Symmetries in Nuclei

Symmetry, mathematics and physics *Examples of symmetries in quantum mechanics* Symmetries of the nuclear shell model

Example: seniority in the nuclear shell model

ANUPII, Goa, November 2011

(Dynamical) symmetries in quantum mechanics

Symmetry in quantum mechanics The hydrogen atom The harmonic oscillator Isospin symmetry in nuclei Dynamical symmetry

Symmetry in quantum mechanics

Assume a hamiltonian H which commutes with operators g_i that form a Lie algebra G:

$$\forall \hat{g}_i \in G: [\hat{H}, \hat{g}_i] = 0$$

:. *H* has symmetry *G* or is invariant under *G*.

Lie algebra: a set of (infinitesimal) operators that closes under commutation.

ANUP11, Goa, November 2011

Consequences of symmetry

Degeneracy structure: If $|\gamma\rangle$ is an eigenstate of H with energy *E*, so is $g_i | \gamma \rangle$: $\hat{H}|\gamma\rangle = E|\gamma\rangle \Longrightarrow \hat{H}\hat{g}_i|\gamma\rangle = \hat{g}_i\hat{H}|\gamma\rangle = E\hat{g}_i|\gamma\rangle$ Degeneracy structure and labels of eigenstates of H are determined by algebra G: $\hat{H}|\Gamma\gamma\rangle = E(\Gamma)|\Gamma\gamma\rangle; \quad \hat{g}_i|\Gamma\gamma\rangle = \sum a_{\nu'\nu}^{\Gamma}(i)|\Gamma\gamma'\rangle$ Casimir operators of G commute with all g_i : $\hat{H} = \sum \mu_m \hat{C}_m [G]$ т

The hydrogen atom

The hamiltonian of the hydrogen atom is

 $\hat{H} = \frac{p^2}{2M} - \frac{\alpha}{r}$ Standard wave quantum mechanics gives

$$\hat{H}\Psi_{nlm}(r,\theta,\varphi) = -\frac{M\alpha^2}{2\hbar^2 n^2} \Psi_{nlm}(r,\theta,\varphi)$$

with $n = 1,2,\ldots; l = 0,1,\ldots,n-1; m = -l,\ldots,+l$

Degeneracy in *m* originates from rotational symmetry. *What is the origin of I-degeneracy?*

Degeneracies of the H atom

Classical Kepler problem

Conserved quantities:

Energy (a=length semi-major axis): $E = -\frac{\alpha}{2a}$ Angular momentum (ε =eccentricity): $L = r \wedge p, \quad L^2 = M\alpha a (1 - \varepsilon^2)$

Runge-Lenz vector:

$$\boldsymbol{R} = \frac{\boldsymbol{p} \wedge \boldsymbol{L}}{M} - \alpha \frac{\boldsymbol{r}}{r}, \quad \boldsymbol{R}^2 = \frac{2E}{M}\boldsymbol{L}^2 + \alpha^2$$

Newtonian potential gives rise to closed orbits with constant direction of major axis.

Classical Kepler problem

ANUP11, Goa, November 2011

Quantization of operators

From
$$p \rightarrow -ih\nabla$$
:
 $\hat{H} = -\left(\frac{\hbar^2}{2M}\nabla^2 + \frac{\alpha}{r}\right)$
 $\hat{L} = -i\hbar(r \wedge \nabla)$
 $\hat{R} = -\frac{\hbar^2}{2M}\left[\nabla \wedge (r \wedge \nabla) - (r \wedge \nabla) \wedge \nabla\right] - \alpha \frac{r}{r}$
Some useful commutators & relations:
 $\left[\nabla r^k\right] - kr^{k-2}r$, $\left[\nabla^2 r\right] - 2\nabla$, $\left[\nabla^2 r^k\right] - kr^{k-2}\left[(k+1) + 2r \cdot \nabla\right]$

$$\begin{bmatrix} \nabla, r^k \end{bmatrix} = k r^{k-2} r, \quad \begin{bmatrix} \nabla^2, r \end{bmatrix} = 2 \nabla, \quad \begin{bmatrix} \nabla^2, r^k \end{bmatrix} = k r^{k-2} \begin{bmatrix} (k+1) + 2r \cdot \nabla \end{bmatrix}$$
$$\hat{R}^2 = \frac{2\hat{H}}{M} (\hat{L}^2 + \hbar^2) + \alpha^2$$

Conservation of angular momentum

The angular momentum operators *L* commute with the hydrogen hamiltonian:

$$\begin{bmatrix} \hat{H}, \hat{L} \end{bmatrix} \propto \begin{bmatrix} \nabla^2 + 2\kappa r^{-1}, r \wedge \nabla \end{bmatrix} \qquad \left(\kappa = M\alpha / \hbar^2\right)$$
$$= \begin{bmatrix} \nabla^2, r \end{bmatrix} \wedge \nabla + 2\kappa r \wedge \begin{bmatrix} r^{-1}, \nabla \end{bmatrix} = 0 + 0$$

L operators generate SO(3) algebra:

$$\begin{bmatrix} \hat{L}_{j}, \hat{L}_{k} \end{bmatrix} = i\hbar\varepsilon_{jkl}\hat{L}_{l}, \quad j, k, l = x, y, z$$

H has SO(3) symmetry \Rightarrow *m*-degeneracy.

Conserved Runge-Lenz vector

The Runge-Lenz vector **R** commutes with H:

$$\begin{bmatrix} \hat{H}, \hat{R} \end{bmatrix} \propto \begin{bmatrix} \nabla^2 + 2\kappa r^{-1}, \nabla \wedge (r \wedge \nabla) - (r \wedge \nabla) \wedge \nabla + 2\kappa r^{-1}r \end{bmatrix}$$
$$= \begin{bmatrix} \nabla^2, 2\kappa r^{-1}r \end{bmatrix} + \begin{bmatrix} 2\kappa r^{-1}, \nabla \wedge (r \wedge \nabla) - (r \wedge \nabla) \wedge \nabla \end{bmatrix} = 0$$

R does *not* commute with the kinetic and potential parts of *H* separately:

$$-\frac{\hbar^2}{2M} \left[\nabla^2, \hat{\boldsymbol{R}} \right] = -\left[-\alpha r^{-1}, \hat{\boldsymbol{R}} \right] = \frac{\hbar^2 \alpha}{M} \left[\frac{1}{r} \nabla - \frac{\boldsymbol{r}}{r^3} \left(1 + \boldsymbol{r} \cdot \nabla \right) \right]$$

Hydrogen atom has a dynamical symmetry.

SO(4) symmetry

L and R (almost) close under commutation:

$$\begin{bmatrix} \hat{L}_{j}, \hat{L}_{k} \end{bmatrix} = i\hbar\varepsilon_{jkl}\hat{L}_{l}, \quad j,k,l = x,y,z$$
$$\begin{bmatrix} \hat{L}_{j}, \hat{R}_{k} \end{bmatrix} = i\hbar\varepsilon_{jkl}\hat{R}_{l}, \quad j,k,l = x,y,z$$
$$\begin{bmatrix} \hat{R}_{j}, \hat{R}_{k} \end{bmatrix} = -i\hbar\varepsilon_{jkl}\frac{2\hat{H}}{M}\hat{L}_{l}, \quad j,k,l = x,y,z$$

H is time-independent and commutes with *L* and *R* \Rightarrow choose a subspace with given *E*.

L and $R' = (-M/2H)^{1/2} R$ form an algebra SO(4) corresponding to rotations in four dimensions.

Energy spectrum of the H atom

Isomorphism of SO(4) and SO(3) \oplus SO(3):

$$\hat{F}^{\pm} = \frac{1}{2} \left(\hat{L} \pm \hat{R}' \right) \Longrightarrow \left[\hat{F}_{j}^{\pm}, \hat{F}_{k}^{\pm} \right] = i\hbar \varepsilon_{jkl} \hat{F}_{l}^{\pm}, \quad \left[\hat{F}_{j}^{+}, \hat{F}_{k}^{-} \right] = 0$$
Since \hat{L} and R' are orthogonal:

$$\left\langle \hat{F}^{+} \cdot \hat{F}^{+} \right\rangle = \left\langle \hat{F}^{-} \cdot \hat{F}^{-} \right\rangle = j(j+1)\hbar^{2}$$

The quadratic Casimir operator of SO(4) and *H* are related:

$$\hat{C}_{2}[SO(4)] = \hat{F}^{+} \cdot \hat{F}^{+} + \hat{F}^{-} \cdot \hat{F}^{-} = \frac{1}{2} \left(\hat{L}^{2} - \frac{M}{2H} \hat{R}^{2} \right) = -\frac{M\alpha^{2}}{4H} - \frac{1}{2} h^{2}$$

$$\left\langle \hat{C}_{2}\left[\mathrm{SO}(4)\right]\right\rangle = 2j(j+1)\mathbf{h}^{2} \Rightarrow E = -\frac{M\alpha}{2(2j+1)^{2}\mathbf{h}^{2}}, j = 0, \frac{1}{2}, 1, \frac{3}{2}, \mathsf{K}$$

W. Pauli, Z. Phys. 36 (1926) 336

ANUPII, Goa, November 2011

The (3D) harmonic oscillator

The hamiltonian of the harmonic oscillator is n^{2}

$$\hat{H} = \frac{p}{2M} + \frac{1}{2}M\omega^2 r^2$$

Standard wave quantum mechanics gives

$$\hat{H}\Psi_{nlm}(r,\theta,\varphi) = \left(2n+l+\frac{3}{2}\right)h\omega\Psi_{nlm}(r,\theta,\varphi)$$

with n = 0, 1, K; l = 0, 1, K; m = -l, K, +l

Degeneracy in *m* originates from rotational symmetry. Additional degeneracy for all (n,l) combinations with 2n+l=N.

What is the origin of this degeneracy?

Degeneracies of the 3D HO

Raising and lowering operators

Introduce the raising and lowering operators

$$b_{x}^{+} = \frac{1}{\sqrt{2}} \left(x' - \frac{\partial}{\partial x'} \right), \quad b_{y}^{+} = \frac{1}{\sqrt{2}} \left(y' - \frac{\partial}{\partial y'} \right), \quad b_{z}^{+} = \frac{1}{\sqrt{2}} \left(z' - \frac{\partial}{\partial z'} \right)$$
$$b_{x} = \frac{1}{\sqrt{2}} \left(x' + \frac{\partial}{\partial x'} \right), \quad b_{y} = \frac{1}{\sqrt{2}} \left(y' + \frac{\partial}{\partial y'} \right), \quad b_{z} = \frac{1}{\sqrt{2}} \left(z' + \frac{\partial}{\partial z'} \right)$$

with
$$x' = x/l, y' = y/l, z' = z/l; \quad l = \sqrt{\frac{h}{M\omega}}$$

The 3D HO hamiltonian becomes

$$\hat{H} = \frac{p^2}{2M} + \frac{1}{2}M\omega^2 r^2 = \sum_{i=x,y,z} \left(b_i^+ b_i^- + \frac{1}{2} \right) h\omega$$

M. Moshinsky, The Harmonic Oscillator in Modern Physics ANUP11, Goa, November 2011

U(3) symmetry of the 3D HO

The raising and lowering operators satisfy

 $\begin{bmatrix} b_i, b_j \end{bmatrix} = 0, \quad \begin{bmatrix} b_i^+, b_j^+ \end{bmatrix} = 0, \quad \begin{bmatrix} b_i, b_j^+ \end{bmatrix} = \delta_{ij}$ The bilinear combinations u_{ij} commute with H: $\hat{u}_{ij} \equiv b_i^+ b_j \Rightarrow \begin{bmatrix} \hat{u}_{ij}, \hat{H} \end{bmatrix} = 0, \quad \forall i, j \in \{x, y, z\}$ The nine operators u_{ij} generate the algebra U(3): $\begin{bmatrix} \hat{u}_{ij}, \hat{u}_{kl} \end{bmatrix} = \hat{u}_{il} \delta_{jk} - \hat{u}_{kj} \delta_{il}$

 \Rightarrow The symmetry of the harmonic oscillator in 3 dimensions is U(3).

The U(3)=U(1) \oplus SU(3) algebra

The generators u_{ii} of U(3) can be written as

$$b_x^+ b_x + b_y^+ b_y + b_z^+ b_z = \frac{\hat{H}}{h\omega} - \frac{3}{2}$$

$$\hat{L}_z = -ih\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) = -ih\left(b_x^+ b_y - b_y^+ b_x\right) + \text{cy clic}$$

$$\hat{Q}_0 = h\left(2b_z^+ b_z - b_x^+ b_x - b_y^+ b_y\right)$$

$$\hat{Q}_{\text{m}} = h\sqrt{\frac{3}{2}}\left(\pm b_z^+ b_x \pm b_x^+ b_z - ib_y^+ b_z - ib_z^+ b_y\right)$$

$$\hat{Q}_{\text{m}2} = h\sqrt{\frac{3}{2}}\left(b_x^+ b_x - b_y^+ b_y - ib_x^+ b_y\right)$$

Many particles in the 3D HO

Define operators for each particle *k*=1,2,...,*A*:

$$b_{x,k}^{+} = \frac{1}{\sqrt{2}} \left(x_{k}^{\prime} - \frac{\partial}{\partial x_{k}^{\prime}} \right), \quad b_{y,k}^{+} = \frac{1}{\sqrt{2}} \left(y_{k}^{\prime} - \frac{\partial}{\partial y_{k}^{\prime}} \right), \quad b_{z,k}^{+} = \frac{1}{\sqrt{2}} \left(z_{k}^{\prime} - \frac{\partial}{\partial z_{k}^{\prime}} \right)$$
$$b_{x,k} = \frac{1}{\sqrt{2}} \left(x_{k}^{\prime} + \frac{\partial}{\partial x_{k}^{\prime}} \right), \quad b_{y,k} = \frac{1}{\sqrt{2}} \left(y_{k}^{\prime} + \frac{\partial}{\partial y_{k}^{\prime}} \right), \quad b_{z,k} = \frac{1}{\sqrt{2}} \left(z_{k}^{\prime} + \frac{\partial}{\partial z_{k}^{\prime}} \right)$$

The total U(3) algebra is generated by

$$\sum_{k=1}^{A} b_{i,k}^{+} b_{j,k}^{-}, \quad i,j \in \{x,y,z\}$$

Many particles in the 3D HO

Many-body hamiltonian with U(3) symmetry:

$$\hat{H} = h\omega \left(\sum_{k=1}^{A} b_{x,k}^{+} b_{x,k} + b_{y,k}^{+} b_{y,k} + b_{z,k}^{+} b_{z,k} \right) + \sum_{k
$$\left[\hat{H}, \sum_{k=1}^{A} b_{i,k}^{+} b_{j,k}^{-} \right], \quad \forall i, j \in \{x, y, z\}$$$$

This property is valid if the interaction equals

$$\hat{C}_{2}\left[\mathrm{SU}(3)\right] = \frac{1}{2}\boldsymbol{L}\cdot\boldsymbol{L} + \frac{1}{6}\boldsymbol{Q}\cdot\boldsymbol{Q} = \sum_{k,l=1}^{A} \left(\frac{1}{2}\boldsymbol{L}(k)\cdot\boldsymbol{L}(l) + \frac{1}{6}\boldsymbol{Q}(k)\cdot\boldsymbol{Q}(l)\right)$$

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562 ANUP11, Goa, November 2011

Dynamical symmetry

Two algebras $G_1 \supset G_2$ and a hamiltonian

$$\hat{H} = \sum_{m} \mu_{m} \hat{C}_{m} [G_{1}] + \sum_{n} \nu_{n} \hat{C}_{n} [G_{2}]$$

 \therefore *H* has symmetry G_2 but *not* G_1 !

Eigenstates are independent of parameters μ_m and ν_n in *H*.

Dynamical symmetry breaking "splits but does not admix eigenstates".

Isospin symmetry in nuclei

Empirical observations:

About equal masses of n(eutron) and p(roton). n and p have spin 1/2.

Equal (to about 1%) nn, np, pp strong forces.

This suggests an *isospin* SU(2) symmetry of the nuclear hamiltonian:

n:
$$t = \frac{1}{2}, m_t = +\frac{1}{2};$$
 p: $t = \frac{1}{2}, m_t = -\frac{1}{2}$
 $\Rightarrow \hat{t}_+ n = 0, \quad \hat{t}_+ p = n, \quad \hat{t}_- n = p, \quad \hat{t}_- p = 0, \quad \hat{t}_z n = \frac{1}{2}n, \quad \hat{t}_z p = -\frac{1}{2}p$

W. Heisenberg, Z. Phys. **77** (1932) 1 E.P. Wigner, Phys. Rev. **51** (1937) 106

ANUP11, Goa, November 2011

Isospin SU(2) symmetry

Isospin operators form an SU(2) algebra:

$$\begin{bmatrix} \hat{t}_z, \hat{t}_{\pm} \end{bmatrix} = \pm \hat{t}_{\pm}, \quad \begin{bmatrix} \hat{t}_+, \hat{t}_- \end{bmatrix} = 2 \hat{t}_z$$

Assume the nuclear hamiltonian satisfies

$$\begin{bmatrix} \hat{H}_{\text{nucl}}, \hat{T}_{\nu} \end{bmatrix} = 0, \quad \hat{T}_{\nu} = \sum_{k=1}^{A} \hat{t}_{\nu}(k)$$

 \therefore H_{nucl} has SU(2) symmetry with degenerate states belonging to isobaric multiplets:

$$|\eta TM_T\rangle$$
, $M_T = -T, -T+1, \mathsf{K}, +T$

Isospin symmetry breaking: A=49

Empirical evidence from isobaric multiplets. Example: T=1/2 doublet of A=49 nuclei.

ANUPII, Goa, November 2011

O'Leary et al., Phys. Rev. Lett. 79 (1997) 4349

Isospin symmetry breaking: A=51

AMUP11, Goa, November 2011

Isospin SU(2) dynamical symmetry

Coulomb interaction can be approximated as

$$\hat{H}_{\text{Coul}} \approx \kappa_0 + \kappa_1 \hat{T}_z + \kappa_2 \hat{T}_z^2 \Longrightarrow \begin{bmatrix} \hat{H}_{\text{Coul}}, \hat{T}_z \end{bmatrix} = 0, \quad \begin{bmatrix} \hat{H}_{\text{Coul}}, \hat{T}_{\pm} \end{bmatrix} \neq 0$$

 \therefore $H_{\text{nucl}}+H_{\text{Coul}}$ has SU(2) dynamical symmetry and SO(2) symmetry.

 M_T -degeneracy is lifted according to

$$\hat{H}_{\text{Coul}} | \eta T M_T \rangle = \left(\kappa_0 + \kappa_1 M_T + \kappa_2 M_T^2 \right) \eta T M_T \rangle$$

Summary of labelling:

$$\begin{array}{ccc} \mathrm{SU}(2) & \supset & \mathrm{SO}(2) \\ \downarrow & & \downarrow \\ T & & M_T \end{array}$$

Isobaric multiplet mass equation

Isobaric multiplet mass equation:

$$E(\eta T M_T) = \kappa(\eta, T) + \kappa_1 M_T + \kappa_2 M_T^2$$

Example: T=3/2 multiplet for A=13 nuclei.

E.P. Wigner, Proc. Welch Found. Conf. (1958) 88 ANUP11, Goa, November 2011

Isospin selection rules

Internal E1 transition operator is isovector:

$$\hat{T}_{\mu}^{\text{E1}} = \sum_{k=1}^{A} e_k r_{\mu}(k) = \frac{e}{2} \left(\sum_{\substack{k=1 \\ \text{CM motion}}}^{A} r_{\mu}(k) + 2 \sum_{\substack{k=1 \\ \text{isovector}}}^{A} \hat{t}_z(k) r_{\mu}(k) \right)$$

Selection rule for $N=Z(M_T=0)$ nuclei: No E1 transitions are allowed between states with the same isospin.

> L.E.H. Trainor, Phys. Rev. **85** (1952) 962 L.A. Radicati, Phys. Rev. **87** (1952) 521

AMUP11, Goa, November 2011

E1 transitions and isospin mixing

≈ 2.5%

E.Farnea et al., Phys. Lett. B 551 (2003) 56

Dynamical algebra

Take a generic many-body hamiltonian:

$$\hat{H} = \sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i} + \frac{1}{4} \sum_{ijkl} \upsilon_{ijkl} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k} + \cdots$$

Rewrite *H* as (bosons: *q*=0; fermions: *q*=1) $\hat{H} = \sum_{il} \left(\varepsilon_i \delta_{il} - (-)^q \frac{1}{4} \sum_j \upsilon_{ijlk} \right) \hat{u}_{il} + (-)^q \frac{1}{4} \sum_{ijkl} \upsilon_{ijlk} \hat{u}_{ik} \hat{u}_{jl} + \cdots$

Operators u_{ij} generate the *dynamical algebra* U(*n*) for bosons and for fermions (*q*=0,1):

$$\hat{u}_{ij} \equiv c_i^+ c_j \Longrightarrow \left[\hat{u}_{ij}, \hat{u}_{kl}\right] = \hat{u}_{il} \delta_{jk} - \hat{u}_{kj} \delta_{il}$$

Dynamical symmetry (DS)

With each chain of *nested* algebras

$$\mathrm{U}(n) = G_{\mathrm{dyn}} = G_1 \supset G_2 \supset \cdots \supset G_{\mathrm{syn}}$$

...is associated a *particular* class of many-body hamiltonian

$$\hat{H} = \sum_{m} \mu_{m} \hat{C}_{m} [G_{1}] + \sum_{n} \nu_{n} \hat{C}_{n} [G_{2}] + \cdots$$
Since *H* is a sum of commuting operators

$$\forall m, n, a, b: \left[\hat{C}_m[G_a], \hat{C}_n[G_b]\right] = 0$$

... it can be solved analytically!

DS in nuclear physics

Name	$G_{\rm dyn}$	$G_{\rm break}$	$G_{\rm sym}$	Application	Reference
Isospin	SU(2)		SO(2)	Isobaric multiplets,	Heisenberg [4]
				IMME	Wigner [5]
Quasi-spin	SU(2)	· · · · · · · · · · · · · · · · · · ·	SO(2)	Seniority spectra	Racah [6]
					Kerman [7]
supermultiplet	$U(4\Omega)$	SU(3)	SO(3)	Wigner energy	Wigner [8]
SU(3) model				Rotational bands	Elliott [9]
Interacting	U(6)	U(5)	SO(3)	Vibrational nuclei	Arima and
Boson		SU(3)		Rotational nuclei	Iachello [10]
Model		SO(6)		γ -unstable nuclei	
F-spin	SU(2)		SO(2)	F-spin multiplets,	Brentano et al. [11]
				FMME	