Phases to Phases An Invitation to Topological Phases of Many Particles

Vijay B. Shenoy

Department of Physics, Indian Institute of Science, Bangalore 560012 shenoy@iisc.ac.in

Acknowledgements

- Research funding: SERB, DST; DAE
- Key contributors:

Adhip Agarwala

Arijit Haldar

 $e^{i\theta}$

 $e^{i\theta}$

· Gapless (single fermion excitation)1

1. The filled Fermi sea

Gapped states

2. Band insulator

3. BCS superconductor 4. Filled Landau level

- Background Electronic phases: A brief excursion of quantum condensed matter physics
- Electronic Phases A quick illustration of "topology"
- Electronic Phases The Tenfold Way
- Advertisement: Topological phases in amorphous systems
- Brief mention: what we do not discussed, open issues

Topological Matter Matters

Photo: A. Mahmoud David J. Thouless Prize share: 1/2

Photo: A. Mahmoud F. Duncan M. Haldane Prize share: 1/4

Photo: A. Mahmoud J. Michael Kosterlitz Prize share: 1/4

The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless, and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz *"for theoretical discoveries of topological phase transitions and topological phases of matter"*.

Phases of Electrons

Matter...and its Phases

• Matter broadly appears in three distinct phases (at human scales)

(Internet)

• ...gas, liquid and solid

(Phase Diagram of CO2, source:Internet)

Whence Phases?

• Ancient wisdom...the panchabhootas...

• ...to ideas of Dalton...the atomic hypothesis (early 1800s)

(Wikipedia)

Atomic Theory...to Theory of Phases

• van der Waals (later part of 1800s) showed how liquids and gases can arise from the same constituent atoms/molecules...

... offering a framework to understand gas, liquid and solid phases

- Interactions between constituent atoms (in large numbers) can lead to different phases
- Puzzle: Why are there insulators and conductors?

Electrons...and Electronic Phases

• Key milestone: Discovery of the electron (Thomson, 1890s)...

• ...to the first theory of electronic phases – Drudé (1900)

with remarkable success...resolution of a 50 year old puzzle – the Wiedemann-Franz law ($\frac{\kappa}{\sigma T}$ = universal number)...

• **But**...with a confounding new puzzle: Drude predicts $C_V = 3R + \frac{3}{2}R = \frac{9}{2}R$ at "high" temperatures...measured $C_V = 3R!$

Quantum Condensed Matter Physics – Bird's Eye View

- Resolution of the puzzle: Quantum mechanics
- Electrons in materials "see" many things...

...space of all possible Hamiltonains (includes kinetic energy, spin-orbit coupling, Coulomb interaction, interaction with the lattice, disorder etc..)

- Quantum condensed matter physics aims to study and classify the phases of many electrons (many identical particles, in general)
- Many of the modern technologies from cell phones to night vision goggles owe much to this area of physics!

Taking Stock...

• Quantum theory of many electrons – offers insights into insulators and metals...

Traditional ideas of classifying many-fermion phases

- Symmetry: A magnet breaks spin-rotation symmetry (Landau)
- "Properties": Metals and insulators

Distinct phases are separated by phase transitions

Summary of a Grad Course!

- Gist of our understanding...*essentially* captured by **four** states
- Gapless (single fermion excitation)¹

1. The filled Fermi sea

• Gapped states

2. Band insulator

3. BCS superconductor 4. Filled Landau level

¹All images are from the internet

Current Status

- Recent developments **two** ideas (in addition to symmetry, properties etc.)
 - 1. **Topology:** Hinted by the quantum hall effect

2. Entanglement: How "complicated" is the state? Focus of this talk: "Topology"

• Recent developments – Complete "topological" classification of gapped (non-interacting) many fermion systems

Cartan d	0	1	2	3	4	5	6	7		8
$Complex \ case:$										
Α	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	• • •
Real case:										
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	• • •
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	• • •

(Kitaev (2009), Ryu et. al. (2010), Ludwig:1512:08882)

• The tenfold way!

Electronic Phases ...What and Why Topology?

Essential Quantum Ideas

- Quantum mechanics
 - Kinematics : Identical particles are indistinguishable
 Fermions obey Pauli's principle
 For two fermionic particles

$$\Psi(x_2, x_1) = -\Psi(x_1, x_2)$$

- Dynamics "encoding" the Heisenberg uncertainty principle
- Immediate goal: Construct simplest electronic phases with focus on *non-interacting* systems

Warm Up: Atomic Structure – Few Electrons

- Carbon atom: Six electrons in the nuclear potential with charge +6
- Electronic structure (wave function) (NCERT 11th Class Chemistry)

 $(x \equiv (r, \sigma))$

...Slater determinant wave function

Ű

• Structure known for any atom...the periodic table

• Question: Analogous table of many (10²³) electron phases?

• Simple model of a metal (spinless electrons)...tight binding model

...N-site chain with periodic boundary conditions

$$H = -t \sum_{I} |I+1\rangle \langle I| + \text{h.c.}$$

• Diagonalized by crystal momentum k

$$|k\rangle = \frac{1}{\sqrt{N}} \sum_{I} e^{-ikI} |I\rangle, \quad H = \sum_{k} \varepsilon(k) |k\rangle \langle k|, \quad \varepsilon(k) = -2t \cos k$$

• Crystal momentum *k* lives in the Brillouin Zone (BZ)... $k \in [-\pi, \pi]$ with $-\pi$ and π identified...one dimensional torus

• In *d*-dimensions k in T^d , the *d*-torus

- Filling of electrons 1/2 per site, need to fill N/2 electrons
- In an *N*-site chain, there are *N* distinct *k* points $k = -\pi, -\pi + \frac{2\pi}{N}, -\pi + 2\frac{2\pi}{N}, \dots, \pi \frac{2\pi}{N}$ with $\Delta k = \frac{2\pi}{N}$

- Filling of electrons 1/2 per site, need to fill N/2 electrons
- In an *N*-site chain, there are *N* distinct *k* points $k = -\pi, -\pi + \frac{2\pi}{N}, -\pi + 2\frac{2\pi}{N}, \dots, \pi \frac{2\pi}{N}$ with $\Delta k = \frac{2\pi}{N}$

- Filling of electrons 1/2 per site, need to fill N/2 electrons
- In an *N*-site chain, there are *N* distinct *k* points $k = -\pi, -\pi + \frac{2\pi}{N}, -\pi + 2\frac{2\pi}{N}, \dots, \pi \frac{2\pi}{N}$ with $\Delta k = \frac{2\pi}{N}$

• Ground state is the filled Fermi sea (filled "pigeon holes" make up the Slater determinant wave function)

• Gapless excitations in the thermodynamic limit $(N \rightarrow \infty)$

• Gapless excitations in the thermodynamic limit $(N \rightarrow \infty)$

• Gapless excitations in the thermodynamic limit $(N \rightarrow \infty)$

$$\Delta E \sim \Delta k \sim \frac{2\pi}{N} \to 0$$

- Metal: small stimulus can produce finite responses liquid state
- Fermi energy (~ *t*), is much larger than temperature *T*, resolving the specific puzzle of the Drude theory

• Gapless excitations in the thermodynamic limit $(N \rightarrow \infty)$

... excitation energy vanishes

$$\Delta E \sim \Delta k \sim \frac{2\pi}{N} \to 0$$

- Metal: small stimulus can produce finite responses liquid state
- Fermi energy (~ *t*), is much larger than temperature *T*, resolving the specific puzzle of the Drude theory
- Puzzle...Insulators?

.. and Insulators

• Poor man's insulator (NaCl)

Two bands (with separate pigeon holes) separated by a band gap

 *ϵ*₀ ...there are no electronic states in the energy gap

.. and Insulators

• Poor man's insulator (NaCl)

Two bands (with separate pigeon holes) separated by a band gap

 *ϵ*₀ ...there are no electronic states in the energy gap

.. and Insulators

• Poor man's insulator (NaCl)

Two bands (with separate pigeon holes) separated by a band gap

 *ϵ*₀ ...there are no electronic states in the energy gap

• At 1/2 electron per site, ground state is the filled "valance band" ("conduction band" is empty)

• Excitations are gapped

• Excitations are gapped

• Excitations are gapped

• Insulators play a pivotal role in electronics – *doped* insulators (semiconductors) are behind much of modern technology

• Excitations are gapped

• Insulators play a pivotal role in electronics – *doped* insulators (semiconductors) are behind much of modern technology

• Question: Is this the only possible insulating phase?

Topology of Electron Phases – Whetting the Appetite

• A different insulator – SSH (Su-Schrieffer-Heeger) model

• Band structure looks qualitatively identical to the NaCl system $(gap \sim |t_2 - t_1|)$

• *Cannot* distinguish between NaCl and SSH by looking at the bulk band structure

Topology...Revealed in a Finite Chain

- Energy eigenvalues
 - No energy levels in the gap for $t_2 < t_1$ (NaCl is similar)

Topology...Revealed in a Finite Chain

• Energy eigenvalues

1

• No energy levels in the gap for $t_2 < t_1$ (NaCl is similar)

• Two zero energy states when $t_2 > t_1$

Topology...on the *Edge*

• For $t_2 > t_1$ the zero energy states are *edge states*...they are eigenstates localized near the edges ("surfaces") of the finite sample

Insulating phase for t₂ > t₁ has a distinguishing character – presence of edge states

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

• Can drive a quantum phase transition by tuning t_2

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

• Can drive a quantum phase transition by tuning t_2

Insulating phase for $t_2 > t_1$ has a distinguishing character – presence of edge states

TRIVIAL : NO EDGE STATES TOPOLOGICAL : EDGE STATES QUANTUM PHASE TRANSITION $t_2/t_1 = 1$ t_2/t_1

• Can drive a quantum phase transition by tuning t_2

Insulating phase for $t_2 > t_1$ has a distinguishing character – presence of edge states

• Question: Where *IS* the topology?

Topology of Electron Phases

• VB wave function $\begin{pmatrix} 1 \\ e^{i\theta(k)} \end{pmatrix}$ with $\theta(\pi) = \theta(-\pi) + 2\pi n$, Key: The

state at k can be thought of as a two dimensional unit vector

• Ground state is filled valance band

can be viewed as an endless ribbon(Demonstration)

• For $t_2 > t_1$ the ground state ribbon is "twisted"

- The ground state of $t_1 < t_2$ cannot be deformed to that of $t_2 > t_1$ without closing the gap (tearing)
- Topology is encoded in the *twist* of the many particle wave function

Gapped Phases of Electrons

• What we know today about non-interacting electrons

$\operatorname{Cartan} d$	0	1	2	3	4	5	6	7		8
Complex case:										
А	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
Real case:										
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

(Kitaev (2009), Ryu et. al. (2010), Ludwig:1512:08882)

• The tenfold way!

The Tenfold Way

- Altland and Zirnbauer, Phys. Rev. B., 55, 1142 (1997).
- Agarwala, Haldar, VBS, arXiv:1606.05483

The Tenfold Way - Bird's-Eye View

- Summary
 - Fermionic systems can be classified according to some "intrinsic non-ordinary" symmetries
 - There are three "non-ordinary" symmetries Time reversal, charge conjugation and sublattice
 - There are ten symmetry classes(a symmetry class is a Hilbert-Fock space along with *all* possible Hamiltonains that are allowed by symmetry)
 - There is a nice connection to geometry the ten classes are labeled by Cartan labels of symmetric spaces
- What we address in this talk
 - ► What are "non-ordinary" symmetries, and why are there three of them?
 - Why are there ten classes?
 - Fleeting discussion of connection to geometry
 - ► ...
 - How does topology arise (an even more fleeting view)?...motivating the amorphous topological insulators

Beginnings...

- System with *L* orbitals $|i\rangle$, i = 1, ..., L
- Fermions are created from the vacuum $|0\rangle$ via

$$|i\rangle = \psi_i^{\dagger} |\mathbf{0}\rangle, \quad \{\psi_i, \psi_j^{\dagger}\} = \delta_{ij}, \quad \Psi^{\dagger} = \begin{bmatrix} \psi_1^{\dagger} & \dots & \psi_L^{\dagger} \end{bmatrix}$$

• Can accommodate N_P fermions, $N_P = 0, \ldots, L$

$$\mathcal{V}_{N_{P}} = \operatorname{span}_{\mathbb{C}} \{\psi_{i_{1}}^{\dagger} \dots \psi_{i_{N_{P}}}^{\dagger} |\mathbf{0}\rangle\}, \quad \operatorname{dim} \mathcal{V}_{N_{P}} = \begin{pmatrix} L \\ N_{P} \end{pmatrix}$$

• Hilbert-Fock space $\mathcal{V} = \bigoplus_{N_P=0}^L \mathcal{V}_{N_P}$

Beginnings...II

• Noninteracting fermions – Hamiltonian

$$\mathscr{H} = \sum_{ij} H_{ij} \psi_i^{\dagger} \psi_j$$

 $(H - matrix H_{ij})$...includes BdG type superconducting hamiltonians

- $\bullet\,$ The space of Hamiltonians ${\cal H}$ is a vector space over ${\mathbb R}\,$
- ...and even more, *H* is effectively a *Lie algebra*
- The Schrödinger time evolution operator (at *t* = 1)

$e^{-i\mathbf{H}}$

runs over U(L) (unitary group) as **H** runs over \mathcal{H}

• \mathcal{H} is isomorphic to the Lie algebra u(L)

$$i\mathcal{H} = u(L)$$

Symmetries...Recap

- Generic system: Hilbert space \mathcal{V} , Hamiltonian \mathscr{H}
- A *symmetry operation ("symmop")* is an invertible map $\mathscr{U} : \mathcal{V} \to \mathcal{V}$ such that, if $|\psi'\rangle = \mathscr{U}(|\psi\rangle)$, then

 $|\left\langle \phi'\right| \left.\psi'\right\rangle| = |\left\langle \phi\right| \left.\psi\right\rangle|, \quad \forall \left|\phi\right\rangle, \left|\psi\right\rangle \in \mathcal{V}$

- Wigner's theorem: Any symmop is either a linear or antilinear operator on \mathcal{V} (antilinear: $\mathscr{U}(\alpha |\psi\rangle + \beta |\phi\rangle) = \alpha^* \mathscr{U} |\psi\rangle + \beta^* \mathscr{U} |\phi\rangle$)
- The set of all symmops from a group G_O
- A symmop \mathscr{U} is a symmetry if

$$\mathcal{U}\mathcal{H}\mathcal{U}^{-1}=\mathcal{H}$$

The set of all symmetries from a group G (a subgroup of G_O)

- Examples of "usual" symmetries (free particle)
 - Usual Linear: Translation
 - Usual Antilinear : Time reversal

Symmops of Fermionic Systems

- Fermionic system: $\mathcal{V} = \bigoplus_{N_P=0}^L \mathcal{V}_{N_P}$
- Usual symmop of fermionic systems

$$\mathscr{U}_{\mathrm{USL}}(\mathcal{V}_{N_P}) = \mathcal{V}_{N_P}, \qquad \mathscr{U}_{\mathrm{USL}} \Psi^{\dagger} \mathscr{U}_{\mathrm{USL}}^{-1} = \Psi^{\dagger} \mathbf{U}$$

described by a unitary matrix **U**

Symmops of Fermionic Systems

- Fermionic system: $\mathcal{V} = \bigoplus_{N_P=0}^L \mathcal{V}_{N_P}$
- Usual symmop of fermionic systems

$$\mathscr{U}_{\mathrm{USL}}(\mathcal{V}_{N_P}) = \mathcal{V}_{N_P}, \qquad \mathscr{U}_{\mathrm{USL}} \Psi^{\dagger} \mathscr{U}_{\mathrm{USL}}^{-1} = \Psi^{\dagger} \mathbf{U}$$

described by a unitary matrix ${\bf U}$

Symmops of Fermionic Systems

- Fermionic system: $\mathcal{V} = \bigoplus_{N_P=0}^{L} \mathcal{V}_{N_P}$
- Usual symmop of fermionic systems

$$\mathscr{U}_{\mathrm{USL}}(\mathcal{V}_{N_P}) = \mathcal{V}_{N_P}, \qquad \mathscr{U}_{\mathrm{USL}} \Psi^{\dagger} \mathscr{U}_{\mathrm{USL}}^{-1} = \Psi^{\dagger} \mathbf{U}$$

described by a unitary matrix **U**

• Fermionic systems have other natural, transposing, symmops: (Altland and Zirnbauer (1997))

$$\mathscr{U}_{\mathrm{TRN}}(\mathcal{V}_{N_P}) = \mathcal{V}_{L-N_P}, \qquad \mathscr{U}_{\mathrm{TRN}} \Psi^{\dagger} \mathscr{U}_{\mathrm{TRN}}^{-1} = \Psi^{T} \mathbf{U}$$

...traditionally called as "particle-hole" transformations

• Transposing symmops, following Wigner, can be linear or antilinear
Symmops – Summary

• Symmops/symmetries of fermionic systems

• Central to the classification scheme are the non-ordinary symmops (UA,TL,TA)

Non-ordinary Symmops: Properties

• Product of any two non-ordinary symmop of the same type is an ordinary symmop, e. g.,

$$\mathscr{U}_{1TA}\mathscr{U}_{2TA} = \mathscr{U}_{UL}$$

• Product of two different types non-ordinary symmops is the third type, e.g.,

$$\mathscr{U}_{UA}\mathscr{U}_{LT}=\mathscr{U}_{TA}$$

• Multiplication table of symmops $G_O = G_O^{UL} \cup G_O^{UA} \cup G_O^{TL} \cup G_O^{TA}$

$\mathscr{U}_1 \downarrow \mathscr{U}_2 \rightarrow$	$G_O^{\rm UL}$	G_O^{UA}	G_O^{TL}	G_O^{TA}
G _O ^{UL}	$G_O^{\rm UL}$	G_O^{UA}	G_O^{TL}	G_O^{TA}
G _O ^{UA}	G_O^{UA}	G_O^{UL}	G_O^{TA}	G_O^{TL}
G_O^{TL}	G_O^{TL}	G_O^{TA}	G_O^{UL}	G_O^{UA}
G_O^{TA}	G_O^{TA}	G_O^{TL}	G_O^{UA}	G_O^{UL}

"Grotesque" Fermionic Systems (GFS)

- A fermionic system is termed "grotesque" if it has no nontrivial ordinary symmetries (There is always the U(1) or Z_2 symmetry associated with $\mathscr{I}_{\theta} = e^{i\theta \mathscr{N}}$, $\mathscr{N} = \sum_{i} \psi_{i}^{\dagger} \psi_{i}$)
- Non-ordinary symmetries of a GFS are highly constrained
 - 1. Solitarity: There is at most one of each type of non-ordinary symmetry...they are some standard names
 - **UA** Time reversal symmetry \mathscr{T}
 - TL Charge conjugation symmetry &
 - **TA** Sublattice symmetry \mathscr{S}
 - 2. A GFS has to make choose from one of three possibilities
 - Type 0 No non-ordinary symmetries
 - Type 1 A single non-ordinary symmetry (which can be any of the three)
 - Type 3 Three non-ordinary symmetries one of each type

Further Properties of Non-Ordinary Symmetries of a GFS

- Time reversal: $\mathscr{T}^2 = (\pm 1)^{\mathscr{N}}$ denoted by $T = \pm 1$
- Charge conjugation: $\mathscr{C}^2 = (\pm 1)^{\mathscr{N}}$ denoted by $C = \pm 1$
- Sublattice can be chosen as : $\mathscr{S}^2 = 1$
- Why so? Illustrate this with $\mathscr{C}: \mathscr{C}^2 = \mathscr{I}_{\theta}$ for some θ ; rewrite this as $\mathscr{C}^{-1}\mathscr{I}_{\theta} = \mathscr{I}_{\theta}\mathscr{C}^{-1}$; apply this relation on \mathcal{V}_{N_p} :

$$e^{\mathrm{i} N_P heta} = e^{\mathrm{i} (L-N_P) heta}, \ orall N_P = 0, \dots, L.$$

resulting in $e^{i2\theta} = 1$, and

$$\mathscr{C}^2 = (\pm 1)^{\mathscr{N}} \mathscr{I}$$

Ten Classes

- Ten classes
- Type 0 One class
- Type 1 Five classes
- Type 3 Four classes
- Each symmetry class denoted by its symmetry signature (T, C, S) (a 0 value implies absence of that symmetry)

Pink - Complex class, Cyan - Real class

Canonical Representation of Symmetries

Recall $\mathscr{U}_{\text{USL}} \Psi^{\dagger} \mathscr{U}_{\text{USL}}^{-1} = \Psi^{\dagger} \mathbf{U}$ and $\mathscr{U}_{\text{TRN}} \Psi^{\dagger} \mathscr{U}_{\text{TRN}}^{-1} = \Psi^{T} \mathbf{U}$

• Symmetries strongly constrain the Hilbert space, e. g., class C can be realized only when *L* is even!

Tenfold Way – Another View

• Abstract group of symmops: \mathcal{K}_4 , the Klein group

\mathcal{K}_4	I	Θ	Ξ	Σ
Ι	Ι	Θ	Ξ	Σ
Θ	Θ	Ι	Σ	Ξ
Ξ	Ξ	Σ	Ι	Θ
Σ	Σ	Ξ	Θ	Ι

- Abstract symmetry group G is a subgroup of \mathcal{K}_4 Type 0 $\mathcal{I} = \{I\}$ Type 1 $\mathcal{Z}_2^T = \{I, \Theta\}, \mathcal{Z}_2^C = \{I, \Xi\}, \mathcal{Z}_2^S = \{I, \Sigma\}$ Type 3 \mathcal{K}_4
- Fermionic systems representation spaces of *G*

Tenfold Way – A Group Cohomological View

• Projective representations: Each group element *g* ∈ *G* is represented by a operator(matrix) *D*(*g*) on some "fermionic" Hilbert-Fock space

$$D(g_1)D(g_2) = \omega(g_1, g_2)D(g_1g_2)$$

where $\omega(g_1, g_2) \in U(1)$ is the "Schur multiplier" or "2-cocycle" • Condition on Schur multipliers (associativity of the group)

$$\omega(g_1, g_2)\omega(g_1g_2, g_3) = \omega(g_1, g_2g_3)\omega^{g_1}(g_2, g_3)$$

where

$$\omega^g \equiv \varphi_g(\omega)$$

encodes the linearly or antilinearity of *g*

$$\varphi_I(\omega) = \omega, \quad \varphi_{\Theta}(\omega) = \omega^*$$

 $\varphi_{\Xi}(\omega) = \omega^*, \quad \varphi_{\Sigma}(\omega) = \omega$

 Key question: How many distinct multipliers are there for a given G and a "twisting function" φ?

Tenfold Way - A Group Cohomological View

- The multipliers themselves from a group, the second cohomology group H²_φ(U(1), G) (after making the idea of "distinct" precise)
- The number of elements of H²_φ(U(1), G) determine the number of symmetry classes associated with G

 $H^{2}_{\omega}(U(1), \mathcal{K}_{4}) = K_{4}$

Key result (1606.05483)

There are ten distinct multiplier systems for $\mathcal{I}, \mathcal{Z}_2^T, \mathcal{Z}_2^C, \mathcal{Z}_2^S, \mathcal{K}_4$...and thus ten symmetry classes

				T	0	_	5
G	$H^{2}_{\omega}(U(1),G)$	$ H^{2}_{\omega}(U(1),G) $	$ \omega(g_1 \downarrow, g_2 \rightarrow) $	1	Θ	Ξ	<u>Σ</u>
τ	<u> </u>	1	I	1	1	1	1
z^T	7.	1 2	Θ	1	Т	1	Т
$\frac{2}{2}$	Z ₂	2	田田	1	TC	С	Т
Z_2^c	Z_2	2	- -	1	C	ĉ	1
Z_2^s	I	1		T	C	C	1
\mathcal{K}_4	K_4	4		т	+ 1	C	1
					- TI.	· (=	

• Every GFS is a reducible projective representation associated with a multiplier system of $\mathcal{I}, \mathcal{Z}_2^T, \mathcal{Z}_2^C, \mathcal{Z}_2^S, \mathcal{K}_4$

Tenfold Way: Noninteracting Systems

Class	L	H ⁽¹⁾	$\text{dim}i\mathcal{H}^{(1)}$	$i\mathcal{H}^{(1)}$	$U_{Schröd}(t)$
A(0, 0, 0)	L	$\mathbf{H}^{(1)} = [\mathbf{H}^{(1)}]^{\dagger}$	L^2	u (<i>L</i>)	U(L)
Al(+1,0,0)	L	$\mathbf{H}^{(1)} = [\mathbf{H}^{(1)}]^*$	L(L+1)/2	$\mathfrak{u}(L)\setminus \mathfrak{o}(L)$	U(L)/O(L)
All(-1, 0, 0)	L = 2M	$\left(egin{array}{cc} \mathbf{h}_{aa} & \mathbf{h}_{ab} \\ -\mathbf{h}^*_{ab} & \mathbf{h}^*_{aa} \end{array} ight)$	M(2M - 1)	$\mathfrak{u}(2M) \setminus \mathfrak{usp}(2M)$	U(2M)/USp(2M)
D(0, +1, 0)	L	$\mathbf{H}^{(1)} = -[\mathbf{H}^{(1)}]^*$	L(L-1)/2	0 (L)	O(L)
C(0, -1, 0)	L = 2M	$ \begin{pmatrix} \mathbf{h}_{aa} & \mathbf{h}_{ab} \\ \mathbf{h}_{ab}^* & -\mathbf{h}_{aa}^* \end{pmatrix} $	M(2M + 1)	$\mathfrak{usp}(2M)$	USp(2M)
All(0, 0, 1)	L = p + q	$\begin{pmatrix} 0_{pp} & \mathbf{h}_{pq} \\ \mathbf{h}_{pq}^{\dagger} & 0_{qq} \end{pmatrix}$	2pq	$\mathfrak{u}(p+q)\setminus(\mathfrak{u}(p)\oplus\mathfrak{u}(q))$	$U(p+q)/(U(p)\times U(q))$
BDI(+1,+1,1)	L = p + q	$\begin{pmatrix} 0_{pp} & \mathbf{h}_{pq} \\ \mathbf{h}_{pq}^T & 0_{qq} \end{pmatrix}, \mathbf{h}_{pq}^* = \mathbf{h}_{pq}$	pq	$\mathfrak{o}(p+q) \setminus (\mathfrak{o}(p) \oplus \mathfrak{o}(q))$	$O(p+q)/(O(p)\times O(q))$
Cll(-1, -1, 1)	L = p + q, p = 2r, q = 2s	$\left(\begin{array}{c c} \mathbf{h}_{rr} & \mathbf{h}_{rs} \\ 0_{pp} & -\mathbf{h}_{rs}^* & \mathbf{h}_{rr}^* \\ \hline \mathbf{h.c.} & 0_{qq} \end{array} \right)$	4rs	$\mathfrak{usp}(p+q) \setminus (\mathfrak{usp}(p) \oplus \mathfrak{usp}(q))$	$USp(2(r + s))/(USp(2r) \times USp(2s))$
Cl(+1, -1, 1)	L = 2M	$\begin{pmatrix} 0_{MM} & \mathbf{h}_{MM} \\ \mathbf{h}_{MM}^* & 0_{MM} \end{pmatrix}, \mathbf{h}_{MM}^T = \mathbf{h}_{MM}$	M(M + 1)	$\mathfrak{usp}(2M) \setminus \mathfrak{u}(M)$	USp(2M)/U(M)
DIII(-1, +1, 1)	L = 2M	$ \begin{pmatrix} 0_{MM} & \mathbf{h}_{MM} \\ -\mathbf{h}_{MM}^* & 0_{MM} \end{pmatrix}, \mathbf{h}_{MM}^T = -\mathbf{h}_{MM} $	M(M-1)	$\mathfrak{o}(2M)\setminus\mathfrak{u}(M)$	O(2M)/U(M)

- Structure of Hamiltonian in each class
- Time evolution operator runs over a coset space
- All ten families of Cartan's symmetric spaces are realized

Interacting Systems

• Systems with *up to N*-body interactions

$$\mathscr{H} = \sum_{K=0}^{N} (\Psi^{\dagger})^{K} \mathbf{H}^{(K)} (\Psi)^{K}$$

 $\mathbf{H}^{(K)}$ is a $\binom{L}{K} \times \binom{L}{K}$ matrix,... Hamiltonian specified by an N + 1-tuple

 $\mathbf{H} = (\mathbf{H}^{(0)}, \mathbf{H}^{(1)}, \dots, \mathbf{H}^{(N)})$

Goal is to find the space of all **H** allowed by symmetry in each of the ten classes

- Main point: H^(K) will depend on H^(R) for all K < R < N when the class has a transposing symmetry (recall μ in the Hubbard model at half filling depends on U)....iterative determination of H^(K) starting from H^(N)
- Complete solution presented in 1606.05483

Tenfold Way: N-Body Hamiltonians (N even)

Class	L	Р	Q	H ^(A)	$\dim i\mathcal{H}^{(N)}$	$i\mathcal{H}^N_+$
A (0,0,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = \left[\mathbf{H}^{(N)}\right]^{\dagger}$	P^2	$\mathfrak{u}(P)$
Al (+1,0,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = \left[\mathbf{H}^{(N)}\right]^*$	P(P + 1)/2	$\mathfrak{u}(P) \setminus \mathfrak{o}(P)$
All (-1,0,0)	L = 2M	$\frac{1}{2}\left\{\binom{L}{N}+\binom{M}{N/2}\right\}$	$\frac{1}{2}\left\{\binom{L}{N}-\binom{M}{N/2}\right\}$	$ \begin{pmatrix} \mathbf{h}_{PP}^{(N)} & \mathbf{h}_{PQ}^{(N)} \\ \mathbf{h}_{PQ}^{(N)} & \mathbf{h}_{QQ}^{(N)} \end{pmatrix} & \mathbf{h}_{PP}^{(N)} = \begin{bmatrix} \mathbf{h}_{PP}^{(N)} \end{bmatrix}^* \\ \mathbf{h}_{QQ}^{(N)} = \begin{bmatrix} \mathbf{h}_{QQ}^{(N)} \\ \mathbf{h}_{PQ}^{(N)} \end{bmatrix} & \mathbf{h}_{PQ}^{(N)} = -\begin{bmatrix} \mathbf{h}_{PQ}^{(N)} \end{bmatrix}^* $	$\frac{P(P+1)}{2} + \frac{Q(Q+1)}{2} + PQ$	$\mathfrak{u}(P + Q)$ $\setminus \mathfrak{o}(P + Q)$
D (0,+1,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = \left[\mathbf{H}^{(N)}\right]^*$	P(P+1)/2	$\mathfrak{u}(P) \setminus \mathfrak{o}(P)$
C (0,-1,0)	L = 2M	$\frac{1}{2}\left\{\binom{L}{N}+\binom{M}{N/2}\right\}$	$\frac{1}{2}\left\{\binom{L}{N}-\binom{M}{N/2}\right\}$	$ \begin{pmatrix} \mathbf{h}_{PP}^{(N)} & \mathbf{h}_{PQ}^{(N)} \\ [\mathbf{h}_{PQ}^{(N)}]^* & \mathbf{h}_{QQ}^{(N)} \end{pmatrix} \overset{\mathbf{h}_{PP}^{(N)} = [\mathbf{h}_{PQ}^{(N)}]^* \\ \mathbf{h}_{QQ}^{(N)} = [\mathbf{h}_{QQ}^{(N)}]^* \\ \mathbf{h}_{PQ}^{(N)} = -[\mathbf{h}_{PQ}^{(N)}]^* \end{cases} $	$\frac{P(P+1)}{2} + \frac{Q(Q+1)}{2} + PQ$	$\mathfrak{u}(P + Q)$ $\setminus \mathfrak{o}(P + Q)$
Alli (0,0,1)	L = p + q	$\sum_{a=1,3,\ldots}^{N-1} \binom{p}{a} \binom{q}{N-a}$	$\sum_{a=0,2,\ldots}^{N} {p \choose a} {q \choose N-a}$	$\begin{pmatrix} \mathbf{h}_{PP}^{(N)} & 0_{PQ} \\ 0_{QP} & \mathbf{h}_{QQ}^{(N)} \end{pmatrix} \mathbf{h}_{PP}^{(N)} = \begin{bmatrix} \mathbf{h}_{PP}^{(N)} \end{bmatrix}^{\dagger} \\ \mathbf{h}_{QQ}^{(N)} = \begin{bmatrix} \mathbf{h}_{QQ}^{(N)} \end{bmatrix}^{\dagger}$	$P^{2} + Q^{2}$	$\mathfrak{u}(P)\oplus\mathfrak{u}(Q)$
BDI (+1,+1,1)	L = p + q	$\sum_{a=1,3,\ldots}^{N-1} \binom{p}{a} \binom{q}{N-a}$	$\sum_{a=0,2,\ldots}^{N} \binom{p}{a}\binom{q}{N-a}$	$ \begin{pmatrix} \mathbf{h}_{PP}^{(N)} & 0_{PQ} \\ 0_{QP} & \mathbf{h}_{QQ}^{(N)} \end{pmatrix} \mathbf{h}_{QQ}^{(N)} = \begin{bmatrix} \mathbf{h}_{PP}^{(N)} \end{bmatrix}^* \\ \mathbf{h}_{QQ}^{(N)} = \begin{bmatrix} \mathbf{h}_{QQ}^{(N)} \end{bmatrix}^* $	$\frac{P(P+1)}{2} + \frac{Q(Q+1)}{2}$	$\begin{array}{c} (\mathfrak{u}(P) \setminus \mathfrak{o}(P)) \\ \oplus \\ (\mathfrak{u}(Q) \setminus \mathfrak{o}(Q)) \end{array}$
CII (-1,-1,1)	$L = p + q$ $p = 2r \ q = 2s$	$P = \sum_{\alpha=1,3,\dots}^{N-1} {p \choose N-\alpha} {q \choose N-\alpha}$ $A(B) = P/2$	$\begin{split} Q &= \sum_{\alpha=0,2,\dots}^{N} \binom{\rho}{N,\alpha_{\alpha}} \\ C(D) &= \frac{O}{2} \pm \sum_{\alpha=0,\dots,\dots}^{m-1} \frac{1}{2} \binom{s}{\alpha/2} \binom{s}{(\alpha-\alpha)/2} \end{split}$	$ \left(\begin{array}{c c} \mathbf{h}_{a,m}^{(3)} & \mathbf{h}_{a,m}^{(0)} \\ \hline \mathbf{h}_{a,m}^{(3)'} & \mathbf{h}_{a,m}^{(0)} \\ \hline 0_{\mathcal{QP}} & \mathbf{h}_{\mathbf{C}^{(2)}}^{(2)'} & \mathbf{h}_{\mathbf{C}^{(2)}}^{(2)'} \\ \hline 0_{\mathcal{QP}} & \left[\mathbf{h}_{a,m}^{(2)'} \right]^{*} \mathbf{h}_{\mathbf{D}^{(3)}}^{(2)'} \\ \hline \mathbf{h}_{a,m}^{(2)'} & \mathbf{h}_{\mathbf{D}^{(3)}}^{(2)'} \\ \hline \mathbf{h}_{a,m}^{(2)'} & \mathbf{h}_{\mathbf{D}^{(2)}}^{(2)'} \\ \hline \mathbf{h}_{a,m}^{(2)'} & \mathbf{h}_{\mathbf{D}^{(2)'}}^{(2)''} \\ \hline \mathbf{h}_{a,m}^{(2)''} & \mathbf{h}_{\mathbf{D}^{(2)''}}^{(2)''} \\ \hline \mathbf{h}_{a,m}^{(2)'''} & \mathbf{h}_{\mathbf{D}^{(2)'''}}^{(2)''''''''''''''''''''''''''''''''''''$	$\frac{A(A+1)}{2} + \frac{B(B+1)}{2} + AB + \frac{C(C+1)}{2} + \frac{D(D+1)}{2} + CD$	$(\mathfrak{u}(A + B)$ $\setminus \mathfrak{o}(A + B))$ \oplus $(\mathfrak{u}(C + D)$ $\setminus \mathfrak{o}(C + D))$
CI (+1,-1,1)	L = 2M	$P = \sum_{a=1,3,\dots}^{N-1} \binom{M}{a} \binom{M}{N-a}$ $A(B) = \begin{cases} P/2 & ; N/2 \text{ even} \\ \frac{P}{2} \neq \binom{M}{N/2} & ; N/2 \text{ odd} \end{cases}$	$\begin{aligned} Q &= \sum_{a=0,2,\dots}^{N} \binom{M}{a} \binom{M}{N-a} \\ C(D) &= \begin{cases} \frac{Q}{2} \pm \binom{M}{N/2} &; N/2 \text{ even} \\ Q/2 &; N/2 \text{ odd} \end{cases} \end{aligned}$	$ \left(\begin{array}{c} \mathbf{h}_{AA}^{(N)} & \mathbf{h}_{BB}^{(N)} \\ \mathbf{h}_{AB}^{(N)} & \mathbf{h}_{BB}^{(N)} \\ \hline 0_{QP} & \mathbf{h}_{CC}^{(N)} & \mathbf{h}_{CD}^{(N)} \\ \hline \mathbf{h}_{BCD}^{(N)} & \mathbf{h}_{DD}^{(N)} \\ \hline \mathbf{h}_{BCD}^{(N)} & \mathbf{h}_{DD}^{(N)} \\ \hline \mathbf{h}_{AB}^{(N)} & \mathbf{h}_{BCD}^{(N)} \\ \hline \mathbf{h}_{AB}^{(N)} & \mathbf{h}_{BCD}^{(N)} \\ \hline \mathbf{h}_{AB}^{(N)} & \mathbf{h}_{AB}^{(N)} \\ \hline \mathbf{h}_{AB}^{(N)} \\ \hline \mathbf{h}_{AB}^{(N)} \\ \hline \mathbf{h}_$	$\begin{array}{l} \frac{A(A+1)}{2} + \frac{B(B+1)}{2} + AB \\ + \frac{C(C+1)}{2} + \frac{D(D+1)}{2} + CD \end{array}$	-do-
DIII (-1,+1,1)	L = 2M	$P = \sum_{a=1,N,\dots}^{N-1} {M \choose a} {M \choose N-a}$ $A(B) = \begin{cases} P/2 & ; N/2 \text{ even} \\ \frac{P}{2} \pm {M \choose N/2} & ; N/2 \text{ odd} \end{cases}$	$Q = \sum_{a=0,2,\dots,M\atop a}^{N} \binom{M}{a} \binom{M}{N-a}$ $C(D) = \begin{cases} \frac{Q}{2} \pm \binom{M}{N/2} & ; N/2 \text{ even} \\ Q/2 & ; N/2 \text{ odd} \end{cases}$	$\left(\begin{array}{c} \left(\begin{array}{c} \mathbf{h}_{AB}^{(N)} & \mathbf{h}_{BB}^{(N)} \\ \mathbf{h}_{AB}^{(N)} \right]^{*} & \mathbf{h}_{BB}^{(N)} \end{array} \\ \left(\begin{array}{c} \mathbf{h}_{AB}^{(N)} \right]^{*} & \mathbf{h}_{BB}^{(N)} \\ 0_{QP} \end{array} \\ \left(\begin{array}{c} \mathbf{h}_{ACD}^{(N)} \right]^{*} & \mathbf{h}_{DD}^{(N)} \\ \mathbf{h}_{BCD}^{(N)} \right]^{*} & \mathbf{h}_{DD}^{(N)} \end{array} \right) \\ \mathbf{h}_{ABBCD}^{(N)} = \left[\mathbf{h}_{ABCD}^{(N)} \right]^{*} \\ \mathbf{h}_{ABBCD}^{(N)} = \left[\mathbf{h}_{ABCD}^{(N)} \right]^{*} \end{array}$	$\frac{\frac{A(A+1)}{2} + \frac{B(B+1)}{2} + AB}{+ \frac{C(C+1)}{2} + \frac{D(D+1)}{2} + CD}$	-do-

Tenfold Way: N-Body Hamiltonians (N odd)

Class	L	Р	Q H ^(N)		$\dim i\mathcal{H}^{(N)}$	$i\mathcal{H}^{(N)}_+$
A (0,0,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = \left[\mathbf{H}^{(N)}\right]^{\dagger}$	P ²	$\mathfrak{u}(P)$
Al (+1,0,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = \left[\mathbf{H}^{(N)}\right]^*$	P(P + 1)/2	$\mathfrak{u}(P)\setminus\mathfrak{o}(P)$
All (-1,0,0)	L = 2M	$\frac{1}{2}\binom{2M}{N}$	$\frac{1}{2}\binom{2M}{N}$	$ \begin{pmatrix} \mathbf{h}_{PP}^{(N)} & \mathbf{h}_{PQ}^{(N)} \\ - \begin{bmatrix} \mathbf{h}_{PQ}^{(N)} \end{bmatrix}^* & \begin{bmatrix} \mathbf{h}_{PP}^{(N)} \end{bmatrix}^* \end{pmatrix} $	$P^2 + 2 \times \frac{P(P-1)}{2}$	$\mathfrak{u}(2P)\setminus\mathfrak{usp}(2P)$
D (0,+1,0)	L	$\binom{L}{N}$	-	$\mathbf{H}^{(N)} = -\left[\mathbf{H}^{(N)}\right]^* \qquad P(P-1)$		$\mathfrak{o}(P)$
C (0,-1,0)	L = 2M	$\frac{1}{2}\binom{2M}{N}$	$\frac{1}{2}\binom{2M}{N}$	$ \begin{pmatrix} \mathbf{h}_{PP}^{(N)} & \mathbf{h}_{PQ}^{(N)} \\ \left[\mathbf{h}_{PQ}^{(N)} \right]^* & - \left[\mathbf{h}_{PP}^{(N)} \right]^* \end{pmatrix} $	$P^2 + 2 \times \frac{P(P+1)}{2}$	$\mathfrak{usp}(2P)$
AllI (0,0,1)	L = p + q	$\sum_{a=1,3,\ldots}^{N} \binom{p}{a} \binom{q}{N-a}$	$\sum_{a=0,2,\dots}^{N-1} \binom{p}{a} \binom{q}{N-a}$	$ \begin{pmatrix} 0_{PP} & \mathbf{h}_{PQ}^{(N)} \\ \left[\mathbf{h}_{PQ}^{(N)}\right]^{\dagger} & 0_{QQ} \end{pmatrix} $	2PQ	$\mathfrak{u}(P+Q)\setminus(\mathfrak{u}(P)\oplus\mathfrak{u}(Q))$
BDI (+1,+1,1)	L = p + q	$\sum_{a=1,3,\ldots}^{N} \binom{p}{a} \binom{q}{N-a}$	$\sum_{a=0,2,\ldots}^{N-1} \binom{p}{a} \binom{q}{N-a}$	$ \begin{pmatrix} 0_{PP} & \mathbf{h}_{PQ}^{(N)} \\ \begin{bmatrix} \mathbf{h}_{PQ}^{(N)} \end{bmatrix}^T & 0_{QQ} \end{pmatrix} $	PQ	$\mathfrak{o}(P+Q)\setminus(\mathfrak{o}(P)\oplus\mathfrak{o}(Q))$
CII (-1,-1,1)	L = p + q $p = 2r q = 2s$	$P = \sum_{a=1,3,\dots}^{N} {p \choose a} {q \choose N-a}$ $A(B) = P/2$	$Q = \sum_{a=0,2,\dots}^{N-1} {p \choose a} {q \choose N-a}$ $C(D) = \frac{Q}{2}$	$\left(\begin{array}{c c} 0_{PP} & \mathbf{h}_{AC}^{(N)} & \mathbf{h}_{AD}^{(N)} \\ \hline 0_{PP} & -\left[\mathbf{h}_{AD}^{(N)}\right]^* & \left[\mathbf{h}_{AC}^{(N)}\right]^* \\ \hline \mathbf{h.c.} & 0_{QQ} \end{array} \right)$	PQ	$\mathfrak{usp}(P+Q)\setminus(\mathfrak{usp}(P)\oplus\mathfrak{usp}(Q))$
Cl (+1,-1,1)	L = 2M	$\frac{1}{2}\binom{2M}{N}$	$\frac{1}{2}\binom{2M}{N}$	$ \begin{pmatrix} 0_{PP} & \mathbf{h}_{PQ}^{(N)} \\ \left[\mathbf{h}_{PQ}^{(N)} \right]^* & 0_{QQ} \end{pmatrix} $	P(P+1)	$\mathfrak{usp}(2P) \setminus \mathfrak{u}(P)$
DIII (-1,+1,1)	L = 2M	$\frac{1}{2}\binom{2M}{N}$	$\frac{1}{2}\binom{2M}{N}$	$ \begin{pmatrix} 0_{PP} & \mathbf{h}_{PQ}^{(N)} \\ - \begin{bmatrix} \mathbf{h}_{PQ}^{(N)} \end{bmatrix}^* & 0_{QQ} \end{pmatrix} $	P(P - 1)	$\mathfrak{o}(2P)\setminus\mathfrak{u}(P)$

(1606.05483)

Useful in many contemporary problems: SYK model, many body localization

...on to Topology

- Kitaev, AIP Conference Proceedings, 1134, 22 (2009).
- Ryu, Schnyder, Furusaki, and Ludwig, New Journal of Physics, 12, 065010 (2010).
- Chiu, Teo, Schnyder, Ryu, arXiv:1505.03535
- Ludwig, arXiv:1512.08882

From GFS to Lattice

• Make a lattice out of GFSs in *d*-dimensions

- Ψ_I^{\dagger} fermion operators at site *I*
- Non-ordinary symmetries implemented "locally" (simplest case)

$$\mathscr{U}\Psi_I^{\dagger}\mathscr{U}^{-1} = \Psi_I^{\dagger}\mathbf{U} \text{ or } \Psi_I^T\mathbf{U}$$

• Hamiltonian

$$\mathscr{H} = \sum_{IJ} \Psi_I^{\dagger} \mathbf{H}(I, J) \Psi_J$$

Bands etc.

• Bloch picture

$$\mathcal{H} = \sum_{k} \Psi_{k}^{\dagger} \mathbf{H}(k) \Psi_{k}$$

k is in the 1st Brillouin zone – T_d , the d-torus

- Symmetries constrain H(k), e.g., time reversal implies $H(-k) = H^*(k)$...i.e., symmetries determine the "character" of the Bloch states
- Focus on gapped systems...ground state obtained by "filling" bands below the chemical potential $\mu(=0)$

Ground State ... and Topology

• Ground state $|GS\rangle$ – filled bands below μ

- Two systems \mathscr{H}_1 and \mathscr{H}_2 in the same symmetry class are topologically equivalent if the there is a continuous deformation of the Hamiltonian from \mathscr{H}_1 to \mathscr{H}_2 that takes $|GS_1\rangle$ to $|GS_2\rangle$ without closing the gap in the deformation process
- Key question: Given a symmetry class, how many topologically equivalent subclasses are there in *d*-dimensions?

Topology of Ground States

- Focus on class A: Ground state at any *k* is a Slater determinant of the occupied Bloch states
- "Gauge freedom" in describing this Slater determinant has to be removed ground state at *k* is an object that looks like

 $\frac{U(L)}{U(L_o) \times U(L_u)}$

a point on a Grassmanian manifold (symmetric space!)

• The ground state can be viewed as a map from T_d to the Grassmanian

- Question: how many topologically distinct ground states are there?
- Look at the homotopy group (Kitaev)

 π_{T_d} (Grassmanian),

in general, π_{T_d} (Symmetric Space)

Topology of Ground States

• Calculation of homotopy groups is hard! Remarkable simplification occurs when *L* is "large"

	π1	π2	π3	π4	π5	π6	π7	π8	π9	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
s ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s²	0	z	z	z ₂	z ₂	Z ₁₂	Z 2	z ₂	Z ₃	Z 15	z ₂	z ₂ ²	z ₁₂ × z ₂	Z ₈₄ × Z ₂ ²	z ₂ ²
s ³	0	0	z	z ₂	z ₂	Z ₁₂	z 2	z ₂	Z 3	Z 15	z ₂	Z 2 ²	z ₁₂ × z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
s4	0	0	0	z	z ₂	z ₂	z×z ₁₂	z ₂ ²	z ₂ ²	z ₂₄ × z ₃	Z 15	z ₂	Z 2 ³	z ₁₂₀ × z ₁₂ × z ₂	Z ₈₄ × Z ₂ ⁵
S ⁵	0	0	0	0	z	z 2	z 2	Z 24	z ₂	z ₂	Z 2	Z 30	Z 2	Z 2 ³	z ₇₂ × z ₂
S ⁶	0	0	0	0	0	z	z 2	z ₂	Z ₂₄	0	z	z ₂	Z 60	z ₂₄ × z ₂	Z 2 ³
s 7	0	0	0	0	0	0	z	z ₂	z ₂	Z 24	0	0	z ₂	Z ₁₂₀	Z 2 ³
S 8	0	0	0	0	0	0	0	z	z ₂	z ₂	Z ₂₄	0	0	z ₂	z×z ₁₂₀

(Wikipedia)

• Homotopy groups for large *L* are familiar Abelian groups $(\mathbb{Z}, \mathbb{Z}_2)$...leads to

Periodic Table

Cartan d	0	1	2	3	4	5	6	7		8
$Complex \ case:$										
А	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
Real case:										
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

(Kitaev (2009), Ryu et. al. (2010), Ludwig:1512:08882)

Key features

- In any *d* there are 5 classes that host topologically distinct states
- Bott periodicity: The table has a periodicity of 2 for the "complex" classes, and a periodicity of 8 for "real" classes
- The "nontrivial" classes in d + 1 dimension are related to those in d
- Nontrivial topology will reflect in properties, gapless surface states etc...

Periodic Table...for (human beings)

gap...topologically trivial

Simple illustration of the idea in d = 0 with L = 2 with a single fermion

	Class AllI	Class BDI
	• Hamiltonian	Hamiltonian
$\frac{\text{Cartan} \backslash d \qquad 0}{\text{Complex case:}}$	$\mathbf{H} = \left(\begin{array}{cc} 0 & h_1 + \mathrm{i}h_2 \\ h_1 - \mathrm{i}h_2 & 0 \end{array}\right)$	$\mathbf{H} = \left(\begin{array}{cc} 0 & h_1 \\ h_1 & 0 \end{array}\right)$
A Z AIII 0 Real case:	• Eigenvalues $\pm \sqrt{h_1^2 + h_2^2}$,	 Eigenvalues ± h₁ , negative state occupied
AI \mathbb{Z} BDI \mathbb{Z}_2 D \mathbb{Z}_2	negative state occupied	h_2
DIII 0 AII 2Z	2 	$\begin{array}{c c} & & \\ \hline \\ \hline \\ 1 \\ \hline \\ 0 \\ \end{array} \xrightarrow{\text{Cap closes}} h_1 \\ \hline \\ h_1 \\ \hline \end{array}$
CII 0 C 0 CI 0	1	
	• Can deform any typical system 1 to 2 <i>without</i> closing the	• Cannot deform system 1 to 2 closing the gaptwo distinct "topologies" described by a

"parity" \mathbb{Z}_2 !

Periodic Table...for (human beings)

Cartan\d Complex cas A AIII Real case: AI BDI D DIII AII CII C C C

Simple illustration of the idea in d = 0 with L = 2 with a single fermion

	Class AllI	Class BDI
	• Hamiltonian	Hamiltonian
0 e:	$\mathbf{H}=\left(egin{array}{cc} 0 & h_1+\mathrm{i}h_2\ h_1-\mathrm{i}h_2 & 0 \end{array} ight)$	$\mathbf{H} = \left(\begin{array}{cc} 0 & h_1 \\ h_1 & 0 \end{array}\right)$
\mathbb{Z} 0 \mathbb{Z} \mathbb{Z}_2 \mathbb{Z}_2	• Eigenvalues $\pm \sqrt{h_1^2 + h_2^2}$, negative state occupied	 Eigenvalues ± h₁ , negative state occupied
0 2Z 0 0 0	1 0 h_1	h_1
	• Can deform any typical system 1 to 2 <i>without</i> closing the gaptopologically trivial	 Cannot deform system 1 to 2 closing the gaptwo distinct "topologies" described by a "parity" Z₂!

Key idea: symmetry protected topology - SPT phases

Topological Insulators

- Such physics can be realized in higher dimensions
- Topological insulators:Insulators in bulk, metals on the surface
- Realized material systems with strong spin orbit coupling

(Pinceton group, BiSb system)

Topological Insulators for Technology

- Insulating bulk and conducting surfaces offer *many* possibilities
- Surface state transport is dissipation-less and quantized...more energy efficient devices
- Useful in metrology (standards), resistance quantized to better than one part in a billion (von Kiltzing (2012))

- Topological insulators combined with other systems such as magnets and superconductors can lead to even more interesting physics (..most recent: discovery of Majorana modes using topological phases (Science, July 21, 2017))...useful in qauntum computing
- Challenge: Finding "good" topological insulators, need topology at room temperature

Topological Insulators in Amorphous Systems

Motivating Clues...

- Another route to periodic table: Description of topological phases in terms of non-linear sigma models (NLσM)
- Haldane's work on spin chains: If a topological term is added to NL σ M, then the system will be gapless
- NLσM of disordered systems (Wegner et al.) applied to topological phases – A system in *d*-dimensions will be topological only if its surface, i. e., a *d* – 1-dimensional system resists localization, i. e., is gapless.
- Question of if a phase is topological or not can be answered by hunting down if the d 1 dimensional NL σ M admits a topological term
- ...in this discussion, nowhere is a crystalline lattice assumed...implying topological insulators must be present in amorphous systems

Random Lattices...

- Random set of sites characterized by a density *ρ* (*N* sites in an area/volume *V*; *ρ* = *N*/*V*)
- Each site *I* hosts *L* single particle states $|I\alpha\rangle$, $\alpha = 1, \dots, L$
- Hopping hamiltonian

$$\mathcal{H} = \sum_{Ilpha} \sum_{Jeta} t_{lphaeta}(\mathbf{r}_{IJ}) c^{\dagger}_{I,lpha} c_{J,eta}$$

• Structure of hopping matrix elements

$$t_{\alpha\beta}(\mathbf{r}=\mathbf{0}) = \varepsilon_{\alpha\beta}, \quad t_{\alpha\beta}(\mathbf{r}\neq\mathbf{0}) = t(|\mathbf{r}|)T_{\alpha,\beta}(\hat{\mathbf{r}})$$

• Hopping has a finite range *R*

$$t(r) = C\Theta(R-r)e^{-r/a}$$

a is an "atomic" length scale

...Hamiltonians Defined

• Symmetry classes obtained by specifying $\varepsilon_{\alpha\beta}$ and $T_{\alpha,\beta}(\hat{r})$

Class (par)	$\epsilon_{lphaeta}$	$T_{lphaeta}(\hat{r})$
$ \overset{A}{(\lambda, M, t_2)} $	$egin{pmatrix} 2+M & (1-i)\lambda \ (1+i)\lambda & -(2+M) \end{pmatrix}$	$\begin{pmatrix} \frac{-1+t_2}{2} & \frac{-ie^{-i\theta}+\lambda(\sin^2\theta(1+i)-1)}{2} \\ \frac{-ie^{i\theta}+\lambda(\sin^2\theta(1-i)-1)}{2} & \frac{1+t_2}{2} \end{pmatrix}$
$\begin{bmatrix} AII\\ (\lambda, M, \\ t - \tau) \end{bmatrix}$	$ \begin{pmatrix} 2 + M + 2t_2 & -i2\lambda & 0 & 0 \\ i2\lambda & -(2 + M) + 2t_2 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} -\frac{1}{2} - \frac{t_2}{2} & -\frac{i}{2}e^{-i\theta} + \frac{i\lambda}{2} & 0 & -\frac{ig}{2}e^{-i\theta} \\ -\frac{i}{2}e^{i\theta} - \frac{i\lambda}{2} & \frac{1}{2} - \frac{t_2}{2} & -\frac{ig}{2}e^{-i\theta} & 0 \end{pmatrix} $
$t_2, g)$	$\begin{bmatrix} 0 & 0 & 2+M+2t_2 & i2\lambda \\ 0 & 0 & -i2\lambda & -(2+M)+2t_2 \end{bmatrix}$	$\begin{array}{cccc} 0 & -\frac{ig}{2}e^{i\theta} & -\frac{1}{2} - \frac{t_2}{2} & \frac{i}{2}e^{i\theta} - \frac{i\lambda}{2} \\ -\frac{ig}{2}e^{i\theta} & 0 & \frac{i}{2}e^{-i\theta} + \frac{i\lambda}{2} & \frac{1}{2} - \frac{t_2}{2} \end{array}$
$\begin{array}{c} \mathbf{D} \\ (\mu, \Delta) \end{array}$	$ \begin{pmatrix} 2-\mu & 0\\ 0 & -(2-\mu) \end{pmatrix} $	$ \begin{pmatrix} -\frac{1}{2} & \Delta e^{i\theta} \\ -\Delta e^{-i\theta} & \frac{1}{2} \end{pmatrix} $
$\begin{array}{c} \text{DIII} \\ (M,g) \end{array}$	$\mathrm{AII}(\lambda=0,t_2=0)$	$AII(\lambda = 0, t_2 = 0)$
C (M)	$\begin{pmatrix} 2+M & 0 \\ 0 & -(2+M) \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}e^{-i2\theta} \\ -\frac{1}{2}e^{i2\theta} & \frac{1}{2} \end{pmatrix}$

• In 2D ($\hat{\boldsymbol{r}} \equiv (\cos\theta, \sin\theta)$)

• Focus on class A ($t_2 = 0.25t$, $\lambda = 0.5t$); for a given realization of random sites, hamiltonian tuned by changing M

Energy Spectrum

• Study the system with periodic (PBC)...

Energy Spectrum

• Study the system with periodic (PBC)...

...and open (OBC) boundary conditions (filling is 1 fermion per site)

• In a range of *M*, PBC shows an energy gap, OBC shows midgap states!

Edge States...

... with Quantized Transport

• Quantized conductance in the energy gap

Topological Invariant

- Characterize the state using the Bott index (Adapted from Hastings and Loring, EPL (2010))
- Bott index changes from 0 to -1 upon changing M

• Clear demonstration of a topological state

Phase Diagram

• Configuration averaged phase diagram

Need a critical density sites ρ to obtain a topological phase

• Interesting physics in the transitions between phases by tuning *M* (for $\rho = 0.6$)

• Similar physics is found in other symmetry classes

Also in 3D

• Time reversal invariant *Z*₂ topological insulator in a 3D random lattice

Perspective

• New direction in the search for topological materials – amorphous materials

Featured in Physics	Editors' Suggest	ion		
Topological	Insulators	in	Amorphous	Systems

Adhip Agarwala and VBS Phys. Rev. Lett. 118, 236402

Physics See Synopsis: Glass Materials Could Be Topological Insulators

- Engineered systems
- Randomly deposited 2D motifs on an insulating surface

Impurity bands in a wide gap insulator?

• Need detailed materials science inputs/considerations
Experimental Realization!

Evidence for topological surface states in amorphous ${\bf Bi}_2{\bf Se}_3$

Paul Corbae,^{1,3+} Samuel Ciccys,^{2,3+} Daniel Varjas,⁵ Steven Zeltmann,^{1,4} Conrad H. Stansbury,^{2,3} Manel Molina-Ruiz,² Zhanghui Chen,³ Lin-Wang Wang,³ Andrew M. Minor,^{1,4} Adolfo G. Grushin,⁶ Alessandra Lanzara,^{2,3} and Frances Hellman^{2,3}

¹⁰Department of Maninia Science, University of California, Berkeley, California, 1972. USA ²⁰Department of Popissi, University of California, Berkeley, California, 1972. USA ²⁰Marcial Science Driving, Larence Berkeley, National Laboratory. Berkeley, California, 1972. Note Laboratory. Molecular London, Lanceres Berkeley, Nota Laboratory. Molecular London, Lanceres Berkeley, Nota Laboratory. Molecular London, Lanceres Berkeley, Nota Laboratory. O Apriler, Mar Keil, Manine of Nanoscience, Duff University of Technology 2000 O London, The Netherlands ²⁰Def Caroline Ages, CNR, Gersehel NP, Instant Nield, ³Univ: Granuble Ages, CNR, Gersehel NP, Instant Nield, ³Univ. Caronable Ages, CNR, Strassel Science, Stationable Ages, CNR, Americandon A

"To whom correspondence should be addressed; E-mail: pcorbae@berkeley.edu; alanzara@lbl.gov; fheliman@berkeley.edu

• Hunting ground for amorphous topological systems: Amorphous systems with strong spin orbit coupling

Tunable Topology? LETTER

https://doi.org/10.1038/s41586-018-0788-5

$\label{eq:linear} Electric-field-tuned\ topological\ phase\ transition\ in\ ultrathin\ Na_{3}Bi$

James L. Collins^{1,3,3}, Anton Tadich^{3,4}, Weikang Wu⁵, Lidia C. Gomes^{6,3}, Joao N. B. Rodrigues^{6,8}, Chang Liu^{1,2,3}, Jack Hellersted^{1,2,5}, Hyejin Ryu^{3,0,3}, Shujie Tang⁶⁰, Sung-Kwan Mo¹⁰, Shaffique Adam^{6,12}, Shengyuan A. Yang^{6,13}, Michael S. Fubre^{1,2,3} & Mark T. Edmond^{6,1,3,4}

(Google images)

• Towards "ultra low energy" electronics!

Things Not Discussed...and Open Issues

- Our discussion restricted short range entangled phases of non-interacting systems
- Not discussed: Higher order topological insulators
- Understanding certain gapless phases Dirac materials, Weyl semi-metals (Next talk by Sumathi)
- Experimental scenario not discussed...e. g. recent discovery of Majorana modes using topological phases
- Realizations in "non-fermionic" systems Optical/Mechanical/Magnetic systems
- Classification changes when interactions are present (Kitaev et al.: in 1D BDI which is Z collapses to Z₈)...a lot is understood in 1D
- Higher dimensions is an open problem...many ideas including group cohomology (Wen et. al.) etc...are in the air
- ...and phases with long range entanglement (Wen, 1610.03911) symmetry enriched topological phases

Every epoch of humanity's progress was controlled by a phase of electrons:

Every epoch of humanity's progress was controlled by a phase of electrons:

Every epoch of humanity's progress was controlled by a phase of electrons:

Every epoch of humanity's progress was controlled by a phase of electrons:

Next epoch: topological "twisted" phases?

Summary

This talk (Ask me in person for references/review articles)

- Key message: Ideas of topology and entanglement are crucial in understanding/classifying phases of many fermions
- Tenfold way of classifying fermionic systems

Cartan d	0	1	2	3	4	5	6	7		8
Complex case:										
A	Z	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	Z	
AIII	0	Z	0	Z	0	Z	0	\mathbb{Z}	0	
Real case:										
AI	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	
BDI	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	

Open issues

- Topological classification in presence of interactions exciting times in condensed matter physics
- Finding and using topological phases more efficient electronics to quantum computers key new challenge for materials science