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Zak phase

I Thouless (1982 - 1983) discover the topological invariant - TKNN - Chern class
in condensed matter systems∫

d2k
(
∂k1

Ak2
− ∂k2

Ak1

)
I Berry (1983-1984) shows the origin of geometric phase in adiabatic quantum

evolution ∮
d~R · ~A

I Barry Simons (1983) points out the mathematical connection between the above

I First condensed matter manifestation of geometrical phase was shown



I Motivated by Berry (1984), Zak (1989) shows another manifestation of geometric
phase in 1D periodic lattice system

I Considers the adiabatic motion of electron in Bloch state ψnk influenced by a
weak tangential electric field

I Argues that k → k + eA(t) causes a circuit in FBZ, which can be understood as
a circle

I Possibility of adiabatic cyclic geometric phase - (Berry kind)



I The Hamiltonian Bloch eigenstates ψnk (x) can be written as:

ψnk (x) = e ikxunk (x), unk (x + a) = unk (x)

in terms of cell periodic Bloch states unk (x)

I Considers the Hamiltonian: Ĥ = 1
2µ

(p̂ − eA(t))2 + V (x̂)

I Zak shows that the geometric phase acquired during the circuit is

γZak = i

∫ 2π
a

0
dk 〈un(k)|

∂

∂k
|un(k)〉

I Argues existence of a notion of position: Band center xc = a
2π
γZak

I Later Resta, Vanderbilt and others show that change in electric polarisation is

∆P = e∆xc

I The modern understanding of polarisation in dielectrics is based upon this notion

I Celebrated piece of work: many applications



Problems with Zak

I Derivation is unsatisfactory, k is treated as a continuous variable, and changes as
a function of time,

BUT [Ĥ, T̂x (a)] = 0 implying ∆k = 0
selection rule !

I The expression for γZak is NOT gauge invariant

I Known to change its value under unit cell reparametrisation

I For SSH model, several values of γZak are quoted in the literature

I General agreement that γZak itself is a unphysical, unobservable quantity; only
∆γZak matters



Kinematics

I Consider 1D lattice system with the existence of periodic boundary condition
(PBC)

I The system can be thought of as a periodic lattice forming a ring

I We allow a linearly time-varying magnetic flux ΦB(t) to pierce the ring, while
giving rise to a weak tangential electric field E

I A system described by the Hamiltonian:

Ĥα(t) =
1

2µ
(p̂ + ~α(t))2 + V (x̂),

where the time-dependent vector potential A(t) = −Et and α(t) = −eA(t)/~.

Φ
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E
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I Hamiltonian admits normalized instantaneous eigenstates |Ψnkmα〉 which solve:

Ĥα|Ψnkmα〉 = Enkmα|Ψnkmα〉

T̂x (a)|Ψnkmα〉 = e ikma|Ψnkmα〉

I Owing to PBC, we have Ψnkmα(x + Na) = Ψnkmα(x), so that each band consists

of exactly N states with quantum number km = 2π
Na

m, where m = 0, 1, · · · ,N − 1

I So the states Ψnkmα and Ψnkm+Nα are colinear:

|Ψnkm+Nα〉 = e iχ|Ψnkmα〉

where χ is some arbitrary real number

I The states Ψnkm+Nα(x) and Ψnkmα(x) describe the same physical state, as the
corresponding density matrices are identical

I It is often assumed that χ = 0, a choice of convention which is referred to as the
periodic gauge condition

I Clearly, all the physical observables must be insensitive to the value of the
unphysical phase χ



I The vector potential at any time t can be written as a gauge transformation:

A(t) = A(0) +
i~
e
U†(x , t)∂xU(x , t),

where U(x , t) = exp
(

i
~ eEtx

)
I Under such a transformation, the momentum operator transforms as:

p̂ − eA(t) = U†(x , t)p̂ U(x , t), which allows the Hamiltonian at some time t and
at t = 0 to be unitarily connected:

Ĥ(t) = U†(x , t)Ĥ(0)U(x , t)

I The operator U(x , t) must respect the PBC: U(x , t) = U(x + L, t) in order to be
a well defined operator

I Only for time t = jτ (j is an integer), PBC is respected, where

τ =
2π~
eEL

I The Hamiltonians Ĥ(jτ) (for different js) are physically the same (they are gauge
equivalent), their spectra are identical

I Their instantaneous eigenstates are related to each other by the gauge
transformation:

|Ψnkmα(jδ)〉 = U†(x , jτ)|Ψnkm+jα(0)〉

= exp

(
−i

2πxj

L

)
|Ψnkm+jα(0)〉,

as also the energies Enkmα(jδ) = Enkm+jα(0).



I The transformation factor U(x , jτ) = e i
2πx
L

j has a very interesting topological
property

I It is a function of x , albeit with the PBC, implying that the points x = 0 and
x = L are identified since U(0, jτ) = U(L, jτ)

I It lives on a circle with circumference L

I U(x , jτ) by definition is a phase and takes values only on the unit circle in the
complex plane

I So U(x , jτ) is a map from one circle (with circumference L) to the unit circle, are
classified in terms of homotopy classes, with each of them characterized by an
integer called the winding number, which measures the number of times one
circle is winded on another

I Incidentally e ikj x = e i
2πx
L

j also appears while defining cell periodic Bloch states -
encountered earlier



Dynamics

I Initial state is |Φ(0)〉 = |Ψnklα(0)〉, then it is constrained to evolve with the same
quantum number kl at any other time t (No transitions within the band !)

I The system’s state |Φ(t)〉 essentially evolves adiabatically in the presence of a
weak electromagnetic field (no interband transitions)

|Φ(t)〉 = e iφ(t)|Ψnklα(t)〉

I The phase factor is given by
φ(t) = i

∫ t
0 ds 〈Ψnklα(s)| ∂∂s |Ψnklα(s)〉 − 1

~
∫ t

0 ds Enklα(s).

I At time jτ this takes the form:

|Φ(jτ)〉 = e iφ(jτ)Û†(x , jτ)|Ψnkl+jα(0)〉

I After time Nτ , the state of the system is:

|Φ(Nτ)〉 = e iχe iφ(Nτ)Û†(x ,Nτ)|Ψnklα(0)〉,

indicating that the system returns to the initial state with a large gauge
transformation

I It may be noted that in general, |〈Ψnklα(0)|Û†(x ,Nτ)|Ψnklα(0)〉| 6= 1 which
indicates that the initial and final states are NOT colinear:

|Φ(Nτ)〉 6= e iθ|Φ(0)〉,

and the corresponding density matrices are NOT identical



I Strictly speaking the system does not return to its initial state after time Nτ

I However, owing to the gauge transformation factor U†(x ,Nτ) it is straightforward

to see that the average of any observable F̂ (x̂ , p̂ − eA(t)) returns after time Nτ :

〈Ψnklα(0)|F̂ (x̂ , p̂ − eA(0))|Ψnklα(0)〉

= 〈Ψnklα(Nτ)|F̂ (x̂ , p̂ − eA(Nτ))|Ψnklα(Nτ)〉

I So the states |Φ(0)〉 and |Φ(Nτ)〉 while being non-colinear, nevertheless represent
the same physical state of the system, albeit expressed in different gauges

I The time evolution of the system in this case is found to be adiabatic and cyclic
kind

I It must be mentioned that this notion of cyclicity generalizes the existing notion
in the literature based on the requirement of returning of the density matrix

nkmα(t)

2π/a
α(t)km ,

E

0

Enk

Enkl

l α(τ)

α(0)



Geometric phase

I The geometric phase gained by the system reads:

γg (n) = Arg〈Ψnklα(0)|Ψnklα(Nτ)〉+ i

∫ Nτ

0
dt 〈Ψnklα(t)|∂t |Ψnklα(t)〉

This expression can be simplified by working with the cell periodic Bloch states
|u(kl + α(t))〉 which are defined as:

|Ψnklα〉 = e ikl x̂ |un(kl + α)〉

I A crucial relation for these Bloch states follows:

|un(q +
2π

a
)〉 = e iχe−i 2π

a
x̂ |un(q)〉

showing that the ray space for these states is NOT closed

I We set kl = 0, and employ the reparametrization invariance of the geometric
phase, which enables us to express γg (n) in terms of |un(α)〉 while treating α as a
parameter

I This leads us to the expression for Pancharatnam-Zak phase γg (n):

γg (n) = Arg〈un(0)|un(2π/a)〉+ i

∫ 2π
a

0
dα 〈un(α)|∂α|un(α)〉



Pancharatnam-Zak phase

I This geometric phase correctly and consistently characterizes the band

I The Pancharatnam-Zak phase so obtained above is independent of the total
number of cells N in the system, as it should be, since it captures the curvature
of the state space of the system, which is solely determined by the Hamiltonian

I It follows that one can write the amplitude Arg〈un(0)|un(2π/a)〉 as a line integral
over the natural connection An(l) = i〈un(l)|∂l |un(l)〉:

Arg〈un(0)|un(2π/a)〉 =

∫ 0

2π/a
dl An(l)

∣∣∣∣
geodesic/Nullcurve

,

which is to be evaluated along the shortest geodesic (null curve) connecting
|un(2π/a)〉 to |un(0)〉

I The Pancharatnam-Zak phase thus takes a manifestly gauge invariant form

γg (n) =

∮
C
dl An(l).

I The state |un(q)〉 and e iΛ(q)|un(q)〉, represent the same physical state of the
system, since the corresponding density matrices are identical, one demands that
a physically observable quantity must remain invariant under such a gauge
transformation for any choice of Λ(q)

I The Pancharatnam-Zak phase is indeed insensitive to such a transformation



I The Pancharatnam-Zak phase is also expressible as an argument of Bargmann
invariant ∆M :

∆M = 〈un,0|un,M〉〈un,M |un,M−1〉 · · · 〈un,2|un,1〉〈un,1|un,0〉,

where |un,i 〉 ≡ |un( 2πi
Ma

)〉
I 〈un,0|un,M〉 missing in the Zak definition, fact not appreciated in the literature

I Here the variable M is not to be confused with the number of unit cells N. In
large M limit:

γg (n) = lim
M→∞

Arg ∆M .

I This crucially shows that the value of γg (n) can not be altered by changing the
gauge convention and by translating the origin of the unit cell
|un,i 〉 → e−i ε~ p̂ |un,i 〉 by distance ε

I For inversion symmetric lattices, V (−x̂) = Π̂ V (x̂)Π̂† = V (x̂), one finds that

|un(−κ)〉 = Π̂|un(κ)〉, one finds that the Pancharatnam-Zak phase for such a
system is quantized:

γg (n) = 0 or π

I The Pancharatnam-Zak phase in inversion symmetric lattices becomes a
topological index, whose non-zero value corresponds to a topologically non-trivial
band



Filled band case
I Most condensed matter systems studied in this context are filled bands
I The many-particle wavefunction Ψ̄ representing such a filled band at any time t

in the adiabatic approximation is given by the Slater determinant:

Φ̄n(x1, x2, · · · , xN ;α(t)) =
1
√
N!

∣∣∣∣∣∣∣∣∣∣

Φnk0α(t)(x1) Φnk1α(t)(x1) · · · ΦnkN−1α(t)(x1)

Φnk0α(t)(x2) Φnk1α(t)(x2) · · · ΦnkN−1α(t)(x2)

...
...

...
Φnk0α(t)(xN) Φnk1α(t)(xN) · · · ΦnkN−1α(t)(xN)

∣∣∣∣∣∣∣∣∣∣
I Φnklα(t)(xi ) represents the i th particle wave function adiabatically evolving
I The many-particle wavefunction at time jτ can be straightforwardly written as:

Φ̄n(· · · ;α(jτ)) =
e iΓ(jτ)

√
N!

Ĝ

∣∣∣∣∣∣∣∣∣∣

Ψnkjα(0)(x1) Ψnkj+1α(0)(x1) · · · ΨnkN+jα(0)(x1)

Ψnkjα(0)(x2) Ψnkj+1α(0)(x2) · · · ΨnkN+jα(0)(x2)

...
...

...
Ψnkjα(0)(xN) Ψnkj+1α(0)(xN) · · · ΨnkN+jα(0)(xN)

∣∣∣∣∣∣∣∣∣∣
I The N-particle large gauge transformation G is given by the product:

G(x1, x2, · · · , xN ; τ) =
N∏
j=1

U†(xj , jτ),

whereas the phase factor Γ(jτ) reads:

Γ(jτ) =

N−1∑
l=0

(
i

∫ kl+j

kl

dα 〈un(α)|∂α|un(α)〉 −
1

~

∫ jτ

0
dt Enklα(t)

)



I Generalizing the geometric phase expression for a filled band scenario, one finds
that the geometric phase acquired by the band fermions evolving adiabatically till
time jτ reads:

Γg (jτ) =(j(N − j) mod 2)π

+

N−1∑
l=0

(
Arg〈un(kl )|un(kl+j )〉+ i

∫ kl+j

kl

dα 〈un(α)|∂α|un(α)〉
)

I Interestingly the geometric phase acquired by the band fermions after evolution
till time τ is purely statistically in nature: Γg (τ) = ((N − 1) mod 2)π, sensitive to
the odd/even nature of N

I Whereas the phase acquired after evolution till time Nτ is solely geometric and it
reads:

Γg (Nτ) = Nγg (n).

This is an expected result since each of the fermion is evolving independently in
this non-interacting system, giving rise to Pancharatnam-Zak phase γg (n), which
all add up to yield this result



Summary

I Provide a proper description of the (simplest) geometric phase in a condensed
matter system: Single and Many particle case

I A gauge and reparametrisation invariant definition of band center

I Particle statistics manifestation in this formulation

I Paves the foundation for a more satisfactory understanding of electric polarisation

I Correct counting of edge states in topological models

I Connection of TKNN-Chern class and this Pancharatnam-Zak phase needs to be
clarified
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