

Anomalous transport in one-dimensional quantum systems

Thermalization, Many-Body Localization and Hydrodynamics, Bangalore, India

Vir B. Bulchandani

University of California, Berkeley

November 21, 2019

Collaborators

Will discuss collaborative work with Christoph Karrasch (TU Braunschweig) and Joel E. Moore (UC Berkeley), pictured:

Figure: left to right: C. Karrasch, J. E. Moore

Introduction

Superdiffusion of energy in one-dimensional metals

Kardar-Parisi-Zhang physics in isotropic magnets

Normal transport

- ► First, what is normal transport? Three generic scenarios in **classical** many-body systems:
 - Free particles, different velocities lead to dispersion: ballistic transport.
 - 2. Interacting particles in the hydrodynamic regime: ballistic transport with diffusive corrections.
 - 3. Microscopic Brownian motion: diffusive transport.
- Broadly speaking, we expect the same pattern in quantum many-body systems:
 - Free quasiparticles: ballistic transport with subdiffusive corrections.
 - 2. Interacting quasiparticles in the hydrodynamic regime : ballistic transport with diffusive corrections.
 - Chaotic systems with few conservation laws: diffusive transport.

Anomalous transport in 1D quantum systems

- Recently, some novel examples of anomalous transport in interacting, one-dimensional quantum systems have been discovered:
- ▶ <u>Subdiffusion</u>: Approaching the MBL transition from the ergodic side, charge transport appears to be subdiffusive, with a spreading exponent $x \sim t^{\alpha}$ and $0 < \alpha < 1/2$ (reviewed in Agarwal, Altman, Demler, Gopalakrishnan, Huse, Knap, '17)
- Superdiffusion:
 - In one-dimensional metals at low temperature, energy transport is superdiffusive and characterized by a non-universal superdiffusive exponent $x \sim t^{\alpha}$ and $2/3 < \alpha < 1$ (VBB, Karrasch, Moore, '19).
 - Isotropic quantum magnets exhibit "integrability protected" superdiffusion in the KPZ universality class, with α = 2/3 (Žnidarič, '11, Ljubotina, Žnidarič, Prosen, '17, Ljubotina, Žnidarič, Prosen, '19, De Nardis, Medenjak, Karrasch, Ilievski, '19, Dupont, Moore, '19, VBB, '19).
- ► Today's talk will focus on the papers arXiv 1904.09287 and arXiv 1910.08266, addressing the superdiffusive examples.

Introduction

Superdiffusion of energy in one-dimensional metals

Kardar-Parisi-Zhang physics in isotropic magnets

One-dimensional metals as perturbed Luttinger liquids

- Ideal 1D metals are described by the free, Luttinger liquid theory, yielding divergent linear response transport coefficients (ballistic transport).
- Unperturbed Hamiltonian maps to free bosons,

$$H_0 = \frac{u}{2} \int_0^L dx \, \left(\Pi^2 + (\partial_x \phi)^2 \right).$$

- Realistic 1D metals have finite transport coefficients, due to interactions or disorder (diffusive transport).
- Typical 1D interactions generate density-wave instabilities. In the metallic phase, these show up as irrelevant vertex operators:

$$\delta H \sim \cos \alpha \phi$$
, $\alpha^2 > 8\pi$.

Charge transport in perturbed Luttinger liquids

► Now consider a clean, interacting Luttinger liquid, with an irrelevant vertex operator perturbation:

$$H = \frac{u}{2} \int_0^L dx \left(\Pi^2 + (\partial_x \phi)^2 \right) + h \int_0^L dx \cos \alpha \phi.$$

- ▶ When this is the most relevant interaction, the leading low-temperature dependence of the charge conductivity can be obtained analytically (Oshikawa, Affleck, '02, Sirker, Pereira, Affleck, '11).
- By the Kubo formula,

$$\sigma_c(q,\omega) = \frac{K}{2\pi} i\omega \langle \phi \phi \rangle_{\text{ret}}(\omega). \tag{1}$$

► Leading-order self-energy calculation yields an effective relaxation time

$$\tau_c \propto \lim_{\omega \to 0} \frac{\omega}{\text{Im}[\Pi_b(q=0,\omega)]} \sim T^{3-\alpha^2/2\pi}.$$
(2)

Lattice realization of perturbed Luttinger liquid

► A microscopic realization of an interacting Luttinger liquid is spin-1/2 XXZ in an integrability-breaking staggered field:

$$H = \sum_{i=1}^{N} S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} + (-1)^{i} h S_{i}^{z}.$$
 (3)

Low-energy field theory has the form

$$H = \frac{u}{2} \int_0^L dx \left(\Pi^2 + (\partial_x \phi)^2 \right) + ch \int_0^L dx \cos \left(2\sqrt{\pi K} \phi \right) + \dots$$

i.e. staggered field is the most relevant perturbation.

- ▶ A previous work (*Huang, Karrasch, Moore, '13*) numerically verified **non-integrability** for *h* > 0:
 - 1. For h > 0, level statistics flow from Poisson to Wigner-Dyson.
 - 2. Charge transport is diffusive, with linear-response conductivity matching the Sirker-Pereira-Affleck result

$$\sigma_c(T) \sim T^{3-2K}$$
. (4)

Anomalous diffusion model for heat transport

► What about heat transport? Minimal assumption is Wiedemann-Franz - charge and heat transport controlled by the same relaxation time. Yields

$$\kappa(T) \sim T^{\lambda(K)}, \quad \lambda(K) = 4 - 2K.$$
 (5)

- ▶ Unfortunately, accessing $\kappa(T)$ directly is beyond present numerical and analytical techniques, and WF need not hold.
- ▶ Even so, ansatz Eq. (5) has non-trivial, testable consequence for transport: energy density ρ_E should satisfy **fast diffusion** equation

$$\partial_t \rho_E = D \partial_x^2 (\rho_E^m), \quad m = \frac{1+\lambda}{2}.$$
 (6)

► Fundamental solutions are superdiffusive "Barenblatt-Pattle profiles", with anomalous scaling

$$x \sim t^{\alpha}, \quad \alpha = \frac{2}{\lambda + 3}.$$
 (7)

Testing the theoretical model

▶ To test this, we simulated XXZ in staggered field, with localized thermal wavepacket initial condition (VBB, Karrasch, Moore, '19)

$$\beta(x) = \beta - (\beta - \beta_M)e^{-(x/L)^2}$$
(8)

and low bulk temperature $\beta \gg 1$.

► Can probe space-time scaling by looking at **logarithmic** derivatives of moments:

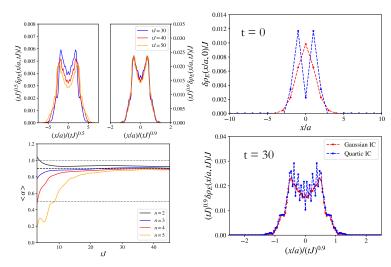
$$\frac{1}{n} \frac{d \log \langle |x|^n \rangle(t)}{d \log t} \to \alpha, \quad t \to \infty.$$
 (9)

- Non-trivial prediction of our model: these should converge to the same, superdiffusive exponent, $2/3 < \alpha < 1$.
- ► At any non-zero bulk temperature, expect eventual crossover to diffusive behaviour on a timescale

$$au_D(T) \sim T^{\lambda-1}.$$
 (10)

Numerical results for anomalous diffusion of heat

▶ For bulk temperatures T = 1/12, clear evidence for superdiffusive, rather than diffusive, spreading of wavepacket:



Summary of part I

- ▶ Interacting, one-dimensional metals that exhibit generic, thermalizing behaviour in all other respects (level statistics, charge transport, ...) can exhibit superdiffusion of heat at low temperatures.
- Simple analytical model of nonlinear diffusion equation is sufficient to predict collapse of moments to a single superdiffusive exponent.
- ▶ Detailed shape of profile is a direction for future work (kinetic theory? proximate integrability?)
- Unexpected violation of Fourier's law in a well-studied class of physical systems.
- ▶ This type of superdiffusion is robust to integrability-breaking and should be observable in time-resolved experiments on quantum wires involving laser irradiation of a small region (c.f. *Hensel, Dynes, '77*).

Introduction

Superdiffusion of energy in one-dimensional metals

Kardar-Parisi-Zhang physics in isotropic magnets

Numerical observations

- A large body of work has confirmed "integrability protected" KPZ physics in one-dimensional magnets with isotropic symmetry.
- ▶ Diagnostic is the long-time behaviour of the spin autocorrelation function

$$\langle \mathbf{S}(x,t) \cdot \mathbf{S}(0,0) \rangle_{\beta} \sim t^{-\alpha} f(x/t^{\alpha}), \quad t \to \infty.$$
 (11)

- From numerics, it is found that $\alpha = 2/3$ for integrable models and $\alpha = 1/2$ for non-integrable models (with a possible crossover from $\alpha = 2/3$).
- ▶ Classical: Prosen, Žunkovič, '13, Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, Bhattacharjee, '19, Das, Damle, Dhar, Huse, Kulkarni, Mendl, Spohn, '19, Das, Kulkarni, Spohn, Dhar, '19, Krajnik, Prosen, '19, Quantum: Žnidarič, '11, Ljubotina, Žnidarič, Prosen, '17, Ljubotina, Žnidarič, Prosen, '19, de Nardis, Medenjak, Karrasch, Ilievski, '19, Dupont, Moore, '19, Weiner, Schmitteckert, Bera, Evers, '19

State of theory

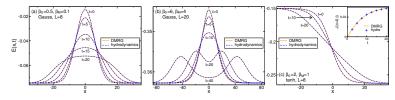
- ▶ Previously, the closest approach to a theoretical explanation for the dynamical exponent $\alpha=2/3$ was a self-consistent derivation from generalized hydrodynamics for the spin-1/2 Heisenberg model (*Gopalakrishnan*, *Vasseur*, '19).
- ► However, three fundamental questions have not been addressed:
 - 1. Why is a collapse to universal, Kardar-Parisi-Zhang scaling functions observed numerically? (*Ljubotina, Žnidarič, Prosen, '19, Das, Kulkarni, Spohn, Dhar, '19*)
 - 2. Why does the same phenomenon occur for both quantum and classical systems?
 - 3. Why are both integrability and isotropic symmetry necessary for this phenomenon to be stable at long times? (*Dupont*, *Moore*, '19, Krajnik, Prosen, '19)
- ► These questions reflect a basic lack of understanding of the physical mechanism underlying this phenomenon.

Kardar-Parisi-Zhang universality from soft gauge modes

- ▶ The main theoretical difficulty is that according to generalized hydrodynamics (*Castro-Alvaredo, Doyon, Yoshimura '16, Bertini, Collura, De Nardis, Fagotti, '16*), the fluctuations of quasiparticle modes are purely diffusive (*Doyon, Myers, '19, de Nardis, Medenjak, Karrasch, Ilievski, '19*)
- ▶ Very recently, we pointed out that isotropic magnets support soft modes of the magnetization that carry a subextensive energy and are therefore not captured by standard hydrodynamic approaches (VBB, '19).
- ► These soft modes are nonlinear and separated in scale from short-wavelength fluctuations, yielding a channel for superdiffusive spin transport.
- ► This provides a physical mechanism for the emergence of KPZ physics in these models.

Why do we believe generalized hydrodynamics in spin chains?

► The theory appears to describe ballistic transport in the gapless spin-1/2 XXZ model **exactly**:



(figure from VBB, Vasseur, Karrasch, Moore '17)

- ▶ Another highly non-trivial test is that the spin Drude weight is captured exactly (*Zotos, '99, Ilievski, De Nardis, '17, VBB, Vasseur, Karrasch, Moore, '17, Urichuk, Oez, Klümper, Sirker, '18*).
- Recent analytical expressions for ρ_J in finite spin-1/2 XXZ and XXX chains (Borsi, Pozsgay, Pristyák, '19, Pozsgay, '19)

A theoretical puzzle

- If we believe GHD, then mode-coupling coefficients of linearized quasiparticle modes are known exactly. Diagonal elements of the Hessian vanish, $G_{k'k'}^k = 0$, implying **purely diffusive fluctuations** (*Popkov*, *Schadschneider*, *Schmidt*, *Schütz*, '15).
- ► The resolution: in isotropic integrable magnets, the generalized hydrodynamics of infinitely many conserved charges is not equivalent to the kinetic equation describing the propagation of quasiparticle modes.
- The Bethe-Boltzmann equation is a scalar equation, while isotropic magnets have a conserved vector degree of freedom.
- The kinetic theory description needs to be augmented by "gauge dynamics" - an equation of motion for the local pseudovacuum.

Example: spin-1/2 Heisenberg

► For concreteness, let us consider the spin-1/2 Heisenberg Hamiltonian

$$H = -J\sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} - 2\mathbf{h} \cdot \sum_{i=1}^{N} \mathbf{S}_{i}.$$
 (12)

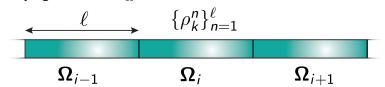
- In the absence of an applied magnetic field, $\mathbf{h}=0$, Bethe's solution to this model exhibits an SU(2) gauge symmetry direction of the pseudovacuum, $\mathbf{\Omega} \in S^2$, is arbitrary. This extends to the thermodynamic Bethe ansatz (TBA) equations.
- An applied magnetic field $\mathbf{h} \neq 0$ breaks this symmetry; only pseudovacuum directions $\mathbf{\Omega} \parallel \mathbf{h}$ are allowed. TBA predicts

$$\langle \mathbf{S} \rangle / \ell = \mathbf{\Omega} \left[\frac{1}{2} - \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} dk \, n \rho_k^n \right].$$
 (13)

▶ In local equilibrium states, formation of a local magnetization on a fluid cell spontaneously breaks SU(2) symmetry pseudovacuum becomes a dynamical degree of freedom.

Landau-Lifshitz states in isotropic integrable magnets

► Consider local equilibrium states with constant quasiparticle occupancies per fluid cell and a pseudovacuum $\Omega(x,t) \in S^2$ varying on a scale $\ell_{\Omega} \gg \ell$:



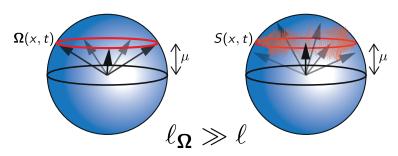
- ▶ In the limit $\ell/\ell_{\Omega} \to 0$, the quasiparticle dynamics is decoupled from the gauge dynamics.
- Slow modulations of the pseudovacuum are mean-field states by definition, with Hamiltonian dynamics $(\lambda = J/2)$

$$\partial_t \mathbf{\Omega} = \lambda \mathbf{\Omega} \times \partial_{\mathbf{x}}^2 \mathbf{\Omega} + \mathcal{O}(\ell_{\mathbf{Q}}^{-4}).$$
 (14)

▶ At zero temperature, recovers previous results (*Gamayun*, *Miao*, *Ilievski*, '19, *Misguich*, *Pavloff*, *Pasquier*, '19). At finite temperature, Eq. (14) is coupled to a thermal bath.

The physical picture

- Certain local equilibrium states exhibit a separation of scales between nonlinear gauge dynamics and linear quasiparticle dynamics.
- ▶ When this occurs, the quasiparticle modes can act as a fluctuating bath for the nonlinear gauge dynamics.
- Origin of KPZ physics lies in qualitative difference between transverse and longitudinal hydrodynamic modes of the spin:



Coarse-grained Landau-Lifshitz dynamics I

- Effective field theory describing KPZ physics is Landau-Lifshitz dynamics at finite temperature. We therefore consider nonlinear fluctuating hydrodynamics of this equation. First we need the Euler hydrodynamics.
- Since integrability is broken microscopically, mean-field evolution is not integrable and there are two conserved modes. Exactly the same reasoning as discretized GPE (Kulkarni, Huse, Spohn, '15).
- Standard parameterizations of the sphere (e.g. spherical polar) are not gauge invariant. An elegant solution is to regard x as arc-length and Ω as the tangent vector of a space curve (*Lakshmanan*, *Ruijgrok*, *Thompson*, '76).
- In terms of the curvature κ and torsion τ of this curve, the Landau-Lifshitz evolution becomes

$$\dot{\kappa} + \lambda(2\kappa'\tau + \kappa\tau') = 0, \quad \dot{\tau} + \lambda(\tau^2 - \kappa''/\kappa - \kappa^2/2)' = 0.$$
 (15)

Coarse-grained Landau-Lifshitz dynamics II

▶ Discarding the dispersive term and changing variable from κ to energy density $\mathcal{E}=\kappa^2/2$ yields

$$\partial_t \mathcal{E} + \partial_x [\lambda(2\mathcal{E}\tau)] = 0, \tag{16}$$

$$\partial_t \tau + \partial_x [\lambda(\tau^2 - \mathcal{E})] = 0. \tag{17}$$

- Linearizing, we find imaginary velocities and violation of sum rules - instability. Suggests that two-mode hydrodynamics of Landau-Lifshitz is unphysical.
- ▶ Intuition: soft modes can't transport extensive energy. More precisely, total energy in a fluid cell of characteristic length ℓ_{Ω} is subextensive, $\mathcal{E} \sim 1/\ell_{\Omega}$. Thus energy is not a true hydrodynamic variable and tends to zero as $\ell_{\Omega} \to \infty$.
- ► This leaves a single Burgers equation for the torsion (i.e. magnetization density),

$$\partial_t \tau + \partial_x (\lambda \tau^2) = 0. (18)$$

Coarse-grained Landau-Lifshitz dynamics III

 Mesosopic coupling to noise and dissipation yields stochastic Burgers equation

$$\partial_t \tau + \partial_x (\lambda \tau^2 - D \partial_x \tau + \sigma \zeta_\tau) = 0, \tag{19}$$

with coefficients constrained by fluctuation dissipation relation $\langle \tau \tau \rangle_{\mu} = 2\sigma D$.

- Follows that "height function" η , defined by $\tau = \partial_x \eta$, satisfies the KPZ equation, and that the correlation functions of the torsional mode have superdiffusive scaling form $C(x,t) = \mathbb{E}[\tau(x,t)\tau(0,0)] = f_{KPZ}(x/(\Gamma t)^{3/2})/(\Gamma t)^{3/2}$, where $\Gamma = 2\sqrt{2}\lambda$ (Spohn, '16).
- No fitting parameters, and for spin-1/2 Heisenberg and Faddeev-Takhtajan, predicts the coupling strength $\lambda/J=0.5$, well within typical NLFH error of observations, $\lambda/J\approx 0.65$ and $\lambda/J\approx 0.68$ resp.
- ▶ c.f. mode-coupling prediction $\lambda_{pred} = 1.97$ vs numerical observation $\lambda_{obs} = 13.8$ for heat peak in FPU (*Das, Dhar, Saito, Mendl, Spohn, '14*)

The story so far

- Our effective theory provides a simple model for why isotropic quantum and classical magnets exhibit KPZ physics - they support nonlinear, long-wavelength modes of the magnetization.
- ► These modes are "soft" and transport subextensive energy, explaining the puzzling insensitivity of the observed KPZ physics to energy conservation (*Ljubotina*, Žnidarič, Prosen, '19, Krajnik, Prosen, '19).
- Leaves question of integrability protection why does KPZ appear to cross over to diffusion in non-integrable isotropic magnets?

A hydrodynamic Higgs mechanism

- ▶ One way to understand the emergence of nonlinear modes in these models: a separation of scales $\ell_{\Omega} \gg \ell$ acts like a **Higgs** mechanism for the nonlinearities in the mode-coupling theory.
- Schematically:

$$\begin{aligned}
G^{\parallel} &= 0 \\
G^{\perp} &= 0
\end{aligned}
\xrightarrow{\ell_{\Omega} \gg \ell} \begin{cases}
G^{\parallel} &= 0 \\
G^{\perp} &\neq 0
\end{aligned} (20)$$

- $(G^{\perp}, G^{\parallel})$ indicate nonlinear terms in the mode-coupling theory of the transverse and longitudinal components of local magnetization, $\langle \mathbf{S} \rangle^{\perp}$ and $\langle \mathbf{S} \rangle^{\parallel}$ respectively)
- ► Thus the key question becomes: why is this separation of scales protected by integrability?

A hydrodynamic explanation for integrability protection

- Short answer: integrable models support distinct "gauge" and "quasiparticle" excitations of spin. No such distinction exists in non-integrable models.
- ► For the "Landau-Lifshitz" states that we considered earlier, the only difference in the short-wavelength hydrodynamics is the nature of the scalar bath.
- ▶ Non-integrable models: two scalar conserved modes $\{S, E\}$ per fluid cell. Total variance scales as $\sigma_\ell^2 \sim \ell^{-1}$. As $\ell \to \infty$, hydrodynamics of S becomes deterministic and recouples to slow dynamics of Ω .
- ▶ Integrable models: extensively many scalar modes $\{S, E, Q_3, \ldots, Q_n\}_{n \sim \ell}$. the variance scales as $\sigma_{\ell}^2 \sim \ell^0$. As $\ell \to \infty$, S continues to fluctuate as part of a bath.
- ► The idea of KPZ physics arising from long-wavelength modes coupled to a quasiparticle bath previously appeared in 1D Bose gases (*Arzamasovs, Bovo, Gangardt, '14*)

Some novel predictions for the torsional mode

- Consider "tilted" weak domain walls, which differ by an angle $0 < \varphi < \pi$ (like *Ljubotina*, *Žnidarič*, *Prosen*, '17 but near infinite temperature).
- ▶ Previously, no predictions for dynamics in this set-up. Our model implies scaling collapse with φ for energy density and spin autocorrelation functions:

$$\langle \mathbf{S}_{\varphi}(x,t) \cdot \mathbf{S}_{\varphi}(0,0) \rangle / \cos \varphi = t^{-2/3} f(x/t^{2/3}), \tag{21}$$

$$\mathcal{E}_{\varphi}(x,t)/\sin\varphi/2 = t^{-2/3}g(x/t^{2/3}).$$
 (22)

- For magnetization $\mu \ll 1$ small but above the noise scale, further predict ballistic spin dynamics with speed $v_{ball} \sim \mu$.
- ▶ Derived in spin-1/2 Heisenberg from GHD (*Gopalakrishnan*, *Vasseur*, *Ware*, '19). Here, we argue true for classical models also. Consistent with latest numerics (*Krajnik*, *Prosen*, '19).
- ► Further testing is work in progress with M. Dupont and J. E. Moore.

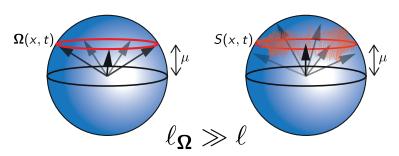
Summary of part II

- We have identified the nonlinear modes that give rise to KPZ scaling in isotropic quantum and classical magnets.
- Our analysis explains many hitherto puzzling numerical observations. It also gives rise to novel predictions for the superdiffusive mode, which could be tested in classical or quantum numerical simulations.
- Importantly, the physics giving rise to superdiffusion comes from long-wavelength spin dynamics, which is unrelated to integrability (even if "integrability protected")
- ▶ An open question: can these modes be described using Bethe ansatz? Subextensivity of energy suggests that they reside in finite-size corrections to thermodynamics.

Thank you for listening!

Relevant papers:

- ► Superdiffusion of energy in one-dimensional metals: VBB, Christoph Karrasch, Joel E. Moore, arXiv 1904.09287 (2019)
- ► Kardar-Parisi-Zhang universality from soft gauge modes: VBB, arXiv 1910.08266 (2019)



A primer on nonlinear diffusion

▶ The nonlinear diffusion equation is given by

$$\partial_t u = D\nabla^2 u^m \tag{23}$$

i.e. effective diffusion constant is nonlinear,

$$D_{eff}[u] = mDu^{m-1}.$$

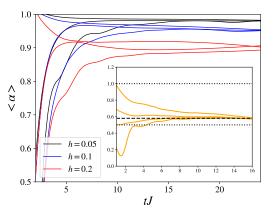
- For m = 1, recover normal diffusion. For m > 1, this is the "porous medium equation". For m < 1, this is the "fast diffusion equation" (for a review: $V\'{a}zquez$, '06).
- ▶ Fundamental solutions for $m \neq 1$ are non-Gaussian. Instead, nonlinearity yields **Barenblatt-Pattle** profiles, characterized by anomalous space-time scaling.
- \triangleright e.g. in d=1, these have the form

$$u_{B.P.}(x,t) = t^{-\alpha} \max[(C - k(x/t^{\alpha})^2)^{-\frac{1}{m-1}}, 0]$$
 (24)

with space-time scaling exponent $\alpha = 1/(m+1)$, k = k(m) constant and C fixed by initial area.

Numerical results for anomalous diffusion of heat II

► Increasing strength of integrability-breaking field lowers superdiffusive exponent (main figure):



▶ Sanity checks : expansion into ground state yields superdiffusion, higher temperatures begin to recover normal diffusion (inset, at $\beta = 1$, h = 0.49).