|\Psi_{nk_{m+N}\alpha}\rangle = e^{i\chi}|\Psi_{nk_m\alpha}\rangle$$

where χ is some arbitrary real number

- ► The states $\Psi_{nk_{m+N}\alpha}(x)$ and $\Psi_{nk_m\alpha}(x)$ describe the same physical state, as the corresponding density matrices are identical
- It is often assumed that $\chi = 0$, a choice of convention which is referred to as the *periodic gauge* condition

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

 \blacktriangleright Clearly, all the physical observables must be insensitive to the value of the unphysical phase χ

The vector potential at any time t can be written as a gauge transformation:

$$A(t) = A(0) + \frac{i\hbar}{e}U^{\dagger}(x,t)\partial_{x}U(x,t),$$

where $U(x, t) = \exp\left(\frac{i}{\hbar}eEtx\right)$

$$\hat{H}(t) = U^{\dagger}(x,t)\hat{H}(0)U(x,t)$$

- ▶ The operator U(x, t) must respect the PBC: U(x, t) = U(x + L, t) in order to be a well defined operator
- Only for time $t = j\tau$ (j is an integer), PBC is respected, where

$$au = rac{2\pi\hbar}{eEL}$$

- The Hamiltonians Ĥ(jτ) (for different js) are physically the same (they are gauge equivalent), their spectra are identical
- Their instantaneous eigenstates are related to each other by the gauge transformation:

$$ert \Psi_{nk_m \alpha(j\delta)}
angle = U^{\dagger}(x,j au) ert \Psi_{nk_{m+j}\alpha(0)}
angle$$

= $\exp\left(-irac{2\pi xj}{L}
ight) ert \Psi_{nk_{m+j}\alpha(0)}
angle,$

as also the energies $E_{nk_m\alpha(j\delta)} = E_{nk_{m+j}\alpha(0)}$.

- ► The transformation factor $U(x, j\tau) = e^{i\frac{2\pi x}{L}j}$ has a very interesting topological property
- ▶ It is a function of x, albeit with the PBC, implying that the points x = 0 and x = L are identified since $U(0, j\tau) = U(L, j\tau)$
- It lives on a circle with circumference L
- $U(x, j\tau)$ by definition is a phase and takes values only on the unit circle in the complex plane
- So U(x, j\u03c6) is a map from one circle (with circumference L) to the unit circle, are classified in terms of homotopy classes, with each of them characterized by an integer called the *winding number*, which measures the number of times one circle is winded on another
- ▶ Incidentally $e^{ik_jx} = e^{i\frac{2\pi x}{L}j}$ also appears while defining cell periodic Bloch states encountered earlier

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dynamics

- ▶ Initial state is $|\Phi(0)\rangle = |\Psi_{nk_l\alpha(0)}\rangle$, then it is constrained to evolve with the same quantum number k_l at any other time t (No transitions within the band !)
- The system's state |Φ(t)⟩ essentially evolves adiabatically in the presence of a weak electromagnetic field (no interband transitions)

$$|\Phi(t)
angle = e^{i\phi(t)}|\Psi_{nk_l\alpha(t)}
angle$$

- The phase factor is given by $\phi(t) = i \int_0^t ds \, \langle \Psi_{nk_l\alpha(s)} | \frac{\partial}{\partial s} | \Psi_{nk_l\alpha(s)} \rangle - \frac{1}{\hbar} \int_0^t ds \, E_{nk_l\alpha(s)}.$
- At time jτ this takes the form:

$$|\Phi(j\tau)\rangle = e^{i\phi(j\tau)}\hat{U}^{\dagger}(x,j\tau)|\Psi_{nk_{l+j}\alpha(0)}\rangle$$

After time N\(\tau\), the state of the system is:

$$|\Phi(N\tau)\rangle = e^{i\chi}e^{i\phi(N\tau)}\hat{U}^{\dagger}(x,N\tau)|\Psi_{nk_{l}\alpha(0)}\rangle,$$

indicating that the system returns to the initial state with a large gauge transformation $% \left({{{\left[{{{\left[{{{c_{1}}} \right]}} \right]}_{\rm{c}}}}} \right)$

▶ It may be noted that in general, $|\langle \Psi_{nk_l\alpha(0)}| \hat{U}^{\dagger}(x, N\tau)|\Psi_{nk_l\alpha(0)}\rangle| \neq 1$ which indicates that the initial and final states are NOT colinear:

$$|\Phi(N au)
angle
e^{i heta}|\Phi(0)
angle$$

- Strictly speaking the system does not return to its initial state after time $N\tau$
- However, owing to the gauge transformation factor $U^{\dagger}(x, N\tau)$ it is straightforward to see that the average of any observable $\hat{F}(\hat{x}, \hat{p} eA(t))$ returns after time $N\tau$:

$$\begin{split} \langle \Psi_{nk_{l}\alpha(0)} | \hat{F}(\hat{x}, \hat{p} - eA(0)) | \Psi_{nk_{l}\alpha(0)} \rangle \\ &= \langle \Psi_{nk_{l}\alpha(N\tau)} | \hat{F}(\hat{x}, \hat{p} - eA(N\tau)) | \Psi_{nk_{l}\alpha(N\tau)} \end{split}$$

- So the states $|\Phi(0)\rangle$ and $|\Phi(N\tau)\rangle$ while being non-colinear, nevertheless represent the same physical state of the system, albeit expressed in different gauges
- The time evolution of the system in this case is found to be adiabatic and cyclic kind
- It must be mentioned that this notion of cyclicity generalizes the existing notion in the literature based on the requirement of returning of the density matrix

Geometric phase

The geometric phase gained by the system reads:

$$\gamma_{g}(n) = \operatorname{Arg}\langle \Psi_{nk_{l}\alpha(0)} | \Psi_{nk_{l}\alpha(N\tau)} \rangle + i \int_{0}^{N\tau} dt \, \langle \Psi_{nk_{l}\alpha(t)} | \partial_{t} | \Psi_{nk_{l}\alpha(t)} \rangle$$

This expression can be simplified by working with the cell periodic Bloch states $|u(k_l + \alpha(t))\rangle$ which are defined as:

$$|\Psi_{nk_l\alpha}\rangle = e^{ik_l\hat{x}}|u_n(k_l+\alpha)\rangle$$

A crucial relation for these Bloch states follows:

$$|u_n(q+\frac{2\pi}{a})\rangle = e^{i\chi}e^{-i\frac{2\pi}{a}\hat{\chi}}|u_n(q)\rangle$$

showing that the ray space for these states is NOT closed

- We set $k_l = 0$, and employ the reparametrization invariance of the geometric phase, which enables us to express $\gamma_g(n)$ in terms of $|u_n(\alpha)\rangle$ while treating α as a parameter
- This leads us to the expression for Pancharatnam-Zak phase $\gamma_g(n)$:

$$\gamma_g(n) = \operatorname{Arg}\langle u_n(0)|u_n(2\pi/a)
angle + i\int_0^{rac{2\pi}{a}} dlpha \langle u_n(lpha)|\partial_lpha|u_n(lpha)
angle$$

Pancharatnam-Zak phase

- This geometric phase correctly and consistently characterizes the band
- The Pancharatnam-Zak phase so obtained above is independent of the total number of cells N in the system, as it should be, since it captures the curvature of the state space of the system, which is solely determined by the Hamiltonian
- It follows that one can write the amplitude Arg(un(0)|un(2π/a)) as a line integral over the natural connection An(I) = i(un(I)|∂_I|un(I)):

$${
m Arg}\langle u_n(0)|u_n(2\pi/a)
angle = \int_{2\pi/a}^0 dI \ {\cal A}_n(I)igg|_{geodesic/Nullcurve},$$

which is to be evaluated along the shortest geodesic (null curve) connecting $|u_n(2\pi/a)\rangle$ to $|u_n(0)\rangle$

The Pancharatnam-Zak phase thus takes a manifestly gauge invariant form

$$\gamma_{g}(n) = \oint_{C} dl \, \mathcal{A}_{n}(l)$$

- The state |u_n(q) and e^{iΛ(q)}|u_n(q), represent the same physical state of the system, since the corresponding density matrices are identical, one demands that a physically observable quantity must remain invariant under such a gauge transformation for any choice of Λ(q)
- The Pancharatnam-Zak phase is indeed insensitive to such a transformation

The Pancharatnam-Zak phase is also expressible as an argument of Bargmann invariant Δ_M:

$$\Delta_{M} = \langle u_{n,0} | u_{n,M} \rangle \langle u_{n,M} | u_{n,M-1} \rangle \cdots \langle u_{n,2} | u_{n,1} \rangle \langle u_{n,1} | u_{n,0} \rangle,$$

where $|u_{n,i}\rangle \equiv |u_n(\frac{2\pi i}{Ma})\rangle$

- ▶ $\langle u_{n,0}|u_{n,M}\rangle$ missing in the Zak definition, fact not appreciated in the literature
- Here the variable M is not to be confused with the number of unit cells N. In large M limit:

$$\gamma_g(n) = \lim_{M \to \infty} \operatorname{Arg} \Delta_M.$$

- ▶ This crucially shows that the value of $\gamma_g(n)$ can not be altered by changing the gauge convention and by translating the origin of the unit cell $|u_{n,i}\rangle \rightarrow e^{-i\frac{\varepsilon}{\hbar}\hat{p}}|u_{n,i}\rangle$ by distance ε
- For inversion symmetric lattices, $V(-\hat{x}) = \hat{\Pi} V(\hat{x})\hat{\Pi}^{\dagger} = V(\hat{x})$, one finds that $|u_n(-\kappa)\rangle = \hat{\Pi}|u_n(\kappa)\rangle$, one finds that the Pancharatnam-Zak phase for such a system is quantized:

$$\gamma_g(n) = 0 \text{ or } \pi$$

The Pancharatnam-Zak phase in inversion symmetric lattices becomes a topological index, whose non-zero value corresponds to a topologically non-trivial band

Filled band case

- Most condensed matter systems studied in this context are filled bands
- The many-particle wavefunction $\overline{\Psi}$ representing such a filled band at any time t in the adiabatic approximation is given by the Slater determinant:

$$\bar{\Phi}_{n}(x_{1}, x_{2}, \cdots, x_{N}; \alpha(t)) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \Phi_{nk_{0}\alpha(t)}(x_{1}) & \Phi_{nk_{1}\alpha(t)}(x_{1}) & \cdots & \Phi_{nk_{N-1}\alpha(t)}(x_{1}) \\ \Phi_{nk_{0}\alpha(t)}(x_{2}) & \Phi_{nk_{1}\alpha(t)}(x_{2}) & \cdots & \Phi_{nk_{N-1}\alpha(t)}(x_{2}) \\ \vdots & \vdots & \vdots \\ \Phi_{nk_{0}\alpha(t)}(x_{N}) & \Phi_{nk_{1}\alpha(t)}(x_{N}) & \cdots & \Phi_{nk_{N-1}\alpha(t)}(x_{N}) \end{vmatrix}$$

Φ_{nkiα(t)}(x_i) represents the ith particle wave function adiabatically evolving
 The many-particle wavefunction at time jτ can be straightforwardly written as:

$$\bar{\Phi}_{n}(\cdots;\alpha(j\tau)) = \frac{e^{i\Gamma(j\tau)}}{\sqrt{N!}} \hat{G} \begin{vmatrix} \Psi_{nk_{j}\alpha(0)}(x_{1}) & \Psi_{nk_{j+1}\alpha(0)}(x_{1}) & \cdots & \Psi_{nk_{N+j}\alpha(0)}(x_{1}) \\ \Psi_{nk_{j}\alpha(0)}(x_{2}) & \Psi_{nk_{j+1}\alpha(0)}(x_{2}) & \cdots & \Psi_{nk_{N+j}\alpha(0)}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \Psi_{nk_{j}\alpha(0)}(x_{N}) & \Psi_{nk_{j+1}\alpha(0)}(x_{N}) & \cdots & \Psi_{nk_{N+j}\alpha(0)}(x_{N}) \end{vmatrix}$$

The N-particle large gauge transformation G is given by the product:

$$G(x_1, x_2, \cdots, x_N; \tau) = \prod_{j=1}^N U^{\dagger}(x_j, j\tau),$$

whereas the phase factor $\Gamma(j\tau)$ reads:

$$\Gamma(j\tau) = \sum_{l=0}^{N-1} \left(i \int_{k_l}^{k_{l+j}} d\alpha \left\langle u_n(\alpha) \right| \partial_\alpha \left| u_n(\alpha) \right\rangle - \frac{1}{\hbar} \int_0^{j\tau} dt \, E_{nk_l\alpha(t)} \right)_{\mathbb{R}^{N-1}} \leq \mathbb{R}^{N-1} \left(\int_0^{t} dt \, E_{nk_l\alpha(t)} \right)_{\mathbb{R}^{N-1}}$$

Generalizing the geometric phase expression for a filled band scenario, one finds that the geometric phase acquired by the band fermions evolving adiabatically till time j\u03c0 reads:

$$\Gamma_{g}(j\tau) = (j(N-j) \mod 2)\pi$$

$$+ \sum_{l=0}^{N-1} \left(\operatorname{Arg}\langle u_{n}(k_{l}) | u_{n}(k_{l+j}) \rangle + i \int_{k_{l}}^{k_{l+j}} d\alpha \, \langle u_{n}(\alpha) | \partial_{\alpha} | u_{n}(\alpha) \rangle \right)$$

- ► Interestingly the geometric phase acquired by the band fermions after evolution till time τ is purely statistically in nature: $\Gamma_g(\tau) = ((N-1) \mod 2)\pi$, sensitive to the odd/even nature of N
- ▶ Whereas the phase acquired after evolution till time *Nτ* is solely geometric and it reads:

$$\Gamma_g(N\tau)=N\gamma_g(n).$$

This is an expected result since each of the fermion is evolving independently in this non-interacting system, giving rise to Pancharatnam-Zak phase $\gamma_g(n)$, which all add up to yield this result

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary

- Provide a proper description of the (simplest) geometric phase in a condensed matter system: Single and Many particle case
- A gauge and reparametrisation invariant definition of band center
- Particle statistics manifestation in this formulation
- > Paves the foundation for a more satisfactory understanding of electric polarisation
- Correct counting of edge states in topological models
- Connection of TKNN-Chern class and this Pancharatnam-Zak phase needs to be clarified

THANK YOU FOR YOUR ATTENTION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00