Symmetries in Nuclei

Symmetry, mathematics and physics
Examples of symmetries in quantum mechanics
Symmetries of the nuclear shell model
Example: seniority in the nuclear shell model

ARTUP11. Goa, Nooember 2011

(Dynamical) symmetries in quantum mechanics

Symmetry in quantum mechanics
The hydrogen atom
The harmonic oscillator
Isospin symmetry in nuclei
Dynamical symmetry

AraiP11. Goa, Nouember 2011

Symmetry in quantum mechanics

Assume a hamiltonian H which commutes with operators g_{i} that form a Lie algebra G :
$\forall \hat{g}_{i} \in G: \quad\left[\hat{H}, \hat{g}_{i}\right]=0$
$\therefore H$ has symmetry G or is invariant under G.
Lie algebra: a set of (infinitesimal) operators that closes under commutation.

Consequences of symmetry

Degeneracy structure: If $|\gamma\rangle$ is an eigenstate of H with energy E, so is $g_{i}|\gamma\rangle$:

$$
\hat{H}|\gamma\rangle=E|\gamma\rangle \Rightarrow \hat{H} \hat{g}_{i}|\gamma\rangle=\hat{g}_{i} \hat{H}|\gamma\rangle=E \hat{g}_{i}|\gamma\rangle
$$

Degeneracy structure and labels of eigenstates of H are determined by algebra G : $\hat{H}|\Gamma \gamma\rangle=E(\Gamma) \Gamma \gamma\rangle ; \hat{g}_{i}|\Gamma \gamma\rangle=\sum a_{\gamma \gamma}(i)\left|\Gamma \gamma^{\prime}\right\rangle$
Casimir operators of G commute with all g_{i} : $\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}[G]$

AMKAP11. Goa, Nouember 2011

The hydrogen atom

The hamiltonian of the hydrogen atom is

$$
\hat{H}=\frac{p^{2}}{2 M}-\frac{\alpha}{r}
$$

Standard wave quantum mechanics gives

$$
\begin{aligned}
& \hat{H} \Psi_{n l m}(r, \theta, \varphi)=-\frac{M \alpha^{2}}{2 \hbar^{2} n^{2}} \Psi_{n l m}(r, \theta, \varphi) \\
& \text { with } n=1,2, \ldots ; l=0,1, \ldots, n-1 ; m=-l, \ldots,+l
\end{aligned}
$$

Degeneracy in m originates from rotational symmetry. What is the origin of I-degeneracy?

AnCIP11. Goa. Nowember 2011

Degeneracies of the H atom

AMMP11. Goa, Nouember 2011

Classical Kepler problem

Conserved quantities:
Energy (a=length semi-major axis):

$$
E=-\frac{\alpha}{2 a}
$$

Angular momentum ($\varepsilon=e c c e n t r i c i t y)$:

$$
\boldsymbol{L}=\boldsymbol{r} \wedge \boldsymbol{p}, \quad \boldsymbol{L}^{2}=\operatorname{M\alpha a}\left(1-\varepsilon^{2}\right)
$$

Runge-Lenz vector:

$$
\boldsymbol{R}=\frac{\boldsymbol{p} \wedge \boldsymbol{L}}{M}-\alpha \frac{\boldsymbol{r}}{r}, \quad \boldsymbol{R}^{2}=\frac{2 E}{M} \boldsymbol{L}^{2}+\alpha^{2}
$$

Newtonian potential gives rise to closed orbits with constant direction of major axis.

AraiP11. Goa, Nouember 2011

Classical Kepler problem

ArCuP11. Goa. Nowember 2011

Quantization of operators

From $\boldsymbol{p} \rightarrow-i h \nabla$:

$$
\begin{aligned}
& \hat{H}=-\left(\frac{\hbar^{2}}{2 M} \nabla^{2}+\frac{\alpha}{r}\right) \\
& \hat{\boldsymbol{L}}=-i \hbar(\boldsymbol{r} \wedge \nabla)
\end{aligned}
$$

$$
\hat{\boldsymbol{R}}=-\frac{\hbar^{2}}{2 M}[\nabla \wedge(\boldsymbol{r} \wedge \nabla)-(\boldsymbol{r} \wedge \nabla) \wedge \nabla]-\alpha \frac{\boldsymbol{r}}{r}
$$

Some useful commutators \& relations:

$$
\begin{aligned}
& {\left[\nabla, r^{k}\right]=k r^{k-2} \boldsymbol{r}, \quad\left[\nabla^{2}, \boldsymbol{r}\right]=2 \nabla, \quad\left[\nabla^{2}, r^{k}\right]=k r^{k-2}[(k+1)+2 \boldsymbol{r} \cdot \nabla]} \\
& \hat{\boldsymbol{R}}^{2}=\frac{2 \hat{H}}{M}\left(\hat{\boldsymbol{L}}^{2}+\hbar^{2}\right)+\alpha^{2}
\end{aligned}
$$

AMKLP11. Goa, Nowember 2011

Conservation of angular momentum

The angular momentum operators L commute with the hydrogen hamiltonian:

$$
\begin{aligned}
{[\hat{H}, \hat{\boldsymbol{L}}] } & \propto\left[\nabla^{2}+2 \kappa r^{-1}, \boldsymbol{r} \wedge \nabla\right] \quad\left(\kappa=M \alpha / \hbar^{2}\right) \\
& =\left[\nabla^{2}, \boldsymbol{r}\right] \wedge \nabla+2 \kappa \boldsymbol{r} \wedge\left[r^{-1}, \nabla\right]=0+0
\end{aligned}
$$

L operators generate $\mathrm{SO}(3)$ algebra:

$$
\left[\hat{L}_{j}, \hat{L}_{k}\right]=i \hbar \varepsilon_{j k l} \hat{L}_{l}, \quad j, k, l=x, y, z
$$

H has $\mathrm{SO}(3)$ symmetry $\Rightarrow m$-degeneracy.

Ancup11. Goa, November 2011

Conserved Runge-Lenz vector

The Runge-Lenz vector \boldsymbol{R} commutes with H :

$$
\begin{aligned}
{[\hat{H}, \hat{\boldsymbol{R}}] } & \propto\left[\nabla^{2}+2 \kappa r^{-1}, \nabla \wedge(r \wedge \nabla)-(r \wedge \nabla) \wedge \nabla+2 \kappa r^{-1} r\right] \\
& =\left[\nabla^{2}, 2 \kappa r^{-1} r\right]+\left[2 \kappa r^{-1}, \nabla \wedge(r \wedge \nabla)-(r \wedge \nabla) \wedge \nabla\right]=0
\end{aligned}
$$

\boldsymbol{R} does not commute with the kinetic and potential parts of H separately:

$$
-\frac{\hbar^{2}}{2 M}\left[\nabla^{2}, \hat{\boldsymbol{R}}\right]=-\left[-\alpha r^{-1}, \hat{\boldsymbol{R}}\right]=\frac{\hbar^{2} \alpha}{M}\left[\frac{1}{r} \nabla-\frac{\boldsymbol{r}}{r^{3}}(1+\boldsymbol{r} \cdot \nabla)\right]
$$

Hydrogen atom has a dynamical symmetry.

AnCuP11. Goa, Noomember 2011

SO(4) symmetry

\boldsymbol{L} and \boldsymbol{R} (almost) close under commutation:

$$
\begin{aligned}
& {\left[\hat{L}_{j}, \hat{L}_{k}\right]=i \hbar \varepsilon_{j k l} \hat{L}_{l}, \quad j, k, l=x, y, z} \\
& {\left[\hat{L}_{j}, \hat{R}_{k}\right]=i \hbar \varepsilon_{j k l} \hat{R}_{l}, \quad j, k, l=x, y, z} \\
& {\left[\hat{R}_{j}, \hat{R}_{k}\right]=-i \hbar \varepsilon_{j l l} \frac{2 \hat{H}}{M} \hat{L}_{l}, \quad j, k, l=x, y, z}
\end{aligned}
$$

H is time-independent and commutes with L and \boldsymbol{R} \Rightarrow choose a subspace with given E.
\boldsymbol{L} and $\boldsymbol{R}^{\prime} \equiv(-M / 2 H)^{1 / 2} \boldsymbol{R}$ form an algebra SO (4) corresponding to rotations in four dimensions.

AraiP11. Goa. Nouember 2011

Energy spectrum of the H atom

Isomorphism of $\mathrm{SO}(4)$ and $\mathrm{SO}(3) \oplus \mathrm{SO}(3)$:

$$
\hat{\boldsymbol{F}}^{ \pm}=\frac{1}{2}\left(\hat{\boldsymbol{L}} \pm \hat{\boldsymbol{R}}^{\prime}\right) \Rightarrow\left[\hat{F}_{j}^{ \pm}, \hat{F}_{k}^{ \pm}\right]=i \hbar \varepsilon_{j k l} \hat{F}_{l}^{ \pm}, \quad\left[\hat{F}_{j}^{+}, \hat{F}_{k}^{-}\right]=0
$$

Since \mathcal{L} and \boldsymbol{R}^{\prime} are orthogonal:

$$
\left\langle\hat{\boldsymbol{F}}^{+} \cdot \hat{\boldsymbol{F}}^{+}\right\rangle=\left\langle\hat{\boldsymbol{F}}^{-} \cdot \hat{\boldsymbol{F}}^{-}\right\rangle=j(j+1) \hbar^{2}
$$

The quadratic Casimir operator of $\mathrm{SO}(4)$ and H are related:
$\hat{C}_{2}[\mathrm{SO}(4)]=\hat{\boldsymbol{F}}^{+} \cdot \hat{\boldsymbol{F}}^{+}+\hat{\boldsymbol{F}}^{-} \cdot \hat{\boldsymbol{F}}^{-}=\frac{1}{2}\left(\hat{\boldsymbol{L}}^{2}-\frac{M}{2 H} \hat{\boldsymbol{R}}^{2}\right)=-\frac{M \alpha^{2}}{4 H}-\frac{1}{2} \mathrm{~h}^{2}$
$\left\langle\hat{C}_{2}[\mathrm{SO}(4)]\right\rangle=2 j(j+1) \mathrm{h}^{2} \Rightarrow E=-\frac{M \alpha^{2}}{2(2 j+1)^{2} h^{2}}, j=0, \frac{1}{2}, 1, \frac{3}{2}, \mathrm{~K}$
Ancup11. Goa, Nouember 2011

The (3D) harmonic oscillator

The hamiltonian of the harmonic oscillator is

$$
\hat{H}=\frac{p^{2}}{2 M}+\frac{1}{2} M \omega^{2} r^{2}
$$

Standard wave quantum mechanics gives

$$
\begin{aligned}
& \hat{H} \Psi_{n l m}(r, \theta, \varphi)=\left(2 n+l+\frac{3}{2}\right) \mathrm{h} \omega \Psi_{n l m}(r, \theta, \varphi) \\
& \text { with } n=0,1, \mathrm{~K} ; l=0,1, \mathrm{~K} ; m=-l, \mathrm{~K},+l
\end{aligned}
$$

Degeneracy in m originates from rotational symmetry. Additional degeneracy for all ($n, 1$) combinations with $2 n+1=N$.
What is the origin of this degeneracy?
AnCIP11. Goa, Nourmber 2011

Degeneracies of the 3D HO

3D harmonic oscillator

AMMP11. Goa, Nouember 2011

Raising and lowering operators

Introduce the raising and lowering operators

$$
\begin{array}{ll}
b_{x}^{+}=\frac{1}{\sqrt{2}}\left(x^{\prime}-\frac{\partial}{\partial x^{\prime}}\right), \quad b_{y}^{+}=\frac{1}{\sqrt{2}}\left(y^{\prime}-\frac{\partial}{\partial y^{\prime}}\right), \quad b_{z}^{+}=\frac{1}{\sqrt{2}}\left(z^{\prime}-\frac{\partial}{\partial z^{\prime}}\right) \\
b_{x}=\frac{1}{\sqrt{2}}\left(x^{\prime}+\frac{\partial}{\partial x^{\prime}}\right), \quad b_{y}=\frac{1}{\sqrt{2}}\left(y^{\prime}+\frac{\partial}{\partial y^{\prime}}\right), \quad b_{z}=\frac{1}{\sqrt{2}}\left(z^{\prime}+\frac{\partial}{\partial z^{\prime}}\right)
\end{array}
$$

with $\quad x^{\prime}=x / l, y^{\prime}=y / l, z^{\prime}=z / l ; \quad l=\sqrt{\frac{\mathrm{h}}{M \omega}}$
The 3D HO hamiltonian becomes

$$
\hat{H}=\frac{p^{2}}{2 M}+\frac{1}{2} M \omega^{2} r^{2}=\sum_{i=x, y, z}\left(b_{i}^{+} b_{i}+\frac{1}{2}\right) \mathrm{h} \omega
$$

$\mathrm{U}(3)$ symmetry of the 3D HO

The raising and lowering operators satisfy

$$
\left[b_{i}, b_{j}\right]=0, \quad\left[b_{i}^{+}, b_{j}^{+}\right]=0, \quad\left[b_{i}, b_{j}^{+}\right]=\delta_{i j}
$$

The bilinear combinations $u_{i j}$ commute with H :

$$
\hat{u}_{i j} \equiv b_{i}^{+} b_{j} \Rightarrow\left[\hat{u}_{i j}, \hat{H}\right]=0, \quad \forall i, j \in\{x, y, z\}
$$

The nine operators $u_{i j}$ generate the algebra $U(3)$:

$$
\left[\hat{u}_{i j}, \hat{u}_{k l}\right]=\hat{u}_{i l} \delta_{j k}-\hat{u}_{k j} \delta_{i l}
$$

\Rightarrow The symmetry of the harmonic oscillator in 3 dimensions is $U(3)$.

Ancup11. Goa, Nouember 2011

The $\mathrm{U}(3)=\mathrm{U}(1) \oplus \mathrm{SU}(3)$ algebra

The generators $u_{i j}$ of $U(3)$ can be written as

$$
\begin{aligned}
& b_{x}^{+} b_{x}+b_{y}^{+} b_{y}+b_{z}^{+} b_{z}=\frac{\hat{H}}{\mathrm{~h} \omega}-\frac{3}{2} \\
& \hat{L}_{z}=-i \mathrm{~h}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)=-i \mathrm{~h}\left(b_{x}^{+} b_{y}-b_{y}^{+} b_{x}\right)+\text { cyclic } \\
& \hat{Q}_{0}=\mathrm{h}\left(2 b_{z}^{+} b_{z}-b_{x}^{+} b_{x}-b_{y}^{+} b_{y}\right) \\
& \hat{Q}_{\mathrm{m}}=\mathrm{h} \sqrt{\frac{3}{2}}\left(\pm b_{z}^{+} b_{x} \pm b_{x}^{+} b_{z}-i b_{y}^{+} b_{z}-i b_{z}^{+} b_{y}\right) \\
& \hat{Q}_{\mathrm{m}}=\mathrm{h} \sqrt{\frac{3}{2}}\left(b_{x}^{+} b_{x}-b_{y}^{+} b_{y} \mathrm{mi} b_{x}^{+} b_{y} \mathrm{mi} b_{y}^{+} b_{x}\right)
\end{aligned}
$$

Many particles in the 3D HO

Define operators for each particle $k=1,2, \ldots, A$:

$$
\begin{array}{ll}
b_{x, k}^{+}=\frac{1}{\sqrt{2}}\left(x_{k}^{\prime}-\frac{\partial}{\partial x_{k}^{\prime}}\right), \quad b_{y, k}^{+}=\frac{1}{\sqrt{2}}\left(y_{k}^{\prime}-\frac{\partial}{\partial y_{k}^{\prime}}\right), \quad b_{z, k}^{+}=\frac{1}{\sqrt{2}}\left(z_{k}^{\prime}-\frac{\partial}{\partial z_{k}^{\prime}}\right) \\
b_{x, k}=\frac{1}{\sqrt{2}}\left(x_{k}^{\prime}+\frac{\partial}{\partial x_{k}^{\prime}}\right), \quad b_{y, k}=\frac{1}{\sqrt{2}}\left(y_{k}^{\prime}+\frac{\partial}{\partial y_{k}^{\prime}}\right), \quad b_{z, k}=\frac{1}{\sqrt{2}}\left(z_{k}^{\prime}+\frac{\partial}{\partial z_{k}^{\prime}}\right)
\end{array}
$$

The total $\mathrm{U}(3)$ algebra is generated by

$$
\sum_{k=1}^{A} b_{i, k}^{+} b_{j, k}, \quad i, j \in\{x, y, z\}
$$

Many particles in the 3D HO

Many-body hamiltonian with $U(3)$ symmetry:

$$
\begin{aligned}
& \hat{H}=\mathrm{h} \omega\left(\sum_{k=1}^{A} b_{x, k}^{+} b_{x, k}+b_{y, k}^{+} b_{y, k}+b_{z, k}^{+} b_{z, k}\right)+\sum_{k<l=1}^{A} \hat{V}(k, l) \\
& {\left[\hat{H}, \sum_{k=1}^{A} b_{i, k}^{+} b_{j, k}\right], \forall i, j \in\{x, y, z\}}
\end{aligned}
$$

This property is valid if the interaction equals

$$
\hat{C}_{2}[\mathrm{SU}(3)]=\frac{1}{2} \boldsymbol{L} \cdot \boldsymbol{L}+\frac{1}{6} \boldsymbol{Q} \cdot \boldsymbol{Q}=\sum_{k_{l}=1}^{A}\left(\frac{1}{2} \boldsymbol{L}(k) \cdot \boldsymbol{L}(l)+\frac{1}{6} \boldsymbol{Q}(k) \cdot \boldsymbol{Q}(l)\right)
$$

Dynamical symmetry

Two algebras $G_{1} \supset G_{2}$ and a hamiltonian

$$
\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}\left[G_{1}\right]+\sum_{n} v_{n} \hat{C}_{n}\left[G_{2}\right]
$$

$\therefore H$ has symmetry G_{2} but not G_{1} !
Eigenstates are independent of parameters μ_{m} and v_{n} in H.
Dynamical symmetry breaking "splits but does not admix eigenstates".

AMKAP11. Goa, Nouember 2011

Isospin symmetry in nuclei

Empirical observations:
About equal masses of n (eutron) and p (roton).
n and p have spin $1 / 2$.
Equal (to about 1\%) nn, np, pp strong forces.
This suggests an isospin $\mathrm{SU}(2)$ symmetry of the nuclear hamiltonian:

$$
\begin{aligned}
& \mathrm{n}: \quad t=\frac{1}{2}, m_{t}=+\frac{1}{2} ; \quad \mathrm{p}: \quad t=\frac{1}{2}, m_{t}=-\frac{1}{2} \\
& \Rightarrow \quad \hat{t}_{+} \mathrm{n}=0, \quad \hat{t}_{+} \mathrm{p}=\mathrm{n}, \quad \hat{t}_{-} \mathrm{n}=\mathrm{p}, \quad \hat{t_{-}} \mathrm{p}=0, \quad \hat{t}_{z} n=\frac{1}{2} \mathrm{n}, \quad \hat{t}_{z} p=-\frac{1}{2} \mathrm{p}
\end{aligned}
$$

Isospin $\operatorname{SU}(2)$ symmetry

Isospin operators form an $\operatorname{SU}(2)$ algebra:

$$
\left[\hat{t}_{z}, \hat{t}_{ \pm}\right]= \pm \hat{t}_{ \pm}, \quad\left[\hat{t}_{+}, \hat{t}_{-}\right]=2 \hat{t}_{z}
$$

Assume the nuclear hamiltonian satisfies

$$
\left[\hat{H}_{\text {nucl }}, \hat{T}_{v}\right]=0, \quad \hat{T}_{v}=\sum_{k=1}^{A} \hat{t}_{v}(k)
$$

$\therefore H_{\text {nucl }}$ has $\mathrm{SU}(2)$ symmetry with degenerate states belonging to isobaric multiplets:

$$
\left|\eta T M_{T}\right\rangle, \quad M_{T}=-T,-T+1, \mathrm{~K},+T
$$

Isospin symmetry breaking: $A=49$

Empirical evidence from isobaric multiplets.
Example: $T=1 / 2$ doublet of $A=49$ nuclei.

ARCIP11. Goa, Nouember 2011

Isospin symmetry breaking: $A=51$

ATMUP11. Goa, Nouember 2011

Isospin SU(2) dynamical symmetry

Coulomb interaction can be approximated as

$$
\hat{H}_{\text {Coul }} \approx \kappa_{0}+\kappa_{1} \hat{T}_{z}+\kappa_{2} \hat{T}_{z}^{2} \Rightarrow\left[\hat{H}_{\text {Coul }} \hat{T}_{z}\right]=0, \quad\left[\hat{H}_{\text {Coul }} \hat{T}_{ \pm}\right] \neq 0
$$

$\therefore H_{\text {nucl }}+H_{\text {coul }}$ has SU(2) dynamical symmetry and $\mathrm{SO}(2)$ symmetry.
M_{T}-degeneracy is lifted according to

$$
\left.\hat{H}_{\text {Coul }}\left|\eta T M_{T}\right\rangle=\left(\kappa_{0}+\kappa_{1} M_{T}+\kappa_{2} M_{T}^{2}\right) \eta T M_{T}\right\rangle
$$

Summary of labelling: $\mathrm{SU}(2) \supset \mathrm{SO}(2)$

ARTUP11. Goa, Noomember 2011

Isobaric multiplet mass equation

Isobaric multiplet mass equation:

$$
\begin{aligned}
& E\left(\eta T M_{T}\right)=\kappa(\eta, T)+\kappa_{l} M_{T}+\kappa_{2} M_{T}^{2} \\
& \text { Example: } T=3 / 2 \text { multiplet for } A=13 \text { nuclei. }
\end{aligned}
$$

Isospin selection rules

Internal E1 transition operator is isovector:

Selection rule for $N=Z\left(M_{T}=0\right)$ nuclei: No E1 transitions are allowed between states with the same isospin.

E1 transitions and isospin mixing

$B\left(\mathrm{E} 1 ; 5^{-} \rightarrow 4^{+}\right)$in ${ }^{64} \mathrm{Ge}$ from:
lifetime of 5 - level; $\delta(E 1 / M 2)$ mixing ratio of $5 \rightarrow 4^{+}$transition;
relative intensities of transitions from 5 .
Estimate of minimum isospin mixing:

$$
\begin{aligned}
P\left(T=1,5^{-}\right) & \approx P\left(T=1,4^{+}\right) \\
& \approx 2.5 \%
\end{aligned}
$$

AnCIP11. Goa, Noumber 2011

Dynamical algebra

Take a generic many-body hamiltonian:

$$
\hat{H}=\sum_{i} \varepsilon_{i} c_{i}^{+} c_{i}+\frac{1}{4} \sum_{i j k l} v_{i j k l} c_{i}^{+} c_{j}^{+} c_{l} c_{k}+\cdots
$$

Rewrite H as (bosons: $q=0$; fermions: $q=1$)

$$
\hat{H}=\sum_{i l}\left(\varepsilon_{i} \delta_{i l}-(-)^{q} \frac{1}{4} \sum_{j} v_{i j l k}\right)^{i} \hat{u}_{i l}+(-)^{q} \frac{1}{4} \sum_{i j k l} v_{i j k l} \hat{u}_{i k} \hat{u}_{j l}+\cdots
$$

Operators $u_{i j}$ generate the dynamical algebra $U(n)$ for bosons and for fermions ($q=0,1$):
$\hat{u}_{i j} \equiv c_{i}^{+} c_{j} \Rightarrow\left[\hat{u}_{i j}, \hat{u}_{k l}\right]=\hat{u}_{i l} \delta_{j k}-\hat{u}_{k j} \delta_{i l}$
AnCIP11. Goa. Nowember 2011

Dynamical symmetry (DS)

With each chain of nested algebras

$$
\mathrm{U}(n)=G_{\mathrm{dyn}}=G_{1} \supset G_{2} \supset \cdots \supset G_{\mathrm{sym}}
$$

...is associated a particular class of many-body hamiltonian

$$
\hat{H}=\sum_{m} \mu_{m} \hat{C}_{m}\left[G_{1}\right]+\sum_{n} v_{n} \hat{C}_{n}\left[G_{2}\right]+\cdots
$$

Since H is a sum of commuting operators
$\forall m, n, a, b: \quad\left[\hat{C}_{m}\left[G_{a}\right], \hat{C}_{n}\left[G_{b}\right]\right]=0$
...it can be solved analytically!

DS in nuclear physics

Name	$G_{\text {dyn }}$	$G_{\text {break }}$	$G_{\text {sym }}$	Application	Reference
Isospin	$\mathrm{SU}(2)$	-	$\mathrm{SO}(2)$	Isobaric multiplets, IMME	Heisenberg [4] Wigner [5]
Quasi-spin	$\mathrm{SU}(2)$	-	$\mathrm{SO}(2)$	Seniority spectra	Racah [6] Kerman [7]
supermultiplet $\mathrm{SU}(3)$ model	$\mathrm{U}(4 \Omega)$	$\mathrm{SU}(3)$	$\mathrm{SO}(3)$	Wigner energy Rotational bands	Wigner [8] Elliott [9]
Interacting Boson Model	$\mathrm{U}(6)$	$\mathrm{U}(5)$ $\mathrm{SU}(3)$ $\mathrm{SO}(6)$	$\mathrm{SO}(3)$	Vibrational nuclei Rotational nuclei γ-unstable nuclei	Arima and Iachello [10]
F-spin	$\mathrm{SU}(2)$	-	$\mathrm{SO}(2)$	F-spin multiplets, FMME	Brentano et al. $[11]$

AMMP11. Goa. Nouember 2011

