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Symmeftry, mathematics and physics

Examples of symmetries in quantum mechanics
Symmetries of the nuclear shell model
Example: seniority in the nuclear shell model
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What is symmetry?

i

Oxford Dictionary of English: “(beauty resulting from
the) right correspondence of parts; quality of
harmony or balance (in size, design) between parts”

Examples: disposition of a French garden; harmony of
themes in a symphony.
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Etymology

Ancient Greek roots:
“sun” means “with, together”
“metron” means “measure”
For the ancient Greeks symmetry was closely related
to harmony, beauty and unity.
Aristotle: "The chief forms of beauty are orderly
arrangement [taxis], proportion [symmetria] and
definiteness [horismenon)].”
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Origin

For the ancient Greeks symmetry implied the notion
of proportion.

17t century: Symmetry starts to imply also a relation
of equality of elements that are opposed (eg.
between left and right).

19 century: Definition of symmetry via the notion of
invariance under transformations such as
translations, rotations, reflections. Introduction of
the notion of a group of transformations.
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Group theory

Group theory is the mathematical theory of symmetry.

Group theory was invented (discovered?) by Evariste
Galois in 1831.

Group theory became one of the pillars of
mathematics (cfr. Klein's Erlangen programme).

Group theory has become of central importance in
physics, especially in quantum physics.

ANUPH, Goa, November 2011



The birth of group theory

Are all equations solvable algebraically?

Example of quadratic equation:
b= b* - 4ac

2a
Babylonians (from 2000 BC) knew how to solve quadratic

equations in words but avoided cases with negative or no
solutions.

Indian mathematicians (eg. Brahmagupta 598-670) did
interpret negative solutions as ‘depths’.

Full solution was given in 12" century by the Spanish Jewish
mathematician Abraham bar Hiyya Ha-nasi.

2
ax“"+bx+c=0 = x,=
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The birth of group theory

No solution of higher equations until dal Ferro,
Tartaglia, Cardano and Ferrari solve the cubic and
quartic equations in the 16™ century.

ax> +bx*+ex+d=0 & ax*+bx’+cex’+dx+e=0

Europe’s finest mathematicians (eg. Euler, Lagrange,
Gauss, Cauchy) attack the quintic equation but no
solution is found.

1799: proof of non-existence of an algebraic solution
of the quintic equation by Ruffini?
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The birth of group theory

1824: Niels Abel shows that general quintic
and higher-order equations have no algebraic = %s= %
solution. B\
1831: Evariste Galois answers the solvability
question: whether a given equation of degree
n is algebraically solvable depends on the
'symmetry profile of its roots’ which can be
defined in terms of a subgroup of the group
of permutations S,.
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The insolvability of the quintic

=2
square
root

Quartic Quintic

Quadratic
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The axioms of group theory

A set G of elements (transformations) with an
operation x which satisfies:

1. Closure. If g, and g, belong to G, then g,xg, also belongs
fo G.

2. Associativity. We always have (g,;xg,)xg;=g,x(g.,xg5).

3. Existence of identity element. An element 1 exists such
that gxl=Ixg=qg for all elements g of G.

4. Existence of inverse element. For each element g of G,
an inverse element g' exists such that gxg'=g'xg=1.

This simple set of axioms leads to an amazingly rich
mathematical structure.

ANUPH, Goa, November 2011



Example: equilateral friangle

Symmetry frans-
formations are

- Identity

- Rotation over 2n/3 and
4m/3 around e,

- Reflection with respect
to planes (u,e,), (u,e,),
(uze,)

Symmetry group: Cs,.
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Groups and algebras

1873: Sophus Lie introduces the notion of the
algebra of a continuous group with the aim
of devising a theory of the solvability of
differential equations.

1887: Wilhelm Killing classifies all Lie
algebras.

1894: Elie Cartan re-derives Killing's
classification and notices two exceptional
Lie algebras to be equivalent.
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Lie groups

A Lie group contains an infinite number of elements
characterized by a set of contfinuous variables.

Additional conditions:
Connection tfo the identity element.
Analytic multiplication function.

Example: rotations in 2 dimensions, SO(2).

R coso.  sSIno
3(a) =

—SIno.  COS
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Lie algebras

tangent

circle

Idea: to obtain properties of the infinite number of
elements g of a Lie group in terms of those of a finite
number of elements g; (called generators) of a Lie
algebra.

-
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Lie algebras

All properties of a Lie algebra follow from the
commutation relations between its generators:

r

[2:8,]=8:%8;,-8,%8 = Ycig,

k=1

Generators satisfy the Jacobi identity:
(28] + [8, L8020 +[ 2 2-2,]) =0

Definition of the metric tensor or Killing form:

r

Ik
8ii = Ecikcjl

k=1
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Classification of Lie groups

Symmetry groups over R, C and H
(quaternions) preserving a specified metric:

{xER: ]
{xEC:

{x & Hn ;

nj.

nj.

xx =1,det = 1} = SO(n)
xx" =1,det =1} = SU(n)
xx" = 1} = Sp(n)

The five exceptional groups G,, F,, E,, E; and
Eg are similar constructs over the normed
division algebra of the octonions, O.
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Rotations in 2 dimensions, SO(2)

Matrix representation of finite elements:

R coso.  sSIno
gla)=|
—sina  cos
Infinitesimal element and generator:
s A( ) 1 O o 1| . .
mgeg\o) = + =e+ QA
P [V | A ST I
Exponentiation leads back to finite elements:
" 1 «
g(a)=nm(é+ﬁ§1) =exp(@+ag)=exp|_|=&(a)
n—>00 n o 0.4
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Rotations in 3 dimensions, SO(3)

Maftrix representation of finite elements:

cosa,

sina,
0

Infinitesimal elemen’rs and associated generators:
0 0 0

0 0 -1
01 0]

A

81 =

—-sina,

cosd,
0

0| cosa,
0 0
1]|-sina,

0 0 1]
8,=|0 0 0], &=
-1 0 0

0 sine,
1 0
0 cosa, |
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1 0
0 cosq
0 sing,

0 -1 0
1 0 0
0 0 0

0
—-sin¢,

cosa,




Rotations in 3 dimensions, SO(3)

Structure constants from matrix multiplication:
3

[gk’gl] = Ec%m with ¢, =¢,, (LeVi—CiVita)

m=1

Exponentiation leads back to finite elements:

3
8(a,a,,0,) = exp(é + Eak(@k)

k=1

Relation with angular momentum operators:
3

?k =ig, = [2,{,@] = izeklmim

m=1
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Casimir operators

Definition: The Casimir operators C[G] of a Lie
algebra G commute with all generators of G.

The quadratic Casimir operator (n=2):
r r 3
Cz[G] = gijg’ié]’ with Egijgjk =0,. Ex: C2[80(3)] = E lk2
i,j=1 i,j=1 k=1
The number of independent Casimir operators (rank)
equals the number of quantum numbers needed to
characterize any (irreducible) representation of G.
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Symmetry in physics

Geometrical symmetries
Example: C;, symmetry (X; molecules, 12C nucleus).

Permutational symmetries
Examp/e' SA symmefry of an A-body hamiltonian:

H = -r|)

2mk I<k<k’
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Symmetry in physics

Space-time (kinematical) symmetries
Rotational invariance, SO(3): x, — x, = E A,x,
Lorentz invariance, SO(3,1): X, =X, —E A,x,
Parity: X, = X, = —X,

Time reversal: t —1t' =—t

Euclidian invariance, E(3): x, = x, = E A x, +a,
Poincareé invariance, E(3,1): X, =X, = A,va +a,
Dilatation symmeftry: x — x, =D, x,
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Symmetry in physics

Quantum-mechanical symmetries, U(n)
wk%wl,<=EBklwl nyv. El‘wl‘z
Internal symmetries. Example:
p<n, isospin SU(2)
usd<s, flavour SU(3)
Gauge symmetries. Example:
Maxwell equations, U(1)

Dynamical symmetries. Example:
Coulomb problem, SO(4)
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Symmeitry in quantum mechanics

Assume a hamiltonian H which commutes with
operators g; that form a Lie algebra G:

Vg. €G: [ﬁl,gi]=0
-. H has symmetry G or is invariant under G.

Lie algebra: a set of (infinitesimal) operators that
closes under commutation.
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Consequences of symmeftry

Degeneracy structure: If |y) is an eigenstate of H
with energy E, so is g;|vy):
H‘V> = E‘V> nd Hgi‘}/> - giH‘y> - Egi )/>

Degeneracy structure and labels of eigenstates of H
are determined by algebra G:

Ly)= Y ay, (i)
"
Casimir operators of G commute with all g;

H = Eumém[G]
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Airy) = By &




Symmeftry rules

Since ifs introduction by Galois in 1831, group theory
has become central to the field of mathematics.

Group theory remains an active field of research, (eg.
the recent classification of all groups leading to
the Monster.)

Symmetry has acquired a central role in all domains
of physics.
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